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We consider a Reissner-Nordström black hole formed by the collapse of a charged null shell. The
renormalized expectation values of the energy-momentum tensor operator for a massless scalar field
propagating in the two-dimensional section of this spacetime are given. We then analyze the across-the-
horizon correlations of the related energy density operator for free-falling observers to reveal the
correlations between the Hawking particles and their interior partners.
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I. INTRODUCTION

The existence of quantum correlations across the horizon
in black holes (BHs) associated with Hawking radiation [1]
has attracted increasing interest, especially in the commu-
nity of analogue models [2]. As is well known, the
Hawking effect consists in the conversion of quantum
vacuum fluctuations in pairs of on-shell particles [3]
(phonons in the case of acoustic black holes). A member
of the pair (the Hawking particle) carries positive Killing
energy and emerges outside the horizon and propagates to
infinity, constituting the asymptotic thermal flux. The other
member of the pair (the “partner”) has negative Killing
energy and is created inside the horizon of the BH.
The correlations between the Hawking particle and its

partner are a distinctive feature of the Hawking effect which
should manifest itself in the appearance of a characteristic
peak [4–6] in the equal-time correlation functions across the
horizon; see Fig. 1. This peak has indeed been observed (see,
for instance, Fig. 3(a) of Ref. [7]) in analogue BHs formed
by a Bose-Einstein condensate (BEC) undergoing a tran-
sition from a subsonic flow to a supersonic one [7–9]. This
remarkable fact represents up to today the best experimental
evidence of the existence of Hawking radiation.
One should remark that the features of this correlation

function highly depend on the fate of the partner and hence
on the spacetime structure inside the horizon.
Note that in the acoustic BHs so far realized in the

laboratory the supersonic region inside the horizon does not

end at a singularity, as in the gravitational case, but rather
continues asymptotically towards a homogeneous configu-
ration eventually reached by the partners. The presence of a
central singularity, mimicked in the acoustic case by a sink
absorbing both the condensate atoms and the phonons,1 has
a dramatic effect on the equal-time correlation functions:
the peak does not appear (see Fig. 2). This is because the
Hawking particles and their partners are created in a region
of extension of the order of 1κ, where κ is the surface gravity
of the BH, across the horizon, the so-called “quantum
atmosphere” [10,11]. And when the Hawking particle
emerges out of vacuum fluctuations from the quantum
atmosphere, the corresponding partner has already been
swallowed by the central singularity and no sign of corre-
lations appears: they are lost in the singularity. To observe
them, one has to consider correlations at unequal times in
order to catch the partner before it disappears. These aspects
have emerged in a recent study of the quantum correlations
across the horizon in a Schwarzschild BH [6]. Given this
strong dependence on the inner metric of the BH, here we
extend the analysis to the case of aReissner-Nordström (RN)
BH whose internal structure, because of the presence of an
inner horizon, is much more intriguing.
The plan of the paper is as follows. In Sec. II we present a

simple model for the formation of a RN BH by the collapse
of a null charged shell triggering the Hawking effect.
In Sec. III, in preparation for the study of the quantum
correlations across the horizon, we discuss the renormal-
ized energy-momentum tensor associated with a massless
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scalar quantum field propagating in the two-dimensional
section of the collapse spacetime of our model. We
concentrate on the expectation value of the energy density
operator as measured by a free-falling observer with
particular attention to what happens close to the inner
horizon. In Sec. IV we analyze the across-horizon corre-
lation functions of the above energy density operator.
Finally, Sec. V contains our conclusions.

