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1. Introduction

The classical isocapacitary inequality states that among sets which share the same amount of
Lebesgue measure, balls minimize the electrostatic (Newtonian) capacity, that is, for any measurable
set Ω with finite measure, the following scale invariant inequality holds true

|Ω|(2−n)/ncap(Ω) ≥ |B|(2−n)/ncap(B). (1.1)

Here | · | stands for the n−dimensional Lebesgue measure, n ≥ 3, B is any ball in Rn and cap(·) is the
standard electrostatic capacity in Rn, defined for compact sets as

cap(Ω) := inf
{∫
Rn
|∇u|2 dx : u ∈ C∞c (Rn), u ≥ 1 in Ω

}
. (1.2)
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We observe that (1.1) can be rephrased in terms of the isocapacitary deficit, by saying that

dcap(Ω) :=
|Ω|(2−n)/ncap(Ω)
|B|(2−n)/ncap(B)

− 1 ≥ 0. (1.3)

It is well known that the isocapacitary inequality is rigid, in the sense that dcap(Ω) vanishes if and only
if Ω is equivalent to a ball up to a set of null Lebesgue measure. Thus, it appears as a natural quest
the attempt of obtaining a quantitative stability version of (1.3). There are several possible geometric
quantities that can properly measure the difference between a generic set and a ball with the same
volume. The most natural one is the so-called Fraenkel asymmetry, first proposed by L. E. Fraenkel
given by

A(Ω) = inf
{
|Ω∆B|
|Ω|

: B is a ball with |B| = |Ω|
}
.

The first attempts in this direction were made in the ’90s. In particular, in [23] stability inequalities of
the form

dcap(Ω) ≥ CnA(Ω)n+1

were proved, restricting to the class of convex sets when n ≥ 3∗. Nevertheless, in [23] the optimal
exponent was conjectured to be 2, that is

dcap(Ω) ≥ C′nA(Ω)2, (1.4)

which is asymptotically sharp for small asymmetries. Inequality (1.4) was proved in the planar case
in [25, Corollary 2] (see also [2] and [24] for related results with other notions of deficiencies). As far
as higher dimensions are concerned, (1.4) was proved by Fraenkel in [18] for starshaped sets, while
in [21] the authors provided the inequality (1.4) with a suboptimal exponent but for general sets, i.e.,

dcap(Ω) ≥ C′′nA(Ω)4. (1.5)

The conjecture in its full generality was finally established in [29]. It is worth stressing that to get this
result the authors need to exploit the suboptimal inequality (1.5). We finally mention [28], where the
author treated the case of the p-capacity and proved the corresponding sharp inequality. We point out
that the approach followed in [28, 29], while leading to the sharp exponent 2, does not allow to work
out the explicit constant which multiplies the asymmetry. On the contrary, inequality (1.5) is not sharp
for small values ofA(Ω) but comes with an explicit constant C′′n > 0.

In this work we tackle the problem of quantification of the isocapacitary inequality in the fractional
framework.

Let s ∈ (0, 1) and let n > 2s. We consider the fractional generalization of the capacity, defined for
compact sets as follows

caps(Ω) = inf
{
[u]2

s : u ∈ C∞c (Rn), u ≥ 1 on Ω
}
, (1.6)

where

[u]s :=
(∫
R2n

|u(x) − u(y)|2

|x − y|n+2s dx dy
) 1

2

∗In the planar case the suitable capacity is the logarithmic capacity.
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denotes the fractional Gagliardo seminorm of order s. The definition of fractional capacity of a general
closed set Ω ⊆ Rn is given in Definition 2.1, which can be easily proved to be equivalent to (1.6)
when Ω is compact. As a straightforward consequence of the fractional analogue of the Pólya-Szegö
inequality (proved in [1, Theorem 9.2], see also Proposition 2.10 below for an “extended” version) one
can easily derive the fractional isocapacitary inequality, stating that

|Ω|(2s−n)/ncaps(Ω) ≥ |B|(2s−n)/ncaps(B), (1.7)

for any closed Ω ⊆ Rn with finite measure and for any closed ball B. The aim of this work is to quantify
the fractional isocapacitary deficit

dcaps
(Ω) :=

|Ω|(2s−n)/ncaps(Ω)
|B|(2s−n)/ncaps(B)

− 1

in terms of the asymmetry of Ω. We point out that, in view of the scaling properties of the fractional
capacity, the term

|B|(2s−n)/ncaps(B)

is a universal constant, not depending on the choice of the ball B. It is also worth remarking that caps(·)
can be defined, through (1.6), on open sets O and its value coincide with caps(O).

The fractional Pölya-Szegö inequality entails the rigidity of inequality (1.7), in the sense that the
equality holds if and only if Ω is a ball in Rn, see [19, Theorem A.1]. We now present our main result,
which amounts to a quantitative stability inequality for the fractional capacity.

Theorem 1.1. Let s ∈ (0, 1) and n > 2s. There exists a constant Cn,s > 0, depending only on n and s,
such that for any closed set Ω ⊂ Rn with finite measure, there holds

dcaps
(Ω) =

|Ω|(2s−n)/ncaps(Ω)
|B|(2s−n)/ncaps(B)

− 1 ≥ Cn,sA
3
s (Ω). (1.8)

Moreover the constant Cn,s can be explicitly computed, see Remark 3.5.

Our second result investigates the asymptotic behaviour of the function s 7→ caps(Ω) when s→ 1−,
for a compact set Ω ⊆ Rn. In particular, we obtain that a suitable normalization of caps behaves like
the standard capacity as s→ 1− (see (4.1) for the precise definition of the classical notion of capacity).

Proposition 1.2. Let n ≥ 3, then for every Ω ⊂ Rn compact set, we have

lim sup
s↗1

(1 − s) caps(Ω) ≤
ωn

2
cap(Ω), (1.9)

where ωn := |B1| and B1 denotes the unitary ball in Rn. If in addition Ω is the closure of an open
bounded set with Lipschitz boundary then

lim
s↗1

(1 − s) caps(Ω) =
ωn

2
cap(Ω). (1.10)

We observe that the exponent 3/s appearing in (1.8) is likely not sharp,†. Nevertheless, since the
constant Cn,s in (1.8) can be explicitly computed (see Remark 3.5), together with its limit as s → 1−

(see Remark 4.1), our result entails an improvement of (1.5), asymptotically as s → 1−. In particular,
thanks also to Proposition 1.2 and Lemma 3.3, we are able to state the following.

†The optimal exponent was conjectured to be 2 in the fractional case as well.
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Corollary 1.3. Let n ≥ 3 and Ω ⊆ Rn be a closed set with finite measure. Then (1.8) is stable as
s→ 1− and there holds

dcap(Ω) ≥ CnA(Ω)3,

for some Cn > 0 depending only on n, whose explicit value can be found in Remark 4.1.

1.1. Strategy of the proof of Theorem 1.1

Our proof is inspired by that in [3] where the authors deal with the (non-sharp) quantitative stability
of the first eigenvalue of the fractional Laplacian with homogeneous Dirichlet exterior conditions. Such
a result, in turn, relies on ideas established in [2, 21]. Here, we provide a sketch of these arguments,
starting with the classical case and then trying to emphasize the differences occurring in the fractional
framework.

It is well known that, for any closed Ω ⊆ Rn with finite measure, there exists a unique function
0 ≤ uΩ ≤ 1, belonging to a suitable functional space, that achieves cap(Ω). Such a function is called
the capacitary potential of Ω. First, by means of the coarea formula one gets

cap(Ω) ∼
∫
Rn
|∇uΩ|

2 dx ∼
∫ 1

0

(∫
{uΩ=t}

|∇uΩ| dHn−1
)

dt.

