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Abstract

Learning continually is a key aspect of intelligence and a necessary ability to

solve many real-life problems. One of the most effective strategies to control

catastrophic forgetting, the Achilles’ heel of continual learning, is storing part of

the old data and replaying them interleaved with new experiences (also known

as the replay approach). Generative replay, which is using generative models

to provide replay patterns on demand, is particularly intriguing, however, it

was shown to be effective mainly under simplified assumptions, such as simple

scenarios and low-dimensional data. In this paper, we show that, while the

generated data are usually not able to improve the classification accuracy for

the old classes, they can be effective as negative examples (or antagonists) to

better learn the new classes, especially when the learning experiences are small

and contain examples of just one or few classes. The proposed approach is

validated on complex class-incremental and data-incremental continual learning

scenarios (CORe50 and ImageNet-1000) composed of high-dimensional data and

a large number of training experiences: a setup where existing generative replay

approaches usually fail.
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1. Introduction

The majority of neural network training approaches assume that is feasible to

build a set of independent and identically distributed (i.i.d.) samples to train the

model. This assumption is in contrast with biological learning since intelligent

beings observe the world as an ordered sequence of highly correlated data. When5

state-of-the-art deep neural networks are trained continually, and the whole data

cannot be accessed at once, the model suffers from the catastrophic forgetting

problem (McCloskey & Cohen, 1989), and the knowledge about old data (old

experiences) tend to be overwritten by new examples.

Several continual learning (CL) approaches have been recently proposed10

to improve continual learning in artificial neural networks (see Delange et al.

(2021); Maltoni & Lomonaco (2019); Parisi et al. (2019) for comprehensive

surveys). Replay methods (see the in-depth review by Hayes et al. (2021))

usually perform better than other approaches, and in some complex continual

learning scenarios replay seems to be the only strategy capable of mitigating15

catastrophic forgetting (van de Ven et al., 2020). However, due to the need of

storing old examples, replay methods are not appropriate if past data cannot

be memorized for privacy or security reasons. Moreover, the memory and

computation overhead can pose issues, especially in edge devices (Pellegrini

et al., 2021), or when the number of experiences is very large.20

Therefore, generative replay has been explored, where a generative model

is trained to produce data from past experiences (see Lesort et al. (2018) and

Shin et al. (2017)). Besides solving the replay memory issue, generative replay

can theoretically be capable of generating more general and novel examples

not included in past experiences, thus potentially overcoming replay methods.25

Unfortunately, generative replay introduces much complexity due to the need

for an interleaved incremental training of both a classifier and a generator.

Moreover, generative models are usually complex and unstable to train, especially

in incremental scenarios. Several researchers have shown that generative replay

fails in complex CL scenarios with high-dimensional data (see Aljundi et al.30
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Figure 1: The proposed generative negative replay is compared with classical generative

replay on two complex class incremental CL benchmarks (details in section 4.2). In both

the benchmarks, using the same classifier, generator, and training procedure, negative replay

performs significantly better.

(2019); Lesort et al. (2018) and van de Ven et al. (2020)) mainly due to the

inaccuracies in the data generation that progressively grows across the experiences

if a single generator is incrementally updated. The photocopy example helps to

understand why. Let us consider a high-quality photocopy machine: when a

picture is initially copied the output looks very similar to the original, but if the35

process is repeated several times by using as input the output of the previous

step, some artifacts will soon appear and, after many iterations, the result will

be highly compromised. Hence, even if some state-of-the-art models have been

proved to be effective in generating also high dimensional data (Huang et al.

(2018) Karras et al. (2019)), the continual training of such generators remains a40

challenging problem.

Although generative models are hot research topics and we can expect

improved methods in the future, as of today we must deal with imperfect

generated data and try to exploit them at best when a classifier is incrementally

trained. The proposed approach, denoted as Generative Negative Replay, does45

not attempt to improve the knowledge of old classes using the generated data

because it assumes that the data quality is not high enough for this purpose.