II. FORMING A REISSNER-NORDSTRÖM BH

It is well known that the formation of a BH triggers a
vacuum instability leading to the emission of thermal
radiation far away from the BH horizon. We use a simple

model for the formation of a RN BH, namely, the collapse
of an ingoing charged null shell located at v ¼ v0, where v
is an ingoing null coordinate.
The metric of the spacetime is of a Vaidya form,

ds2 ¼ −
�
1 −

2mðrÞ
r

�
dv2 þ 2dvdrþ r2dΩ2; ð2:1Þ

where dΩ2 ¼ dθ2 þ sin2θdφ2 and mðrÞ is such that

mðrÞ ¼ 0; v < v0; ð2:2Þ

mðrÞ ¼ m −
Q2

r
; v > v0: ð2:3Þ

For v < v0 the spacetime is Minkowski one and we can
write the metric in a double null form,

ds2 ¼ −duindvþ r2ðuin; vÞdΩ2; ð2:4Þ

where

rin ¼
v − uin

2
ð2:5Þ

and the double null coordinates are

uin ¼ tin − r; v ¼ tin þ r: ð2:6Þ

In the future of the shell (i.e., v > v0) the metric is the
RN one which can also be given in a double null form,

ds2 ¼ −fðrÞdudvþ r2dΩ2; ð2:7Þ

fðrÞ ¼ 1 −
2m
r

þQ2

r2
; ð2:8Þ

where

u ¼ t − r�; v ¼ tþ r�; ð2:9Þ

and r� is the Regge-Wheeler tortoise coordinate

r� ¼
Z

dr
f

¼ rþ 1

2κþ
ln jκ−ðr− rþÞj−

1

2κ−
ln jκ−ðr− r−Þj;

ð2:10Þ

where

r� ¼ m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −Q2

p
ð2:11Þ

are the two horizons and

FIG. 2. Density-density correlation in the Schwarzschild black
hole (see Ref. [6] for details), with r > 2m and r0 < 2m (m ¼ 1).

FIG. 1. Theoretically predicted equal-time density-density cor-
relation function from the model in Refs. [5,6]. x0 is inside the
horizon and x is outside. The peak is at x ¼ −x0.
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κ� ¼ jf0ðrÞjr�
2

¼ rþ − r−
2r2�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 −Q2

p
r2�

ð2:12Þ

are the corresponding surface gravities.
In order for Eq. (2.7) to describe a BH we require

m2 > Q2. We refer to rþ (where u ¼ þ∞) simply as the
event horizon of the BH, while we call the outgoing sheet of
r− (where u ¼ −∞) the “inner horizon” and the ingoing
one (where v ¼ þ∞) the “Cauchy horizon.” The relevant
Penrose diagram is given in Fig. 3.
In regions I and II we introduce a time coordinate

(Eddington-Finkelstein time) defined as

tEF ¼ v − r; ð2:13Þ

and

v ¼ tEF þ r; ð2:14Þ

u ¼ tEF þ r − 2r� ¼ tEF − r −
1

κþ
ln jκþðr − rþÞj

þ 1

κ−
ln jκ−ðr − r−Þj ð2:15Þ

are RN null coordinates. Note that at the Cauchy horizon
tEF goes to þ∞. A spacetime diagram representing three
characteristic curves u ¼ cst in the RN portion of the
spacetime is given in Fig. 4. The one denoted “Hawking
particle” starts close outside the event horizon rþ, while
the one denoted “partner” starts just inside rþ; both are
characterized by a large positive u. Another u ¼ cst curve
at intermediate u is also represented. Note the characteristic
piling up of the u ¼ cst trajectories along r−. Finally, we
also depict the trajectories of two free-falling observers
crossing the event (and the inner) horizon at early time after
the formation of the BH (observer A) and at late time
(observer B).

Matching the two line elements (2.4) and (2.7) along the
shell v ¼ v0, we get [6]

u ¼ uin −
1

κþ
ln jκþðv0 − uin − 2rþÞj

þ 1

κ−
ln jκ−ðv0 − uin − 2r−Þj: ð2:16Þ

Using this, we can extend the uin coordinate in the RN
portion of the spacetime.
The event horizon (r ¼ rþ, u ¼ þ∞) corresponds to

uinjeh ¼ v0 − 2rþ ¼ 0: ð2:17Þ

To simplify the notation we set v0 ¼ 2rþ so that the event
horizon (u ¼ þ∞) corresponds to uin ¼ 0. The inner
horizon (u ¼ −∞) corresponds to