The right-hand side of the latter equality, after some manipulation can be written in terms of the
perimeter of the superlevel sets {uΩ ≥ t}, i.e.,

cap(Ω) ∼
∫ 1

0
P({uΩ ≥ t})2 f1(t) dt.

being f1 a suitably chosen real function depending only on the measure of {uΩ ≥ t}. The idea is then to
exploit the sharp quantitative isoperimetric inequality [13, 17, 20]

dPer(E) ∼ |E|(n−1)/nP(E) − |B|(n−1)/nP(B) & A(E)2,

holding for any E ⊆ Rn in a suitable class and for any ball B ⊆ Rn. Plugging this into the previous
estimate, after some further manipulation, one gets

dcap(Ω) &
∫ 1

0
A({u ≥ t})2 f2(t) dt,

where f2 is an explicit positive integrable function depending only on the size of the superlevels of uΩ.
Then we reason in the spirit of [2]:

heuristically, as long as t is close to ‖uΩ‖L∞(Rn) = 1 we expect the set {uΩ ≥ t} is close to Ω in L1 and
thatA({uΩ ≥ t}) ∼ A(Ω), and then, the idea is to seek for a threshold T such that at once

• A({u ≥ t}) ∼ A(Ω) as long as t ∈ (T, 1) and
• the quantity

∫ 1

T
f2(t) dt results proportional to a power ofA(Ω).

The previous two properties lead directly to the sought inequality. A bit more precisely, if the threshold
T is such that 1 − T & A(Ω), then the above strategy works, while if 1 − T . A(Ω), then the fact that
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the asymmetry is large (with respect to 1 − T ) allows, by a simple comparison argument, to get an
asymptotically stronger inequality of the form

dcap(Ω) & A(Ω).

In the fractional case the existence of a capacitary potential uΩ is guaranteed as well, see Remark 2.2.
However, the arguments described above cannot be directly implemented in the fractional scenario,
due to nonlocal effects. Indeed the very first step fails, since a suitable coarea formula for non-integer
Sobolev spaces is missing. A way to overcome these difficulties is provided by the so called Caffarelli-
Silvestre extension for functions in fractional Sobolev spaces. Loosely speaking, this tool allows us to
interpret nonlocal energies of functions defined on Rn as local energies of functions depending on one
more variable. Namely, one can prove a characterization of the s-capacity in the fashion of

caps(Ω) ∼ inf
{∫
Rn+1

+

z1−2s|∇U(x, z)|2 dx dz : U(x, 0) = uΩ(x)
}
, (1.11)

where

Rn+1
+ := {(x, z) : x ∈ Rn, z > 0}

and U varies in a suitable functional space on Rn+1
+ . Moreover, one can prove that the infimum in (1.11)

is uniquely achieved by a function 0 ≤ UΩ ≤ 1. We refer to Section 2.2 for the precise setting and
definitions. At this point, the above strategy may be applied on every horizontal slice {(x, z) : x ∈ Rn}

and with UΩ(·, z) in place of uΩ. This way, we end up with

dcaps
(Ω) &

∫ ∞

0
z1−2s

∫ 1

0
A({U(·, z) ≥ t})2 fz(t) dt dz

where, again, fz is an explicit real-valued function depending on the measure of the superlevels of
U(·, z). Here it appears evident the extra inconvenience due to the presence of the integral in the
z−variable. To get rid of this latter problem, we adapt ideas in [3] to show the existence of a good
interval (0, z0), for which the (asymmetries of the) superlevels of UΩ(·, z) are close to (those of) the
superlevels of uΩ, leading to

dcaps
(Ω) &

∫ z0

0
z1−2s

∫ 1

0
A({UΩ(·, z) ≥ t})2 fz(t) dt dz

∼

∫ 1

0
A({uΩ ≥ t})2 fz(t) dt

and hence conclude similarly as in the classical local case.

2. Preliminaries

In this section we introduce some prerequisites that are necessary in order to prove our main result.

Mathematics in Engineering Volume 4, Issue 5, 1–28.
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2.1. The fractional capacity

First of all, we precisely define the functional setting we work in. For any open set O ⊆ Rn, we
consider the homogeneous fractional Sobolev spaceDs,2(O), defined as the completion of C∞c (O) with
respect to the Gagliardo seminorm of order s

[u]s =

(∫
R2n

|u(x) − u(y)|2

|x − y|n+2s dx dy
) 1

2

.

The spaceDs,2(O) is an Hilbert space, naturally endowed with the following scalar product

(u, v)Ds,2(Rn) :=
∫
R2n

(u(x) − u(y))(v(x) − v(y))
|x − y|n+2s dx dy.

Moreover, by trivial extension we have that Ds,2(O) is continuously embedded in Ds,2(Rn). We refer
to [8] and [5] for more details concerning fractional homogeneous spaces and their characterizations.
We limit ourselves to recall the fractional Sobolev inequality, which reads as follows:

S n,s ‖u‖2L2∗s (Rn)
≤ [u]2

s for all u ∈ Ds,2(Rn), (2.1)

where
2∗s :=

2n
n − 2s

denotes the critical Sobolev exponent in the fractional framework and S n,s > 0 denotes the best constant
in the inequality. In particular, this result ensures the continuity of the embedding

Ds,2(Rn) ↪→ L2∗s (Rn)

and it provides the following characterization

Ds,2(Rn) = {u ∈ L2∗s (Rn) : [u]s < ∞}. (2.2)

We refer to [14, Theorem 1.1] (see also [30, Theorem 7] in the Appendix) and to [5, Theorem 3.1] for
the proofs of (2.1) and (2.2), respectively.

We now introduce the definition of fractional capacity of a closed subset of Rn.

Definition 2.1. Let Ω ⊆ Rn be closed and let ηΩ ∈ C∞c (Rn) be such that ηΩ = 1 in an open
neighbourhood of Ω. We define the fractional capacity of order s (or s-capacity) of the set Ω as
follows:

caps(Ω) := inf{[u]2
s : u ∈ Ds,2(Rn), u − ηΩ ∈ D

s,2(Rn \Ω)}.

First of all, we point out that the above definition does not depend on the choice of the cut-off

function ηΩ. Indeed, if η̃Ω ∈ C∞c (Rn) satisfies η̃Ω = 1 in a neighbourhood of Ω, then trivially

ηΩ +Ds,2(Rn \Ω) = η̃Ω +Ds,2(Rn \Ω).

We also observe that, if Ω ⊆ Rn is a compact set, then, by a simple regularization argument, one can
easily prove that

caps(Ω) = inf{[u]2
s : u ∈ C∞c (Rn), u ≥ 1 in Ω}.

Mathematics in Engineering Volume 4, Issue 5, 1–28.
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We also point out that it is not restrictive to assume that the admissible competitors u in the definition
of caps(Ω) satisfy

0 ≤ u ≤ 1, a.e. in Rn,

since
[u+ ∧ 1]s ≤ [u]s for all u ∈ Ds,2(Rn),

where u+ denotes the positive part of u and a ∧ b = min{a, b}. We refer to lemmas 2.6 and 2.7 in [32]
for the proofs.

Remark 2.2. By direct methods of the calculus of variations, it is easy to check that caps(Ω) is uniquely
achieved (when caps(Ω) < ∞) by a function u ∈ Ds,2(Rn) such that u − ηΩ ∈ D

s,2(Rn \ Ω). Hereafter,
we denote such function by uΩ and we call it the s-capacitary potential (or simply the capacitary
potential) associated to Ω. Moreover, it is easy to observe that 0 ≤ uΩ ≤ 1 a.e. in Rn and that uΩ

satisfies a variational equation, that is

(uΩ, ϕ)Ds,2(Rn) = 0, for all ϕ ∈ Ds,2(Rn \Ω).

The notion of s-capacity of a set is in relation with the fractional Laplace operator of order s, which
is defined, for u ∈ C∞c (Rn), as follows

(−∆)su(x) : = 2 P.V.
∫
Rn

u(x) − u(y)
|x − y|n+2s dy

= 2 lim
r→0+

∫
{|x−y|>r}

u(x) − u(y)
|x − y|n+2s dy,

where P.V. means that the integral has to be seen in the principal value sense. It is natural to extend the
definition of fractional Laplacian applied to any function in Ds,2(Rn), in a distributional sense. More
precisely, given u ∈ Ds,2(Rn), we have that (−∆)su ∈ (Ds,2(Rn))∗ (with (Ds,2(Rn))∗ denoting the dual of
Ds,2(Rn)) and it acts as follows

(Ds,2(Rn))∗〈(−∆)su, v〉Ds,2(Rn) = (u, v)Ds,2(Rn), for all v ∈ Ds,2(Rn).

Therefore, in view of Remark 2.2, we can say that the capacitary potential uΩ ∈ D
s,2(Rn) weakly

satisfies (−∆)suΩ = 0, in Rn \Ω,

uΩ = 1, in Ω.