Nevertheless, it makes use of generated (latent) data as negative examples to
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better learn the classes of current experience, especially when the number of

classes per experience is small and we incur in the “learning in isolation” problem.50

We experimentally demonstrate, on complex benchmarks such as CORe50

and ImageNet-1000, where (positive) generative replay fails, that negative replay

is effective to contrast the learning in isolation problem, allowing to train a

classifier incrementally across a high number of experiences (see Figure 1).

We also investigate the impact of data quality on negative replay by running55

experiments (section 4.5) where negative examples are sampled from original

past patterns (upper bound) and randomly generated.

2. Problem Formulation

A continual learning (CL) problem consists of a number NE of experiences,

each containing a subset of data that is only accessible during the corresponding

experience:

CL = {e1, e2, ..., eNE
}. (1)

Each experience is composed of several data points and the corresponding labels:

ek = (Xk,Yk), Xk = {xk1 , xk2 , ..., xkNk
}, Yk = {yk1 , yk2 , ..., ykNk

} (2)

where xki and yki are the data points and the associated labels contained in the

k-th experience and Nk is the number of samples in the k-th experience.60

Let D = (X ,Y) be the entire dataset, then X =
⋃NE

i=1 Xi and Y =
⋃NE

i=1 Yi.

We can define three different scenarios for supervised continual learning (Maltoni

& Lomonaco, 2019; van de Ven & Tolias, 2018) based on the labels Yk contained

in the experiences (k ∈ {1, ..., NE} with NE the total number of experiences) as

follows:65

New instances (NI) also known as domain-incremental learning (Domain-

IL), where all the labels are known from the first experience, and in the

successive experiences, only new instances of the same classes are included.

Formally, we could define the NI scenario as:

Y1 ∩ Yk = Yk for k = {1, ..., NE}, (3)
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meaning that every possible label of the entire dataset must be present in

the first experience.

New classes (NC) also known as class-incremental learning (Class-IL), where

each experience includes data of classes not present in any other past

experience. Formally, we can define the NC scenario as:

Yk ∩
k−1⋃
i=1

Yi = ∅ for k = {2, ..., NE}. (4)

New instances and classes (NIC) where a new experience can contain al-

ready seen classes, new classes, or a mix of the two. This is the most

natural scenario since in the real world an agent may sense both known

and unknown objects. Formally the NIC scenario can be defined as:

∃k : Yk ∩
k−1⋃
i=1

Yi ̸= ∅ and ∃j : Y1 ∩ Yj ̸= Yj . (5)

Meaning that there is at least one experience that contains classes already

seen in the past (left part) and at least one experience that contains classes

not present in the first experience (right part).70

Given the above definitions, our goal is to fit a function f , parametrized by Θ,

to the sequence of experiences. A naive approach is finding the best parameters

Θ∗ that minimizes:

Θ∗ = argmin
Θ

L(fΘ(Xi),Yi) for i = {1, ..., NE}, (6)

where L(·) is a loss function (e.g. cross-entropy loss).

As first pointed out by McCloskey & Cohen (1989), this simple approach

is prone to catastrophic forgetting, thus the model fΘ is not able to learn the

experiences {e1, e2, ..., eNE
} sequentially.

2.1. Continual learning with replay75

Replay is an effective approach to overcome the catastrophic forgetting

problem (van de Ven et al., 2020; Hayes et al., 2021). It consists in storing into
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a memoryM a subset of past data and using them jointly with the data of the

current experience for the model optimization. In presence of replay, Equation 6

becomes:

Θ∗ = argmin
Θ

L(fΘ(Xi ∪Mx
i ),Yi ∪M

y
i ) for i = {1, ..., NE}, (7)

whereMx
i andMy

i are the datapoints and labels contained in the replay memory

during the training on experience i. During the first experience we have that

Mx
1 =My

1 = ∅.

From Equation 7 is evident that replay has two main issues: space and time.

Space since storing old data require memory (for high dimensional data and80

a large number of experiences the memory required may be intractable), and

time since in every experience the model needs to be updated also with the data

contained intoM, leading to extra computations.