uinjih ¼ 2ðrþ − r−Þ: ð2:18Þ

Equation (2.16) cannot be inverted analytically; however,
we can get limiting behaviors near the event horizon (large
positive u),

u ≃ −
1

κþ
ln j − κþuinj; ð2:19Þ

r=0 r=0

r=0

I

II

I
-

I+

CH

r

r-

+

v=v0

FIG. 3. Penrose diagram of the spacetime. The regions con-
sidered in this paper are the asymptotic one (I) and the one
between the horizons (II).

FIG. 4. Spacetime diagram in the RN portion of the spacetime
representing three u ¼ cst curves—one for the Hawking particle,
one for the partner (both at large positive u), and one for an
intermediate value of u—and the trajectories of two free-falling
observers crossing rþ and r− at, respectively, early (observer A)
and late time (observer B) after BH formation.
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and the inner horizon (large negative u),

u ≃
1

κ−
ln jκ−ð2ðrþ − r−Þ − uinÞj; ð2:20Þ

which will be useful in the rest of the paper. Note from
these that uin behaves in the limits considered as the
Kruskal coordinate of the corresponding horizon.

III. QUANTUM FIELD THEORY IN THE TWO-
DIMENSIONAL RN SPACETIME

Now we consider a massless scalar quantum field ϕ̂
propagating in the two-dimensional section (θ ¼ φ ¼ cst)
of our collapse spacetime. Its equation of motion is

□̂ ϕ̂ ¼ 0; ð3:1Þ

where □̂ ¼ ∇μ∇μ. The field is supposed to be in a quantum
state called jini, which corresponds to Minkowski vacuum
on past null infinity (see Fig. 3), which is a Cauchy surface
for our field equation.
Its energy-momentum tensor operator is

T̂abðϕ̂Þ ¼ ∂aϕ̂∂bϕ̂ −
gab
2

∂
cϕ̂∂cϕ̂ ð3:2Þ

and the corresponding renormalized expectation values
in the jini state are as follows (see Ref. [12] for details).
For v < v0,

hinjT̂abjini ¼ 0: ð3:3Þ

For v > v0,

hinjT̂vvjini ¼ −
1

192π
ðf0ðrÞ2 − 2fðrÞf00ðrÞÞ

¼ 1

24π

�
−
m
r3

þ 3

2

ðm2 þQ2Þ
r4

−
3mQ2

r5
þQ4

r6

�
¼ hBjT̂vvjBi; ð3:4Þ

where a prime indicates a derivative with respect to r,

hinjT̂uujini ¼ hBjT̂uujBi −
1

24π
fuin; ug; ð3:5Þ

with hBjT̂uujBi ¼ hBjT̂vvjBi and f; g is the Schwarzian
derivative calculated from Eq. (2.16). Explicitly,

fuin; ug ¼ 3

2
κ2þ

�
1 − κþ

κ−

u2in
ðuin−2ðrþ−r−ÞÞ2

�
2

�
1 − κþuin −

κþ
κ−

uin
ðuin−2ðrþ−r−ÞÞ

�
4

− 2κ2þ

�
1 − κþ

κ−

u3in
ðuin−2ðrþ−r−ÞÞ3

�
2

�
1 − κþuin −

κþ
κ−

uin
ðuin−2ðrþ−r−ÞÞ

�
3
: ð3:6Þ

Finally,

hinjT̂uvjini ¼ hBjT̂uvjBi

¼ −
1

24π

�
1 −

2m
r

þQ2

r2

��
m
r3

−
3

2

Q2

r4

�
: ð3:7Þ

Note that, because of conformal invariance, T̂ab is traceless,
i.e., T̂uv ¼ 0. The nonvanishing result of Eq. (3.7) comes
from the conformal anomaly, which in this case is simply
proportional to the Ricci scalar. On the right-hand sides of
Eqs. (3.4), (3.5), and (3.7) we have indicated the expect-
ation values calculated in the Boulware vacuum jBi, which
describes the local vacuum polarization associated with the
spacetime curvature. Note that at the horizons