2.2. The extended formulation

The proof of our main result strongly relies on an extension procedure for functions in fractional
Sobolev spaces, first established in [11], which, in some sense, allows to avoid some nonlocal issues
and recover a local framework. Such a procedure is commonly called Caffarelli-Silvestre extension.
In this paragraph, we introduce the functional spaces emerging in the extended formulation and we
discuss some of their properties, also in relation with the s-capacity of a set. We remark that, being the
Caffarelli-Silvestre extension a classical tool nowadays, the results we present here can be regarded as
folklore. But still, up to our knowledge, there are no explicit proofs available in the literature, hence
we decided to report them here.
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For any closed set K ⊆ ∂Rn+1
+ ' Rn, we define the space D1,2(Rn+1

+ \ K; z1−2s) as the completion of
C∞c (Rn+1

+ \ K) with respect to the norm

‖U‖
D1,2(Rn+1

+ \K;z1−2s)
:=

(∫
Rn+1

+

z1−2s |∇U |2 dx dz
) 1

2

.

However hereafter we simply writeD1,2
z (Rn+1

+ \ K) in place ofD1,2(Rn+1
+ \ K; z1−2s).

We have thatD1,2
z (Rn+1

+ \ K) is an Hilbert space with respect to the scalar product

(U,V)
D

1,2
z (Rn+1

+ \K)
:=

∫
Rn+1

+

z1−2s∇U · ∇V dx dz.

First of all we shot that the spaceD1,2
z (Rn+1

+ \K) is a well defined functional space, which is not obvious.
In order to prove that, it is sufficient to prove that it is the case forD1,2

z (Rn+1
+ ), in view of the continuous

embedding
D1,2

z (Rn+1
+ \ K) ↪→ D1,2

z (Rn+1
+ ).

To show this, we first recall by [15, Proposition 3.3] the following weighted Sobolev inequality(∫
Rn+1

+

z1−2s |U |2γ dx dz
) 1

2γ

≤ S ′n,s

(∫
Rn+1

+

z1−2s|∇U |2 dx dz
) 1

2

for all U ∈ D1,2
z (Rn+1

+ ), (2.3)

where S ′n,s is a positive constant and γ := 1 + 2
n−2s . In particular this inequality yields the following

continuous embedding
D1,2

z (Rn+1
+ ) ↪→ L2γ(Rn+1

+ ; z1−2s),

where

L2γ(Rn+1
+ ; z1−2s) :=

{
U ∈ L1

loc(R
n+1
+ ) :

∫
Rn+1

+

z1−2s |U |2γ dx dz < ∞
}
.

We now provide a characterization ofD1,2
z (Rn+1

+ ) as a concrete functional space.

Proposition 2.3. The spaceD1,2
z (Rn+1

+ ) is a functional space. In particular there holds

D1,2
z (Rn+1

+ ) =

{
U ∈ L2γ(Rn+1

+ ; z1−2s) : ‖U‖
D

1,2
z (Rn+1

+ )
< +∞

}
.

Proof. The fact that

D1,2
z (Rn+1

+ ) ⊆
{
U ∈ L2γ(Rn+1

+ ; z1−2s) : ‖U‖
D

1,2
z (Rn+1

+ )
< +∞

}
immediately follows from (2.3). We now prove the reverse inclusion. Namely, we show that any
function

U ∈ L2γ(Rn+1
+ ; z1−2s) (2.4)

such that
‖U‖

D
1,2
z (Rn+1

+ )
< +∞ (2.5)
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can be approximated by functions in C∞c (Rn+1
+ ) in the topology induced by the norm ‖·‖

D
1,2
z (Rn+1

+ )
. First,

suppose that U is compactly supported in Rn+1
+ and let

Ũ(x, z) :=

U(x, z), if z > 0,
U(x,−z), if z < 0.

Moreover, we let {ρε}ε>0 be a family of mollifiers‡ in Rn+1 and we set

Uε = Ũ ? ρε
∣∣∣Rn+1

+

.

Clearly Uε pointwisely converge to U in Rn+1, as ε → 0. Moreover it is equibounded in D1,2
z (Rn+1

+ ).
Thus we easily conclude by means of the dominated convergence theorem. We consider now the
general case. Fix ε > 0 and let UR = UηR where ηR is the restriction to Rn+1

+ of a radial, smooth cut-off

function defined on Rn+1 such that ηR = 1 on BR, ηR = 0 on Rn+1 \ B2R and supRn+1 |∇ηR| ≤ 4R−1. Since,
UR ∈ D

1,2
z (Rn+1

+ ), by the previous step there exists VR ∈ C∞c (Rn+1
+ ) such that ‖UR − VR‖D1,2

z (Rn+1
+ )
≤ ε/2,

so that, by triangular inequality

‖U − VR‖D1,2
z (Rn+1

+ )
≤ ‖U − UR‖D1,2

z (Rn+1
+ )

+
ε

2
.

We are left to show that UR → U in D1,2
z (Rn+1

+ ), as R → ∞. In view of the properties of ηR, we have
that

‖U − UR‖
2
D

1,2
z (Rn+1

+ )
=

∫
Rn+1

+

z1−2s|∇U − ∇(UηR)|2 dx dz

≤ 2
∫
Rn+1

+

z1−2s|∇U − ηR∇U |2 dx dz + 2
∫
Rn+1

+

z1−2s|U∇ηR|
2 dx dz

≤ 2
∫
Rn+1

+ \B+
R

z1−2s|∇U |2 dx dz +
32
R2

∫
B+

2R\B
+
R

z1−2s |U |2 dx dz,

where B+
r := Br∩R

n+1
+ . Thanks to (2.5), the first term on the right-hand side in the above inequalities is

infinitesimal as R tends to infinity, so it can be chosen smaller than ε/4. For what concerns the second
term, by Hölder inequality we obtain that∫

B+
2R\B

+
R

z1−2s |U |2 dx dz ≤
∫

B+
2R\B

+
R

z1−2s dx dz
(γ−1)/γ ∫

B+
2R\B

+
R

z1−2s |U |2γ dx dz
1/γ

.

By (2.4) we have that ∫
B+

2R\B
+
R

z1−2s |U |2γ dx dz→ 0, as R→ ∞,

while, by an explicit computation, also recalling that γ = 1 + n
n−2s one gets that

sup
R≥1

1
R2

∫
B+

2R\B
+
R

z1−2s dx dz
(γ−1)/γ

< +∞.

‡We call mollifier a smooth, symmetric decreasing, positive and compactly supported function, which converges in distribution to a
centered Dirac measure δ, as ε→ 0, and such that ‖ρε‖L1(Rn+1) = 1.
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Hence we can choose R large enough so that

16
R2

∫
B+

2R\B
+
R

z1−2sU2 dx dz ≤ ε/4,

and conclude that
‖U − VR‖D1,2

z (Rn+1
+ )
≤ ε.

�

Another fundamental fact that relates the space D1,2
z (Rn+1

+ ) with Ds,2(Rn) is the existence of a trace
map from the former to the latter. Before stating the precise result, we recall the following classical
Hardy inequality, whose proof can be found e.g., in [26].

Lemma 2.4. Let p ∈ (1,∞) and a < 1. Then there exists a constant C(p, a) > 0 such that∫ ∞

0
ρa

∣∣∣∣∣1ρ
∫ ρ

0
f (t) dt

∣∣∣∣∣p dρ ≤ C(p, a)
∫ ∞

0
ρa | f (ρ)|p dρ,

for all f ∈ C∞c ([0,∞)).

Proposition 2.5. There exists a linear and continuous trace operator

Tr : D1,2
z (Rn+1

+ )→ Ds,2(Rn)

such that Tr(U)(x) = U(x, 0) for every U ∈ C∞c (Rn+1
+ ).