2.2. Continual learning with generative replay

To overcome the aforementioned issues generative replay can be used. Gen-

erative replay requires to train simultaneously and incrementally a classifier and

a generative model (Shin et al., 2017; Wu et al., 2018; Thandiackal et al., 2021).

The generative model g, parametrized by Ω provides surrogate data similar to

the past experiences’ data. In the case of a conditional generative model (in

which we can control the class of the generated data), the optimal parameters

of the classifier can be derived using Equation 7, with the difference that the

replay memoryM is populated as:

Mx
i ← gΩ(zj |yj); My

i ← yj ; yj ∈
i−1⋃
k=1

Yk, j = {1, ..., R}, (8)

where R is the number of generated replay patterns (size of memory), zj is a85

latent random input vector given to the generative model, yj is a label sampled

from the set of labels encountered in the past experiences, and “←” indicates

the insertion of an element into the memory.

Some solutions to continually train a generative model have been proposed

in the literature, as discussed in section 5, but the problem is still far to be90

6



solved (Lesort et al., 2018; van de Ven et al., 2020; Mundt et al., 2019) when

the number NE of experiences is large and the data is high dimensional.

One solution is that the same generated data fed to the classifier can be used to

control forgetting in the generative model as well. Instead of a generic generative

model, let us suppose we have a conditional generative model composed of an

encoder qγ parametrized by γ and a decoder pξ parametrized by ξ, such that

gΩ = pξ ◦ qγ , Ω = (γ, ξ). In case of replay, we can maintain the generative

model’s parameters of the previous experience Ω′ = (γ′, ξ′) and use them to

generate replay patterns by sampling a latent random vector z, conditioning it

to a previous class, and then populating the replay memory as:

Mx
i ← pξ′(zj |yj); My

i ← yj ; yj ∈
i−1⋃
k=1

Yk, j = {1, ..., R}, (9)

with zj sampled from the encoder target distribution. The optimal parameters

of the generative model can thus be obtained requiring that the generated data

are similar (L2 loss) to the original ones:

γ∗, ξ∗ = argmin
γ,ξ

∥pξ(qγ(Xi ∪Mx
i )|Yi ∪M

y
i )−Xi ∪M

x
i ∥22 for i = {1, ..., NE},

(10)

where qγ(Xi) is forced to follow a target distribution, typically N (0, 1).

3. Generative negative replay

Generative replay is an appealing strategy for continual learning, but, to95

exploit it in complex scenarios with many experiences, we need to overcome

the data degradation issue. Since this problem is not easily addressable on the

generator side, we propose to circumvent it by changing the way the classifier

makes use of generated data.

Let us suppose the classifier fΘ can be divided into a feature extractor fϕ,100

parametrized by ϕ and a classification head cψ parametrized by ψ, so that

fΘ = cψ ◦ fϕ, Θ = (ϕ, ψ). In our case, the feature extractor ϕ is a convolutional

neural network, while the classification head ψ is a single fully connected layer.
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In any case, every possible gradient-based model can be used in conjunction

with our proposal. The parameters ψ of the classification head can be divided105

into C groups, where C is the number of classes. The groups, denoted as (ψ1,

ψ2, ..., ψC) represents the parameters associated to the connections between the

features extracted by fϕ and the output neuron of the corresponding class.

For simplicity, let us assume that the feature extraction weights ϕ are frozen

(after an initial pre-training) and, across the experiences, we only learn the110

classification head weights ψ. As explained in section 3.3, this assumption is not

necessary and our experiments were carried out by learning both ϕ and ψ.