hBjT̂uujBijr� ¼ hBjT̂vvjBijr� ¼ −
κ2�
48π

: ð3:8Þ

The Schwarzian derivative in Eq. (3.5) is associated with
the particle creation induced by the formation of the BH.
These propagate along u ¼ cst trajectories. Using the form
of Eqs. (2.19) and (2.20), the following asymptotic behav-
iors of the Schwarzian derivative term can be found for
u → þ∞ [uin → 0 in Eq. (3.6)]:

−
1

24π
fuin; ug ¼ 1

48π
κ2þ; ð3:9Þ

and

−
1

24π
fuin; ug ¼ 1

48π
κ2− ð3:10Þ

for u → −∞ [uin → 2ðrþ − r−Þ in Eq. (3.6)]. A free-falling
observer measures the following energy density associated
with the field (see also Ref. [6]):

ρ ¼ hinjρ̂jini ¼ hinjT̂abuaubjini; ð3:11Þ

where ua is the four-velocity vector of the observer’s
trajectory. One easily obtains

ρ̂ ¼ ðEþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − f

p
Þ2

f2
hinjT̂uujini

þ ðE −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − f

p
Þ2

f2
hinjT̂vvjini þ

2

f
hinjT̂vvjini; ð3:12Þ

where E is the conserved Killing energy of the observer.
For the moment we set E ¼ 1, which corresponds to a
geodesic starting with zero velocity at infinity.
An exact analytical expression of ρ as a function of r

and tEF along the trajectory of the observer cannot be
given since we are unable to invert Eq. (2.16) in order to
express the Schwarzian derivative in terms of the above
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coordinates. However, we can deduce some limiting
behavior of ρ.
For an observer at infinity (r → þ∞) the vacuum

polarization terms vanish, and if we consider the observer
at late time (u → þ∞) we can use Eq. (3.9) and find

ρ ¼ κ2þ
48π

; ð3:13Þ

which corresponds to a thermal flux of massless particles at
the Hawking temperature,

TH ¼ ℏκþ
2π

: ð3:14Þ

Now consider observers as they cross the event horizon
r ¼ rþ. First, let us rewrite Eq. (3.12) (for E ¼ þ1) in the
form

ρ ¼
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþþr−

r − rþr−
r2

q �
2

f2
hinjT̂uujini

þ hinjT̂vvjini�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþþr−

r − rþr−
r2

q �
2
þ 2

f
hinjT̂uvjini: ð3:15Þ

To evaluate the Schwarzian derivative term entering
hinjT̂uujini one should note that the event horizon rþ
corresponds to u ¼ þ∞ and in that limit, using again
Eq. (3.9), we can write

hinjT̂uujini ¼ hBjT̂uujBi þ
κ2þ
48π

¼ 1

48π

ðr − rþÞ2
r2

 
κ2þ

�
1þ 2rþ

r
þ 3r2þ

r2

�

þ
�
r2−
rþ
− 3r−

�
r3

þ 2r2−
r4

!
; ð3:16Þ

which is exactly the value one would obtain in the Unruh
vacuum associated with the event horizon. We see that it
vanishes at rþ, making the first term in Eq. (3.15) finite as
r → rþ. The vacuum polarization piece [see Eq. (3.8)] is
exactly canceled by the Schwarzian derivative one [see
Eq. (3.9)]. The last term in Eq. (3.15) is also regular [see
Eq. (3.7)], and putting everything together we can write

ρ ¼ 1

48π

"�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþþr−

r − rþr−
r2

q �
2
r2

ðr − r−Þ2
 
κ2þ

�
1þ 2rþ

r
þ 3r2þ

r2

�
þ
�
r2−
rþ
− 3r−

�
r3

þ 2r2−
r4

!