Proof. Throughout the proof, we assume the spaceDs,2(Rn) to be endowed with the following norm

[u]s,# :=

 n∑
i=1

[u]2
s,i


1
2

.

where

[u]2
s,i :=

∫ ∞

0

∫
Rn

|u(x + ρei) − u(x)|2

ρ1+2s dx dρ,

with ei denoting the unit vector in the positive xi variable. The norm [·]s,# is equivalent to [·]s, as proved
in [3, Proposition B.1]. By density, it is sufficient to prove that there exists C > 0 such that

[U(·, 0)]s,# ≤ C ‖U‖
D

1,2
z (Rn+1

+ )
, for all U ∈ C∞c (Rn+1

+ ). (2.6)

For U ∈ C∞c (Rn+1
+ ), x ∈ Rn and ρ > 0, we rewrite

U(x, 0) = U(x, ρ) −
∫ ρ

0

∂U
∂z

(x, t) dt,

U(x + ρei, 0) = U(x + ρei, ρ) −
∫ ρ

0

∂U
∂z

(x + ρei, t) dt.
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Therefore

|U(x + ρei, 0) − U(x, 0)|2

ρ1+2s ≤2ρ1−2s |U(x + ρei, ρ) − U(x, ρ)|2

ρ2

+ 2ρ1−2s

∣∣∣∣∣∣1ρ
∫ ρ

0

(
∂U
∂z

(x + ρei, t) −
∂U
∂z

(x, t)
)

dt

∣∣∣∣∣∣2 .
If we integrate in the x variable we obtain∫

Rn

|U(x + ρei, 0) − U(x, 0)|2

ρ1+2s dx ≤ 2ρ1−2s

∫
Rn

∣∣∣∣∣∂U
∂xi

(x, ρ)
∣∣∣∣∣2 dx + 2

∫
Rn

∣∣∣∣∣∣1ρ
∫ ρ

0

(
∂U
∂z

(x, t) dt
)∣∣∣∣∣∣2 dx

 ,
where we used the fact that∫

Rn

|U(x + ρei, ρ) − U(x, ρ)|2

ρ2 dx ≤
∫
Rn

∣∣∣∣∣∂U
∂xi

(x, ρ)
∣∣∣∣∣2 dx

for the first term and a change of variable for the second. By integration with respect to ρ in (0,∞) and
thanks to Lemma 2.4 (choosing p = 2 and a = 1 − 2s) we infer

[U(·, 0)]2
s,i ≤ 2

∫
Rn+1

+

ρ1−2s
∣∣∣∣∣∂U
∂xi

(x, ρ)
∣∣∣∣∣2 dx dρ + C

∫
Rn+1

+

ρ1−2s
∣∣∣∣∣∂U
∂z

(x, ρ)
∣∣∣∣∣2 dx dρ,

for some constant C > 0 depending only on s. If we now sum for i = 1, . . . , n and take the square root,
we obtain (2.6), thus concluding the proof.

�

The next step is to prove that the trace map introduced in the proposition above is onto. We first
introduce the Poisson kernel of the upper half-space Rn+1

+ , defined as

Pz(x) := cn,s
z2s

(|x|2 + z2)
n+2s

2

, for (x, z) ∈ Rn+1
+

where

cn,s :=
(∫
Rn

1

(1 + |x|2)
n+2s

2

dx
)−1

= π−
n
2
Γ
(

n+2s
2

)
Γ(s)

, (2.7)

is given in such a way that ∫
Rn

Pz(x) dx = 1, for all z > 0,

see [22, Remark 2.2]. Essentially, a convolution with this kernel allows to extend to the upper half-
space Rn+1

+ functions that are defined on Rn. This is done first for functions in C∞c (Rn) and then extended
by density to the wholeDs,2(Rn). Namely, we have the following.

Proposition 2.6. Let ϕ ∈ Ds,2(Rn). Then the function

Uϕ(x, z) := (Pz ? ϕ)(x) (2.8)
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belongs toD1,2
z (Rn+1

+ ) and ∥∥∥Uϕ

∥∥∥2

D
1,2
z (Rn+1

+ )
= αn,s[ϕ]2

s , (2.9)

where

αn,s :=
s(1 − s)
π

n
2

Γ(1 − s)Γ
(

n+2s
2

)
Γ(s)Γ(2 − s)

> 0. (2.10)

In particular the trace operator established in Proposition 2.5 is surjective.

Proof. For any ϕ ∈ C∞c (Rn), we let

(Eϕ)(x, z) := (Pz ? ϕ)(x).

It is easy to check that

‖Eϕ‖2
D

1,2
z (Rn+1

+ )
=

∫
Rn+1

+

z1−2s |∇(Eϕ)|2 dx dz = αn,s[ϕ]2
s . (2.11)

For the computation of the explicit constant see e.g., [10, Remark 3.11]. Moreover, by the weighted
Sobolev inequality (2.3) ∫

Rn+1
+

z1−2s |Eϕ|2γ dx dz < ∞.

Hence, by Proposition 2.3, we have that Eϕ ∈ D1,2
z (Rn+1

+ ). Therefore the map

E: C∞c (Rn)→ D1,2
z (Rn+1

+ )

is linear and continuous, thus it can be uniquely extended in the whole Ds,2(Rn) and (2.11) still holds.
We now prove that Eϕ = Uϕ for any ϕ ∈ Ds,2(Rn). Let ϕ ∈ Ds,2(Rn) and (ϕi)i ⊆ C∞c (Rn) be such that
ϕi → ϕ inDs,2(Rn) as i→ ∞. Thanks to (2.1), we have that

ϕi → ϕ in L2∗s (Rn), as i→ ∞,

which, by definition, implies that

Eϕi = Uϕi → Uϕ pointwise in Rn+1
+ , as i→ ∞.

On the other hand Eϕi → Eϕ inD1,2
z (Rn+1

+ ) as i→ ∞; hence, up to a subsequence

Eϕi → Eϕ a.e. in Rn+1
+ , as i→ ∞.

Therefore Eϕ = Uϕ and the proof is complete.
�

The following corollary, in view of the previous results, tells us that there is an isometry between
the space Ds,2(Rn) and the subspace of D1,2

z (Rn+1
+ ) containing the (unique) minimizers of a certain

functional.
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Corollary 2.7. Let ϕ ∈ Ds,2(Rn). Then the minimization problem

min
U∈D1,2

z (Rn+1
+ )

{∫
Rn+1

+

z1−2s |∇U |2 dx dz : Tr U = ϕ

}
admits a unique solution, which coincides with Uϕ as in (2.8). Moreover

−div(z1−2s∇Uϕ) = 0, in Rn+1
+ ,

Uϕ = ϕ, on Rn,

− lim
z→0+

z1−2s∂Uϕ

∂z
= αn,s(−∆)sϕ, on Rn,

in a weak sense, that is∫
Rn+1

+

z1−2s∇Uϕ · ∇V dx dz = αn,s(ϕ,Tr V)Ds,2(Rn), for all V ∈ D1,2
z (Rn+1

+ ),

where αn,s > 0 is as in (2.10).

Proof. The proof is standard. For instance see [3, Proposition 2.6] for the first part and [11] for the
second. �

Remark 2.8. In view of the extension procedure described above, we can relate the notion of s-capacity
with another notion of (weighted) capacity of sets in Rn+1. More precisely, with a slight abuse of
notation, we callD1,2

z (Rn+1) the completion of C∞c (Rn+1) with respect to the norm

‖U‖
D

1,2
z (Rn+1) :=

(∫
Rn+1
|z|1−2s

|∇U |2 dx dz
) 1

2

and, for any closed K ⊆ Rn+1, we let

capRn+1(K; |z|1−2s) := inf
{
‖U‖2

D
1,2
z (Rn+1)

: U ∈ D1,2
z (Rn+1), U − ζK ∈ D

1,2(Rn+1 \ K)
}
,

where ζK ∈ C∞c (Rn+1) is equal to 1 in a neighborhood of K. Thanks to (2.9), after an even reflection in
the z variable, one can see that

1
2

capRn+1(Ω; |z|1−2s) = αn,scaps(Ω).

for any closed Ω ⊆ Rn. Moreover the unique function achieving capRn+1(Ω; |z|1−2s) coincides with the
even-in-z reflection of Pz ? uΩ, with uΩ ∈ D

s,2(Rn) denoting the capacitary potential of caps(Ω), as in
Remark 2.2.

Hereafter we denote by

UΩ(x, z) := (Pz ? uΩ)(x), for (x, z) ∈ Rn+1
+
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the restriction to the upper half-space of the potential associated to cap(Ω; |z|1−2s). Hence,
UΩ ∈ D

1,2
z (Rn+1

+ ) satisfies 0 ≤ UΩ ≤ 1 a.e. in Rn+1
+ and weakly solves

−div(z1−2s∇UΩ) = 0, in Rn+1
+ ,

UΩ = 1, on Ω,

− lim
z→0+

z1−2s∂UΩ

∂z
= 0, on Rn \Ω,

in the sense that UΩ − ζΩ ∈ D
1,2
z (Rn+1

+ \Ω) and∫
Rn+1

+

z1−2s∇UΩ · ∇V dx dz = 0, for all V ∈ D1,2
z (Rn+1

+ \Ω).