þ − ðrþþr−Þ
r3 þ 3

4
ðrþþr−Þ2þ3rþr−

r4 − 3rþr−ðrþþr−Þ
r5

þ 2r2þr
2
−

r6�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþþr−

r − rþr−
r2

q �
2

−
2ðrþ þ r−Þ

r3
þ 6rþr−

r4

#
; ð3:17Þ

giving the value

ρjeh ¼
1

48π

�
6

r2þ
−

6r−
κþr4þ

−
κ2þ
4
−
2ðrþ − 2r−Þ

r3þ

�
ð3:18Þ

on the event horizon.
The behavior of ρ as the observer approaches the inner

horizon r− is more delicate. If the observers cross the event
horizon u ¼ þ∞ (and hence the inner horizon) at early
time after the formation of the BH (see trajectory A in
Fig. 4), they leave the large (positive) u region very rapidly
and the measured energy density smoothly approaches the
limiting value

ρjih ¼
1

48π

�
6

r2−
−

2

κ−rþr2−
−
κ2−
4
−
2ðr− − 2rþÞ

r3−

�
: ð3:19Þ

Again, one sees the cancellation between the vacuum
polarization (3.8) and (3.10).

However, if the observer is approaching the inner
horizon at very late time (trajectory B in Fig 4) things
are strikingly different [13]. The outgoing null rays inside
rþ peel away from the event horizon and asymptotically
approach the inner horizon r− (see Fig. 4) in a diverging
tEF. So, in the above limit the partners emitted just outside
rþ with u → þ∞ get arbitrarily close to the inner horizon
where f ≪ 1. So at very late time our free-falling observers
meet all of these partners in a region where f ≪ 1, but u is
still very large and positive. Using Eq. (3.9) for the
Schwarzian derivative, we have that

hinjT̂uujini ¼ hBjT̂uujBi þ
κ2þ
48π

: ð3:20Þ

So the energy density they measure, in virtue of Eq. (3.8)

evaluated at r−, grows as
κ2þ−κ

2
−

f2 coming from the first term in

Eq. (3.15); the other two are bounded. Since κ− > κþ, this
ever-increasing density is negative.
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Finally, we can consider the case of an observer
approaching the Cauchy horizon starting from inside the
event horizon. For this observer E is negative, say, E ¼ −1,
and Eq. (3.15) is replaced by

ρ ¼ hinjT̂uujini�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþþr−

r − rþr−
r2

q �
2
þ
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþþr−

r − rþr−
r2

q �
2

f2

× hinjT̂vvjini þ
2

f
hinjT̂uvjini; ð3:21Þ

showing that ρ diverges as − κ2−
f2 due to vacuum polarization.

IV. PARTICLE-PARTNER CORRELATIONS

The analysis of the expectation values of the energy-
momentum tensor operator in the last section has shown
how vacuum polarization effects and particle creation mix
and, beside kinematical effects associated with the world
line of the observer, both contribute to the measured energy
density. The energy-momentum tensor only asymptotically
describes an outgoing flux of particles at the Hawking
temperature. On the other hand, inside the horizon, because
of the nonvanishing vacuum polarization, the tensor does
not simply describe an ingoing flux of partners. To reveal
the genuine pair-creation process, which is the basis of the
Hawking effect, one should try to highlight the existing
quantum correlations between the Hawking particles and
their associated partners. To this end, in this section we
discuss the correlation functions Gðx; x0Þ of the energy
density operator

Gðx; x0Þ≡ hinjρ̂ðxÞρ̂ðx0Þjini; ð4:1Þ
where

ρ̂ ¼ ðEþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − f

p
Þ2

f2
T̂uu þ

ðE −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − f

p
Þ2

f2
T̂vv ð4:2Þ

and T̂ab is the energy-momentum tensor operator defined in
Eq. (3.2). E is the conserved Killing energy of the observer.
The starting point is the two-point function for the jini
vacuum,

hinjϕ̂ðxÞϕ̂ðx0Þjini ¼ −
ℏ
4π

lnðuin − u0inÞðv − v0Þ: ð4:3Þ

From this, one can build the fundamental object of our
calculation,

∂u∂u0 hinjϕ̂ðxÞϕ̂ðx0Þjini ¼ −
ℏ
4π

duin
du

du0in
du0

1

ðuin − u0inÞ2
: ð4:4Þ

The T̂uu correlator is then (see Ref. [6] for details)

hinjT̂uuðxÞjT̂uuðx0Þjini ¼ ½∂u∂u0 hinjϕ̂ðxÞϕ̂ðx0Þjini�2: ð4:5Þ

This is the relevant one to discuss the Hawking-partner
correlations.
We can write the density correlator as follows (both

observers have E ¼ þ1):

Gðx; x0Þ ¼ hinjT̂uuðxÞT̂u0u0 ðx0Þjini�
1 −

ffiffiffiffiffiffiffiffiffi
2mðrÞ

r

q �2�
1 −

ffiffiffiffiffiffiffiffiffiffi
2mðr0Þ

r

q �2
þ hinjT̂vvðxÞT̂v0v0 ðx0Þjini�

1þ
ffiffiffiffiffiffiffiffiffi
2mðrÞ

r

q �2�
1þ

ffiffiffiffiffiffiffiffiffiffi
2mðr0Þ

r

q �2 : ð4:6Þ

As said before, for our purposes we focus on the first term
in Eq. (4.6), taking the point x outside the event horizon rþ
and x0 in between the inner horizon and the event horizon.
Consider first a trajectory of our inner observer like the

one labeled A in Fig. 2 and take x0 inside and close to rþ.
We can then use Eq. (2.19), namely,

u0 ∼ −
1

κþ
ln j − κþu0inj: ð4:7Þ

Similarly, taking x close outside rþ, and again using
Eq. (2.19),

u ∼ −
1

κþ
ln j − κþuinj: ð4:8Þ

Inserting these into Eq. (4.4), we have

hinjT̂uuðxÞT̂u0u0 ðx0Þjini�
1 −

ffiffiffiffiffiffiffiffiffi
2mðrÞ

r

q �2�
1 −

ffiffiffiffiffiffiffiffiffiffi
2mðr0Þ

r

q �2 ∼ 1�
1 −

ffiffiffiffiffiffiffiffiffi
2mðrÞ

r

q �2�
1 −

ffiffiffiffiffiffiffiffiffiffi
2mðr0Þ

r

q �2
�

ℏκ2þ
16πcosh2ðκþ

2
ðu − u0ÞÞ

�
2

: ð4:9Þ

One sees the appearance of the well-known cosh2 term

modulated by the geometrical prefactors containing
ffiffiffiffiffiffiffiffiffi
2mðrÞ

r

q
.

For an acoustic BH in a BEC the density-density correlator
has a similar structure to Eq. (4.9) (more precisely, the

square of it). In that case, the points x and x0 are typically
taken far away on both sides of the acoustic (single) horizon
where the medium is homogeneous and the geometric
prefactors are just harmless constants, and the peak of the
correlator corresponds to the maximum of the cosh−2 term,
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namely, u ¼ u0, i.e., along the trajectories of the Hawking
particle and its corresponding partner. This condition at
equal time in our case would be

r0 þ 1

κþ
ln jκþðr0 − rþÞj −

1

κ−
ln jκ−ðr0 − rþÞj

¼ rþ 1

κþ
ln jκþðr − rþÞj −

1

κ−
ln jκ−ðr − rþÞj; ð4:10Þ

where remember that r− < r0 < rþ and r > rþ. The plot of
Eq. (4.10) is given in Fig. 5: they both go to þ∞ for both
r → r− and r → þ∞ and to −∞ for r → rþ.
From these, one sees that the condition (4.10) can always

be satisfied, i.e., for every r > rþ a value of r0 exists such
that r− < r0 < rþ and Eq. (4.10) is satisfied. However, if
we plot the correlator (4.9) for both points close to rþ, no
sign of the particle-partner correlation appears. In Fig. 6 the
correlator (4.9) is represented graphically at values of r0

fixed as a function of r, while in Fig. 7 the three-dimen-
sional plot is shown. The reason for this behavior is that
correlations only appear when the particles and the partners
emerge out of the quantum atmosphere.2