Thanks to [31, Theorem 1.1], we can observe that UΩ ∈ C∞(Rn+1
+ \ Ω). Hence, in particular uΩ ∈

C∞(Rn \Ω).

Remark 2.9. We emphasize a technical difference with respect to [3]. Namely that the functional
setting we adopt here is tailored for the problem under investigation. Indeed, being the s-capacity
obtained by minimization of the (nonlocal) energy, it is natural to expect the minimizer to have only
finite seminorm [·]s, together with the possibility of approximating it by means of smooth and
compactly supported functions, at least for compact Ω. Therefore, any other integrability assumption
on the capacitary potential appears as artificial. Observe that, differently from our Proposition 2.6 and
Corollary 2.7, in which the trace function ϕ needs just to belong toDs,2(Rn), in the analogue extension
result Proposition 2.6 of [3] an additional integrability assumption on ϕ is required.

2.3. Radial rearrangements and the isocapacitary inequality

This paragraph is devoted to the isocapacitary inequality (1.7). The classical and simplest proof of
the (standard) isocapacitary inequality,

|Ω|(2−n)/ncap(Ω) ≥ |B|(2−n)/ncap(B) (2.12)

is by rearrangement: given any function u : Rn → R, its symmetric decreasing rearrangement is the
radial decreasing function u∗ : Rn → R such that |{u > t}| = |{u∗ > t}|. As a consequence of the
Pólya-Szegö inequality ∫

Rn
|∇u|2 dx ≥

∫
Rn
|∇u∗|2 dx

applied to the capacitary potential of a closed Ω ⊆ Rn one can easily see that cap(Ω) ≥ cap(B) as long as
|B| = |Ω| < ∞, from which, by scaling (2.12) holds as well. Indeed, the symmetric rearrangement of the
capacitary potential of Ω coincides with the potential of a ball with the same volume as Ω. Following
this path, one can prove the fractional isocapacitary inequality using symmetric rearrangements for the
extended problem in Rn+1

+ .
As in [3, 22], we define in Rn+1

+ the partial Schwartz symmetrization U∗ of a nonnegative function
U ∈ D1,2

z (Rn+1
+ ). By construction, the function U∗ is obtained by taking for almost every z > 0, the

n−dimensional Schwartz symmetrization of the map

x 7→ U(x, z).
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More precisely: for almost every fixed z > 0, the function U∗(·, z) is defined to be the unique radially
symmetric decreasing function on Rn such that for all t > 0

|{U∗(·, z) > t}| = |{U(·, z) > t}|.

Proposition 2.10. Let ϕ ∈ Ds,2(Rn) be a nonnegative function and let Uϕ ∈ D
1,2
z (Rn+1

+ ) as in (2.8).
Then

U∗ϕ ∈ D
1,2
z (Rn+1

+ )

and the following Pólya-Szegö type inequalities hold true∫
Rn+1

+

z1−2 s |∇U∗ϕ|
2 dx dz ≤

∫
Rn+1

+

z1−2 s |∇Uϕ|
2 dx dz,∫

Rn+1
+

z1−2 s |∂zU∗ϕ|
2 dx dz ≤

∫
Rn+1

+

z1−2 s |∂zUϕ|
2 dx dz. (2.13)

Moreover, we have Tr(U∗ϕ) = ϕ∗. In particular, we get∫
Rn+1

+

z1−2 s |∇U∗ϕ|
2 dx dz ≥ αn,s[ϕ∗]2

Ds,2(Rn).

Proof. By density, it is enough to show the result for ϕ ∈ C∞c (Rn). In that case, the proof follows
directly by [3, Proposition 3.2]. �

Now, a proof of the fractional isocapacitary inequality (1.7) can be obtained as a direct consequence
of the previous result, applied to ϕ = uΩ, and Remark 2.8.

3. Proof of the main result

In this section we give the proof of our main result. The idea consists in introducing quantitative
elements in the proof of the isocapacitary inequality established in the previous section. As already
explained in the Introduction, the major inconvenience when working with the extended problem in
Rn+1

+ consists in the fact that we need to transfer information on the superlevel sets of the extension of
the capacitary potential {UΩ(·, z) ≥ t} for fixed z > 0, to information on the superlevel sets of its trace
uΩ in Rn. This was done in Section 4 of [3] for a problem concerning the stability of the first eigenvalue
of the Dirichlet fractional Laplacian.

We start by recalling the following technical result, whose proof can be found in [3, Lemma 4.1].

Lemma 3.1. Let Ω, E be two measurable subsets of Rn of finite measure and such that

|Ω∆E|
|Ω|

≤
δ

3
A(Ω),

for some δ ∈ (0, 1). Then
A(E) ≥ CδA(Ω),

where
Cδ :=

3 − 2δ
3 + 2δ

. (3.1)
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The following lemma corresponds to Proposition 2.6 of [3]. Observe that, here, the extension
Uϕ(·, z) of a function ϕ ∈ Ds,2(Rn) does not belong to L2(Rn) for fixed z ≥ 0; nevertheless, with the
same computations as in [3], we can show that it is close enough (depending on z) in L2 to its trace u.
We report a proof of the lemma for the sake of completeness.

Lemma 3.2. For any ϕ ∈ Ds,2(Rn), denoting by Uϕ ∈ D
1,2
z (Rn+1

+ ) its extension, there holds∥∥∥Uϕ(·, z) − ϕ
∥∥∥

L2(Rn)
≤
√

cn,s[ϕ]s zs, for z > 0,

where cn,s is given in (2.7).

Proof. We first prove the following preliminary fact∫
Rn

Pz(y)
∥∥∥τyϕ − ϕ

∥∥∥
L2(Rn)

dy ≤
√

cn,szs[ϕ]s < ∞ for all ϕ ∈ Ds,2(Rn) and all z ≥ 0, (3.2)

where τyϕ(·) = ϕ(· − y). Indeed, multiplying and dividing by |y|(n+2s)/2 and applying Cauchy-Schwartz
inequality yields∫

Rn
Pz(y)

∥∥∥τyϕ − ϕ
∥∥∥

L2(Rn)
dy ≤

(∫
Rn

Pz(y)2 |y|n+2s dy
) 1

2
(∫
Rn

∥∥∥∥∥τyϕ − ϕ

|y|s

∥∥∥∥∥2

L2(Rn)

dy
|y|n

) 1
2

=

(∫
Rn

Pz(y)2 |y|n+2s dy
) 1

2

[ϕ]s,

where, in the last step, we used the fact that∫
Rn

∥∥∥∥∥τyϕ − ϕ

|y|s

∥∥∥∥∥2

L2(Rn)

dy
|y|n

= [ϕ]2
s .

The proof of (3.2) ends by observing that(∫
Rn

Pz(y)2 |y|n+2s dy
) 1

2

=
√

cn,szs.

Let us now consider ϕ ∈ Ds,2(Rn). By definition of Uϕ and Minkowski’s inequality we have that∥∥∥(Uϕ(·, z) − ϕ)χBR

∥∥∥
L2(Rn)

≤

∫
Rn

Pz(y)
∥∥∥τyϕ − ϕ

∥∥∥
L2(BR)

dy,

for any R > 0, where χBR denotes the characteristic function of the ball BR. We conclude the proof
applying Fatou’s Lemma for R→ ∞ and combining the resulting inequality with (3.2). �

The following result allows us to focus on compact sets without loss of generality. Therefore
hereafter in this section we always assume Ω ⊆ Rn to be a compact set.

Lemma 3.3 (Reduction to compact sets). Let Ω ⊆ Rn be a closed set with finite measure. Then

lim
r→∞

caps(Ω ∩ Br) = caps(Ω) and lim
r→∞
A(Ω ∩ Br) = A(Ω),

where Br := {x ∈ Rn : |x| < r}.
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Proof. The convergence of the capacity follows from the fact that, for any sequence of closed sets
Ωi ⊆ R

n such that Ωi ⊆ Ωi+1, there holds

caps(∪
∞
i=1Ωi) = lim

i→∞
caps(Ωi)

which, in turn, can be proved by following step by step the proof of [16, Theorem 4.15, Point (viii)].
The rest of the proof is easy and can be omitted. �

Hereafter in this section, for 0 ≤ t ≤ 1 and z ≥ 0, we let

Ωt,z := {x ∈ Rn : UΩ(x, z) ≥ t} and Ωt := Ωt,0 = {x ∈ Rn : uΩ(x) ≥ t}.