Looking at Fig. 5, one sees that all points with r − rþ ≥
1
κþ

are correlated with corresponding partners located very

close to r−, so let us consider the inner point r0 in this
region. We have to distinguish two regimes. If the inner
observer approaches the inner horizon r− at early time with
respect to the formation of the BH (trajectory A in Fig. 4),
we have that the corresponding u0 approaches −∞ as

u0 ∼
1

κ−
ln jκ−ð2ðrþ − r−Þ − u0inÞj: ð4:11Þ

If we take the other observer in the region u → þ∞, using
Eqs. (4.11) and (4.8) the correlator is given by

hinjT̂uuðxÞT̂u0u0 ðx0Þjini�
1 −

ffiffiffiffiffiffiffiffiffi
2mðrÞ

r

q �2�
1 −

ffiffiffiffiffiffiffiffiffiffi
2mðr0Þ

r

q �2 ∼ 1�
1 −

ffiffiffiffiffiffiffiffiffi
2mðrÞ

r

q �2�
1 −

ffiffiffiffiffiffiffiffiffiffi
2mðr0Þ

r

q �2
×

ðℏκ2þκ2−Þ2�
4π
�
2κþκ−ðrþ − r−Þe

κþu−κ−u0
2 − κþe

κþuþκ−u0
2 þ κ−e−

κþuþκ−u0
2

�
2
�
2
; ð4:12Þ

which has a more complicated structure than the one in
Eq. (4.9). Note that, using Eq. (2.15), the correlator (4.12),
unlike Eq. (4.9), is time dependent. We graphically re-
present this correlator fixing the inner point very close to r−
in Fig. 8, and the three-dimensional plot is shown in Fig. 9.
Again, no sign of the correlations appears. The reason for
this is clear from Fig. 4.
The partners of the Hawking particles pile up at r− and

only at late time are they intercepted by our inner observer
close to r− (see trajectory B in Fig. 4). So in order to reveal
the correlation we have to consider the limit in which u0 is
given by Eq. (4.7) and r0 is close to r−. The correlator is

given by Eq. (4.9) with r0 → r− and the corresponding plots
are shown in Figs. 10 and 11. We see clearly the appearance
of the foreseen peak. The corresponding r is not exactly the
one given by Eq. (4.10) because of the nontrivial role

played by the geometric prefactor containing
ffiffiffiffiffiffiffiffiffi
2mðrÞ

r

q
.

The situation in which the inner observer approaches the
Cauchy horizon is completely different. In that case, since

(a) (b)

FIG. 5. Plot of the left-hand side (a) and right-hand side (b) of Eq. (4.10). In this figure and those that follow, we consider
rþ ¼ 1

8
¼ 0.125, r− ¼ 3

32
¼ 0.09375, κþ ¼ 1, and κ− ¼ 16

9
.

2Close to the horizon, the correlator is dominated by the light-
cone singularity (coincidence limit in the case of equal time).
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FIG. 9. Three-dimensional plot of the correlator (4.12), up to
the factor ð ℏ

4πÞ2, for tEF ¼ 1, 0.09375 < r0 < 0.093755 and
0.125 < r < 0.130.

FIG. 10. Plot of the correlator (4.9), up to the factor ð ℏ
4πÞ2, with

the inner point fixed at r0 ¼ 0.0937501 and as a function of r,
0.125 < r < 20.

FIG. 11. Three-dimensional plot of the correlator (4.9), up to
the factor ð ℏ

4πÞ2, for 0.0937501 < r0 < 0.093751 and
0.125 < r < 20.