We notice that, by the continuity of uΩ, it follows that |Ωt∆Ω| → 0, as t → 1−. Moreover, we set,
respectively

µz(t) := |Ωt,z| and µ(t) := µ0(t) = |Ωt|.

We immediately observe that µ is left-continuous and non-increasing in (0, 1) and that

lim
t→0+

µ(t) = +∞ and lim
t→1−

µ(t) = |Ω|.

We now let

T = T (Ω, γ) = inf {0 ≤ t ≤ 1: |{uΩ ≥ t}| ≤ |Ω| (1 + γA(Ω))} , (3.3)
= inf {0 ≤ t ≤ 1: µ(t) ≤ |Ω| (1 + γA(Ω))} .

The constant γ is chosen in (0, 1/9) and will be settled later on. Notice that ifA(Ω) > 0 then T < 1. In
addition, in view of the left-continuity of µ, we know that

µ(T ) ≥ |Ω| (1 + γA(Ω)). (3.4)

The following proposition, which will be crucial in the proof of our main result, allows to bound
from below the asymmetry of the superlevel sets of UΩ(·, z) with the asymmetry of Ω (for certain levels
t and for z small enough).

Proposition 3.4. Let Ω be such that A(Ω) > 0, γ ∈ (0, 1/9), and let T ∈ (0, 1) as in (3.3). Set also
T̂ = 1 − T. Then, letting cn,s be as in (2.7), if

T +
1
8

T̂ ≤ t ≤ T +
3
8

T̂ and 0 < z ≤ z0 :=

 T̂
16

√
γA(Ω)|Ω|
cn,scaps(Ω)


1
s

,

we have ∣∣∣∣∣∣∣Ωt,z

∣∣∣ − |Ω|∣∣∣∣
|Ω|

≤ 3γA(Ω), (3.5)

and
A

(
Ωt,z

)
≥ cγA(Ω), (3.6)

where cγ = C3γ and C3γ is as in (3.1).
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Proof. Let τ = T + T̂
2 . First of all, we observe that, by triangle inequality

||Ωt,z| − |Ω||

|Ω|
≤
|Ωt,z∆Ω|

|Ω|
=
|Ωt,z \Ω|

|Ω|
+
|Ω \Ωt,z|

|Ω|

≤

|Ωt,z \ΩT+ T̂
16
|

|Ω|
+
|ΩT+ T̂

16
\Ω|

|Ω|
+
|Ω \Ωt,z|

|Ω|

≤

|Ωt,z \ΩT+ T̂
16
|

|Ω|
+ γA(Ω) +

|Ωτ \Ωt,z|

|Ω|
.

(3.7)

where, in the last inequality we used the definition of T and the facts that T + T̂
16 > T and Ω ⊆ Ωτ. For

x ∈ Ωτ \Ωt,z we have that

uΩ(x) − UΩ(x, z) ≥ τ − t ≥ T +
T̂
2
− (T +

3
8

T̂ ) =
1
8

T̂ ,

which shows that Ωτ \ Ωt,z ⊂ {|uΩ − UΩ(·, z)| ≥ 1
8 T̂ }. Hence, using Chebichev’s inequality and Lemma

3.2 with ϕ = uΩ, it holds that

|Ωτ \Ωt,z|

|Ω|
≤
|{|uΩ − UΩ(·, z)| ≥ 1

8 T̂ }|

|Ω|

≤
64

|Ω|T̂ 2
‖uΩ − UΩ(·, z)‖2L2(Rn) ≤

64cn,s[uΩ]2

|Ω|T̂ 2
z2s ≤ γA(Ω),

as long as z ≤
(

T̂
8

√
γA(Ω)|Ω|

cn,scaps(Ω)

) 1
s
. Similarly, one can check that

|Ωt,z \ΩT+ T̂
16
|

|Ω|
≤ γA(Ω).

as long as z ≤
(

T̂
16

√
γA(Ω)|Ω|

cn,scaps(Ω)

) 1
s
. This, together with (3.7) entails that

||Ωt,z| − |Ω||

|Ω|
≤3γA(Ω),

which proves (3.5). Finally, applying Lemma 3.1 (with δ = 3γ and γ chosen to be in (0, 1/6)), we
deduce (3.6). �

We can now give the proof of our main result.

Proof of Theorem 1.1. By scaling invariance, we may assume |Ω| = 1. We also fix γ = 10−1 ∈ (0, 1/9)
throughout the proof. We have to prove that

caps(Ω) − caps(B) ≥ Ccaps(B)A(Ω)
3
s , (3.8)

for some C > 0, where B is a ball with unit volume.
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We start by observing that if caps(Ω) > 2caps(B), then, sinceA(Ω) ≤ 2, we easily deduce that

caps(Ω) − caps(B) > caps(B) =
caps(B)

2
3
s

2
3
s ≥

caps(B)

2
3
s

A(Ω)
3
s ,

which proves (3.8) with C = 2−
3
s .

Thus, we can just consider the case in which

caps(Ω) ≤ 2caps(B).

We recall that in (3.3), we have defined the level T as

T = inf {0 ≤ t ≤ 1: µ(t) ≤ |Ω| (1 + γA(Ω))} .

Notice that by Lemma 3.1 as long as 1 ≥ t ≥ T it holds

A(Ωt) ≥ cγA(Ω),

for some cγ independent of t and Ω.
We now distinguish between two cases, in terms of the relation of T with A(Ω). More precisely,

we let
λ :=

n − 2s
n

γ and κ :=
λ

4(1 + 2λ)
. (3.9)

We consider the ranges
1 − T ≥ κA(Ω) and 1 − T < κA(Ω).

Case 1 − T ≥ κA(Ω). In this case we argue as in the proof of Proposition 4.4 and of Theorem 1.3 (case
T > T0) in [3]. The idea consists in introducing quantitative elements in the proof of the Pólya-Szegö
inequality by applying the quantitative isoperimetric inequality on each (horizontal) level set Ωt,z of the
function UΩ(·, z).

First, we recall that

caps(Ω) = [uΩ]2
Ds,2(Rn) = α−1

n,s

∫
Rn+1

+

z1−2 s |∇xUΩ|
2 dx dz + α−1

n,s

∫
Rn+1

+

z1−2 s |∂zUΩ|
2 dx dz.

For what concerns the z-derivative, from (2.13) we know that∫
Rn+1

+

z1−2 s |∂zUΩ|
2 dx dz ≥

∫
Rn+1

+

z1−2 s
∣∣∣∂zU∗Ω

∣∣∣2 dx dz.

For the x-derivative, we argue as in the local case. By the coarea formula, we have∫
Rn+1

+

z1−2 s |∇xUΩ|
2 dx dz

=

∫ +∞

0
z1−2s

(∫ +∞

0

(∫
{x∈Rn : UΩ(x,z)=t}

|∇xUΩ|
2 dHn−1(x)
|∇xUΩ|

)
dt

)
dz

≥

∫ +∞

0
z1−2s


∫ +∞

0

P(Ωt,z)2∫
{x∈Rn : UΩ(x,z)=t}

dHn−1(x)
|∇xUΩ|

dt

 dz

(3.10)
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where P(Ωt,z) denotes the perimeter of the set Ωt,z, and in the last step we have used Jensen’s inequality.
Using the quantitative isoperimetric inequality, one can prove that

P(Ωt,z)2 ≥ P(Ω∗t,z)
2 + cnµz(t)

2(n−1)
n A(Ωt,z)2, (3.11)

where
Ω∗t,z := {x ∈ Rn : U∗Ω(x, z) ≥ t},

and

cn := 2ω
2
n
n

(2 − 2
n−1

n )3

(181)2n12 .