FIG. 6. Plot of the correlator (4.9), up to the factor ð ℏ
4πÞ2, as a

function of r for fixed values of r0 ¼ 0.122 (blue), 0.123 (orange),
and 0.124 (green).

FIG. 7. Three-dimensional plot of the correlator (4.9), up to the
factor ð ℏ

4πÞ2, for 0.120 < r0 < 0.124 and 0.126 < r < 0.130.

FIG. 8. Plot of the correlator (4.12), up to the factor ð ℏ
4πÞ2, for

tEF ¼ 1, with the inner point fixed at r0 ¼ 0.0937501 and as a
function of r, 0.125 < r < 0.130.
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this observer has E ¼ −1 [see Eq. (4.2)] the Gðx; x0Þ
correlator becomes

Gðx; x0Þ ¼ hinjT̂uuðxÞT̂u0u0 ðx0Þjini�
1 −

ffiffiffiffiffiffiffiffiffi
2mðrÞ

r

q �2�
1þ

ffiffiffiffiffiffiffiffiffiffi
2mðr0Þ

r0

q �2
þ hinjT̂vvðxÞT̂v0v0 ðx0Þjini�

1þ
ffiffiffiffiffiffiffiffiffi
2mðrÞ

r

q �2�
1 −

ffiffiffiffiffiffiffiffiffiffi
2mðr0Þ

r0

q �2 ; ð4:13Þ

and the dominant, now diverging contribution comes from
the last term, namely, the T̂vv correlator,

hinjT̂vvðxÞT̂v0v0 ðx0Þjini�
1þ

ffiffiffiffiffiffiffiffiffi
2mðrÞ

r

q �2�
1 −

ffiffiffiffiffiffiffiffiffiffi
2mðr0Þ

r0

q �2
∼

1�
1þ

ffiffiffiffiffiffiffiffiffi
2mðrÞ

r

q �2�
1 −

ffiffiffiffiffiffiffiffiffiffi
2mðr0Þ

r0

q �2
�

ℏ
4πðv − v0Þ

�
2

;

ð4:14Þ

showing explicitly the divergence as r0 → r− due to the
vacuum polarization.

V. CONCLUSIONS

In this paper, within the framework of quantum field
theory in curved spacetime, we studied, in a two-
dimensional section of the RN BH spacetime formed by
the collapse of a null shell, the expectation values of the
energy-momentum tensor operator for a massless scalar
field, showing how vacuum polarization and particle
creation mix and one cannot disentangle the two; both
contribute to the measured energy density. Only sufficiently
far away from the horizon, the tensor describes an outgoing
flux of particles at the Hawking temperature. To reveal the
existing correlations between Hawking particles and their
partners, one has to look at correlation functions.

By studying equal-time correlators in a Schwarzschild
BH, we found [6] that the above correlations do not
show up because the partner is swallowed by the central
singularity before the correlated Hawking particle emerges
from the quantum atmosphere. To reveal the correlations,
one has to consider unequal-time correlators in order to
catch the partner before it disappears into the singularity.
In a RN BH the picture changes significantly. The

spacetime structure inside the event horizon is character-
ized by the presence of an inner horizon before reaching the
singularity. At this horizon, all of the partners pile up
asymptotically, never reaching the singularity. So, at late
time, equal-time correlators across the horizon provide a
significant enhancement when the inner point is taken close
to the inner horizon, singling out the quantum entangle-
ment of the Hawking particles and the partners. On the
ingoing part of the inner horizon (the Cauchy horizon), on
the other hand, we found that the correlators diverge like
the energy-momentum tensor, with the divergence being
caused by infinite vacuum polarization there.
We should stress that our analysis is restricted to the

gravitational case discussed within the framework of
Einstein’s general relativity. In acoustic BHs realized with
BECs, because of the modified dispersion relation that
allows for “superluminally” propagating modes, the part-
ners do not pile up at the inner horizon, but rather bounce
back and forth between the inner and event horizons,
producing the so-called laser effect [14] which, in turn,
causes the rise of a dynamical instability [15].
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