The proof of (3.11) can be easily carried out by following [4, Lemma 2.9], see also the proof of
Proposition 4.4 in [3]. By definition of symmetric rearrangement, we have that

µz(t) =
∣∣∣Ω∗t,z∣∣∣ for a.e. t ∈ (0, 1)

and, from Lemma 3.2 and inequality (3.19) in [12] (see also (2.6) in [20]), we know that

−µ′z(t) =

∫
{x∈Rn : U∗

Ω
(x,z)=t}

dHn−1(x)
|∇xU∗Ω|

≥

∫
{x∈Rn : UΩ(x,z)=t}

dHn−1(x)
|∇xUΩ|

.

Therefore, combining (3.10) and (3.11) with this last inequality, we can estimate the L2-norm of the
x-gradient as follows∫

Rn+1
+

z1−2 s |∇xUΩ|
2 dx dz ≥

∫ +∞

0
z1−2s

∫ +∞

0

P(Ω∗t,z)
2

−µ′z(t)
dt

 dz

+ cn

∫ +∞

0
z1−2 s


∫ +∞

0

(
µz(t)

n−1
n

)2
A(Ωt,z)2

−µ′z(t)
dt

 dz

=

∫
Rn+1

+

z1−2 s |∇xU∗Ω|
2 dx dz

+ cn

∫ +∞

0
z1−2 s


∫ +∞

0

(
µz(t)

n−1
n

)2
A(Ωt,z)2

−µ′z(t)
dt

 dz.

Moreover, we have seen in the proof of Theorem 2.10 that

α−1
n,s

∫
Rn+1

+

z1−2 s |∇U∗Ω|
2 dx dz ≥ caps(B).

Collecting all together, we obtain

caps(Ω) = α−1
n,s

∫
Rn+1

+

z1−2 s |∇xUΩ|
2 dx dz + α−1

n,s

∫
Rn+1

+

z1−2 s |∂zUΩ|
2 dx dz

≥ caps(B) + α−1
n,scn

∫ +∞

0
z1−2 s


∫ +∞

0

(
µz(t)

n−1
n

)2
A(Ωt,z)2

−µ′z(t)
dt

 dz.
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We use now Proposition 3.4, to pass from A(Ωt,z) to A(Ω). Let z0 =

(
T̂
16

√
γA(Ω)|Ω|

cn,scaps(Ω)

) 1
s

be as in

Proposition 3.4. Set also T̂ = 1 − T . We have

caps(Ω) − caps(B) ≥ α−1
n,scn

∫ +∞

0
z1−2 s


∫ +∞

0

(
µz(t)

n−1
n

)2
A(Ωt,z)2

−µ′z(t)
dt

 dz

≥ α−1
n,scn

∫ z0

0
z1−2 s


∫ T+ 3

8 T̂

T+ T̂
8

A(Ωt,z)2

(
µz(t)

n−1
n

)2

−µ′z(t)
dt

 dz

≥ α−1
n,scn c2

γA(Ω)2
∫ z0

0
z1−2 s


∫ T+ 3

8 T̂

T+ T̂
8

(
µz(t)

n−1
n

)2

−µ′z(t)
dt

 dz,

where, in the last inequality, we used (3.6). It remains to estimate the term

∫ z0

0
z1−2 s

∫ T+ 3
8 T̂

T+ T̂
8

(
µz(t)

n−1
n

)2

−µ′z(t)
dt dz. (3.12)

First, we observe that, since γ < 1/9, using (3.5) and the fact thatA(Ω) ≤ 2, we have

µz(t) ≥ 1 − 3γA(Ω) ≥
1
3
.

Hence, in order to estimate (3.12), it is enough to control from below the quantity∫ z0

0
z1−2 s

∫ T+ 3
8 T̂

T+ T̂
8

1
−µ′z(t)

dt dz.

By Jensen inequality and recalling the definition of µz, we have∫ T+ 3
8 T̂

T+ T̂
8

1
−µ′z(t)

dt ≥
T̂ 2

16
1∫ T+ 3

8 T̂

T+ T̂
8

−µ′z(t) dt
≥

T̂ 2

16
1

|ΩT+ T̂
8 ,z
| − |ΩT+ 3

8 T̂ ,z|
.

Using again (3.5), we deduce that

|ΩT+ T̂
8 ,z
| − |ΩT+ 3

8 T̂ ,z| ≤ 1 + 3γA(Ω) − (1 − 3γA(Ω)) = 6γA(Ω).

We can now estimate (3.12) as follows∫ z0

0
z1−2 s

∫ T+ 3
8 T̂

T+ T̂
8

(
µz(t)

n−1
n

)2

−µ′z(t)
dt dz ≥ C1

T̂ 2

A(Ω)

∫ z0

0
z1−2 s dz,

where C1 > 0 depends only on n and γ. This, in turn, yields the following estimate for the capacity
variation

caps(Ω) − caps(B) ≥
C2

αn,s
A(Ω)T̂ 2

∫ z0

0
z1−2 s dz,
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with C2 > 0 depending only on n and γ. Finally, recalling the definition of z0 (in Proposition 3.4) and
that we are in the ranges caps(Ω) ≤ 2caps(B) and T̂ = 1 − T ≥ κA(Ω), we obtain

caps(Ω) − caps(B) ≥
C3

αn,s

(
C4

cn,s

) 1
s−1 1

(1 − s)caps(B)
1
s

caps(B)A(Ω)
1
s T̂

2
s

≥
κ

2
s C3

αn,s

(
C4

cn,s

) 1
s−1 1

(1 − s)caps(B)
1
s

caps(B)A(Ω)
3
s ,

with C3,C4 > 0 depending on n and γ. In particular, given γ = 10−1 it is possible to see that

C3 =
5

35(181)2

(3ωn)
2
n

n12 (1 − 2−
1
n )3. (3.13)

Therefore (3.8) holds with

C =
κ

2
s C3

αn,s

(
C4

cn,s

) 1
s−1 1

(1 − s)caps(B)
1
s

.

Case 1 − T < κA(Ω) In this case we get the quantitative inequality by means of a suitable test function
for the definition of caps. Let us define

wT = min
{
1,

uΩ

T

}
.

It is possible to see that wT is an admissible competitor for caps(ΩT ). Indeed, let ξk := ξ̃k ? ρ 1
2k

, where
ρε denotes a standard mollifier in R and ξ̃k : R→ R is defined as follows

ξ̃k(σ) :=


0, if σ ≤ 1

k ,
k

k−2

(
σ − 1

k

)
, if 1

k ≤ σ ≤ 1 − 1
k ,

1, if σ ≥ 1 − 1
k .

It is clear that ξk ∈ C∞(R) and that

ξk(σ)→ min{σ+, 1}, uniformly as k → ∞.

Moreover, if we let wk := ξk ◦ wT , one can see that wk ∈ D
s,2(Rn) and, thanks to the continuity of wT ,

that wk = 1 in an open Ωk ⊇ ΩT , thus implying that wk − ηΩT ∈ D
s,2(Rn \ ΩT ), being ηΩT ∈ C∞c (Rn)

such that ηΩT = 1 in a neighbourhood of ΩT . Finally, it is easy to check that wk → wT in Ds,2(Rn) as
k → ∞, which means that wT − ηΩT ∈ D

s,2(Rn \ΩT ). Therefore, we have

caps(ΩT ) ≤ [wT ]2
s ≤

1
T 2 [uΩ]2

s =
1

T 2 caps(Ω).

From the previous inequality, the isocapacitary inequality (1.7) and (3.4) we obtain that

caps(Ω) ≥ T 2caps(B)|ΩT |
n−2s

n ≥ T 2caps(B) (1 + γA(Ω))
n−2s

n . (3.14)

Mathematics in Engineering Volume 4, Issue 5, 1–28.



23

By convexity, we know that
T 2 ≥ 1 − 2(1 − T ) ≥ 1 − 2κA(Ω) (3.15)

and that
(1 + γA(Ω))

n−2s
n ≥ 1 + λA(Ω), (3.16)

with λ as in (3.9). By the definition of λ and κ, as in (3.9), we derive that

(1 − 2κA(Ω))(1 + λA(Ω)) ≥ 1 +
λ

2
A(Ω) ≥ (1 + C5A(Ω)

3
s ), (3.17)

with
C5 := 2−

3
sλ

Putting together (3.14) with (3.15), (3.16) and (3.17), we obtain (3.8) with C = C5, thus concluding
the proof.

�

Remark 3.5. By carefully scanning the proof of Theorem 1.1, one can explicitly find the constant Cn,s

appearing in (1.8), which amounts to

Cn,s = max

2−
3
s ,
κ

2
s C3

αn,s

(
C4

cn,s

) 1
s−1 1

(1 − s)caps(B)
1
s

 ,
where κ is as in (3.9), and C3,C4 depend only on n (indeed their dependence on γ stated in the proof
of Theorem 1.1 is actually pointless, being γ universally fixed in (0, 1/9), see (3.13) for the explicit
value of C3). The constants αn,s and cn,s are as in (2.10) and (2.7), respectively, and they are uniformly
bounded away from 0 and +∞ as s→ 1−, see [3, Remark 2.7]. Moreover, it can be easily checked that
this fact holds true for the constant κ as well, by its definition, when n ≥ 3.

4. Asymptotics as s↗ 1

In this section we prove Thereom 1.2. We recall the definition of the standard (Newtonian) capacity
of a closed Ω ⊆ Rn for n ≥ 3, which is equivalent to (1.2) when Ω is a compact set

cap(Ω) = inf
{∫
Rn
|∇u|2 dx : u ∈ D1,2(Rn) and u − ηΩ ∈ D

1,2(Rn \Ω)
}
, (4.1)

where ηΩ ∈ C∞c (Rn) is such that ηΩ = 1 in an open neighbourhood of Ω and, for any open O ⊆ Rn, the
spaceD1,2(O) is defined as the completion of C∞c (O) with respect to the norm

u 7→
(∫
O

|∇u|2 dx
)1/2

.

We also recall that, when O is bounded, then the spaceD1,2(O) coincides with the usual Sobolev space
W1,2

0 (O), thanks to the validity of the Poincaré inequality.
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Proof of Proposition 1.2. Proof of (1.9). The first part of the statement follows easily by a celebrated
result by Bourgain-Brezis-Mironescu stating that

lim
s↗1

(1 − s) [ϕ]2
s =

ωn

2

∫
Rn
|∇ϕ|2 dx, for every ϕ ∈ C∞c (Rn).

Indeed, by taking a function ϕ ∈ C∞c (Rn) satisfying ϕ ≥ χΩ, we deduce that

lim sup
s↗1

(1 − s) caps(Ω) ≤ lim
s↗1

(1 − s) [ϕ]2
s =

ωn

2

∫
Rn
|∇ϕ|2 dx.

Finally, (1.9) follows by taking the infimum over all admissible ϕ.
Proof of (1.10). Let us fix s0 ∈ (0, 1) and let us denote by us,Ω the s-capacitary potential of the set Ω.
Since Ω is compact, there exists a ball BR0 which contains Ω. Hence, we have that

us,Ω ≤ us,BR0
a.e. in Rn.

This can be easily proved by taking the Kelvin transform of the above functions and applying the
maximum principle as in [9, Theorem 3.3.2]. We can now take advantage of the following precise
decay rate of us,BR0

, established in [6, Proposition 3.6]:

us,Ω(x) ≤ us,BR0
(x) ≤

2Rn−2s
0

|x|n−2s , for |x| > R0. (4.2)

Let us define an almost optimal function, given by a suitable truncation of us,Ω. For any fixed ε > 0,
we set

uεs,Ω :=
(us,Ω − ε)+

1 − ε
.

We claim that uεs,Ω ∈ D
s,2(Rn) and uεs,Ω − ηΩ ∈ D

s,2(Rn \ Ω), with ηΩ ∈ C∞c (Rn) being such that ηΩ = 1
in an open neighbourhood of Ω. Indeed, since us,Ω − ηΩ ∈ D

s,2(Rn \ Ω), there exists a sequence
{vk}k ⊆ C∞c (Rn \Ω) such that vk → us,Ω − ηΩ inDs,2(Rn) as k → ∞. If we now let uk := vk + ηΩ we have
that uk ∈ C∞c (Rn) and uk = 1 in an open Ωk ⊇ Ω. Now, if we consider the function

uεk :=
(uk − ε)+

1 − ε

we have that uεk ∈ D
s,2(Rn) and uεk − ηΩ ∈ D

s,2(Rn \ Ω). Moreover, uεk → uεs,Ω in Ds,2(Rn) as k → ∞,
thus proving the claim. We also observe that the family {uεs,Ω}s∈(s0,1) satisfies the following properties:

1). there exists R̄ = R̄(ε) > 0, depending only on ε, such that

supp uεs,Ω ⊂ BR̄ for any s ∈ (s0, 1).

This follows by the upper bound (4.2): we choose R̄ >
(

2Rn−2s
0
ε

) 1
n−2

with R0 being such that Ω ⊆ BR0 .

In particular, this implies that uεs,Ω ∈ W̃ s,2
0 (BR̄), where, for any open O ⊆ Rn we denote

W̃ s,2
0 (O) :=

{
u ∈ L1

loc(R
n) : [u]s < ∞ and u = 0 in Rn \ O

}
,

which, in case O is bounded and has Lipschitz boundary, coincides with the spaceDs,2(O), see [7,
Proposition B.1];
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2). there holds

(1 − s)[uεs,Ω]2
s ≤ (1 − s)

[us,Ω]2
s

(1 − ε)2 ≤ C1, (4.3)

for any ε > 0 and s ∈ (s0, 1), with C1 > 0 independent of ε and s. This is a direct consequence of
(1.9).

Hence we can apply [7, Proposition 3.6] to the family {uεs,Ω}s∈(s0,1) to deduce that there exists an
increasing sequence sk ∈ (s0, 1) converging to 1 and a function uε

Ω
∈ W1,2

0 (BR̄) such that

lim
k→∞
‖uεsk ,Ω

− uεΩ‖L2(BR̄) = 0.

Analogously, being Ω a Lipschitz domain, we know that uεs,Ω − ηΩ ∈ W̃ s,2
0 (BR̄ \Ω) and that

(1 − s)[uεs,Ω − ηΩ]2
s ≤ C2

for all ε > 0 and s ∈ (s0, 1), with C2 > 0 independent of ε and s. Therefore, we can apply [7,
Proposition 3.6] to the family {uεs,Ω−ηΩ}s∈(s0,1) as well, and this entails the existence of a (not relabeled)
subsequence sk ∈ (s0, 1) and of a function vε

Ω
∈ W1,2

0 (BR̄ \Ω) such that

lim
k→∞
‖uεsk ,Ω

− ηΩ − vεΩ‖L2(BR̄) = 0,

where the functions are trivially extended in Ω. As a consequence, we obtain that

uεΩ − ηΩ = vεΩ ∈ W1,2
0 (BR̄ \Ω),

which, in turn, implies that the trivial extension of uε
Ω

to the whole Rn is an admissible competitor for
cap(Ω). Hence we have

ωn

2
cap(Ω) ≤

ωn

2

∫
Rn
|∇uεΩ|

2 dx ≤ lim inf
s↗1

(1 − s)[uεs,Ω]2
s

≤
1

(1 − ε)2 lim inf
s↗1

(1 − s)[us,Ω]2
s ,

where in the second inequality we have used the Γ-convergence result by Brasco, Parini, Squassina
(more precisely, Proposition 3.11 in [7]) and in the last one (4.3). Finally, we conclude by letting
ε→ 0. �

Remark 4.1. Thanks to Theorem 1.2 it is possible to explicitly compute the limit as s → 1− of the
constant Cn,s as in Theorem 1.1, which coincides with the constant Cn appearing in Corollary 1.3.
Indeed, from the definitions of αn,s and cn,s, given in (2.10) and (2.7) respectively, and the property of
the Gamma function, it is easy to see that

lim
s→1−

αn,s = lim
s→1−

cn,s = π−
n
2 Γ

(
n + 2

2

)
.

Moreover, if B denotes the unitary ball in Rn, in view of Theorem 1.2 we have that

lim
s→1−

(1 − s)caps(B) =
ωn

2
cap(B) =

n(n − 2)
2

ω2
n,
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see e.g., [27, Theorem 2.8, point (i)] for the explicit value of cap(B). Thanks to these facts, Remark 3.5
and basic calculus, it is easy to see that

Cn = lim
s→1−

Cn,s = max

2−3,
κ2

1C3π
n
2

Γ
(

n+2
2

) 2
n(n − 2)ω2

n

 ,
where

κ1 :=
λ1

4(1 + 2λ1)
, with λ1 :=

n − 2
10n

,

and C3 as in (3.13).
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