3.1. Learning classes in isolation

Learning in isolation is one of the main causes of catastrophic forgetting,

especially in the NC or NIC scenarios where only a limited number of classes115

are present in a single experience, and the parameters of the classification head

are learned without negative examples that counteract the “greediness” of the

optimization. As an example, let us consider an NC scenario where only one class

is present in each experience. Suppose that c is the only class in the experience

k, then the best way to optimize the model is to change the parameters ψc to120

maximize the output of the output neuron c for every input and change the

rest of ψj , j ≠ c to minimize the output for the remaining classes. This still

holds if in the experience are present only a few classes, since the model is only

optimized to discriminate between the present classes and has no interest in

maintaining the past acquired knowledge.125

3.2. Positive and negative replay

Replay can be used to counteract the learning in isolation problem, however,

when the replay data comes from a generative model, the data quality degradation

has a negative impact on the classifier training. The aforementioned problem

is typical of the standard generative replay approach (hereafter denoted as130

generative positive replay), where replay data is used by the classifier in the same
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manner of the current experience’s data, and therefore the classification head’s

weights associated to the replay classes are optimized based on the replay data.

On the contrary, in the proposed generative negative replay approach, the

replay patterns are used to counteract the detrimental effects of the training in135

isolation, but they are not used to modify the parameters ψ associated with the

replay classes. The key idea (validated experimentally) is that the generated

patterns are valid antagonists to mitigate the learning in isolation problem,

but their quality is not enough to improve the knowledge of classes originally

learned on real data. It is well known that one class learning approaches are in140

general less effective than discriminative learning because the presence of both

positive and negative examples allows to better characterize the classification

boundaries (Hempstalk & Frank, 2008). Therefore, the proposed approach

exploits generated data to constrain the classification boundary and to avoid

the real data in the current experience pulling it too much in their direction.145

3.3. Training a classifier with generative negative replay

The idea of generative negative replay is quite general and can be used

in conjunction with different continual learning classification approaches and

scenarios (NI, NC, NIC). To avoid replay data (i.e. negative examples) altering

the knowledge of the already learned classes, the gradient propagation can be150

selectively blocked during the backward pass. The general idea is illustrated in

Figure 2. While the original examples (Xi) normally flow forward and backward1

throughout the model, the replay examples (Mx
i ) are passed forward, but, before

the backward pass, the loss tensor is masked at the class level by resetting

the gradient components corresponding to the classes inMy
i . In this case, the155

gradient of the possibly degraded replay data does not contribute to the learning

of class boundaries performed in the classification head ψ. This is done since

1In this context, for forward we mean the flow of the data through the model, while for

backward we mean the flow of gradients after loss calculation in the reverse direction of the

data.
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Figure 2: Graphical representation of the negative replay idea. Green output neurons represent

the classes present in the current experience, while red output neurons represent the replay

classes. During forward (a) both the replay data and the original data from the current

experience flow through the network. During backward, the original data gradient flow through

all the neurons of the classification head (b), while the replay data contribution is masked and

the gradient only flows through the neurons of classes belonging to the current experience (c).

the quality of replay data may be not high enough to correctly improve the

learning of old class boundaries. Nonetheless, the gradient of the replay data

flows through the output neurons associated with current data to contrast the160

learning in isolation problem. This gradient also flows through the feature

extractor ϕ and helps to also improve it. Such a masking-based negative replay

has been implemented and tested in conjunction with two well-known continual

learning approaches, such as experience replay (ER) (Chaudhry et al., 2019),

and Learning without Forgetting (LwF) (Li & Hoiem, 2016) (see section 4.4).165

Hereafter, we propose an alternative implementation embedded in the AR1

algorithm (Maltoni & Lomonaco, 2019), whose update mechanism for the clas-

sification head weights allows very simple and efficient integration of negative

replay. AR1 is a flexible continual learning approach that can achieve state-of-

the-art accuracy on complex CL benchmarks. In Appendix B, AR1 is shown to170

outperform several well-known CL algorithms on the complex ImageNet-1000

benchmark proposed by Masana et al. (2022).

AR1 uses different mechanisms to learn the classification head and the

feature extractor weights. The feature extraction weights ϕ are protected against

forgetting: i) through the Synaptic Intelligence (SI) regularization technique175

(Zenke et al., 2017) or ii) using a replay memory with a small learning rate

(denoted as AR1free in Pellegrini et al. (2020)). The classification head weights
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ψ are managed by CWR (Maltoni & Lomonaco, 2019). CWR is a simple method

aimed at addressing the score bias problem produced by imbalance learning

during continual learning (Belouadah et al., 2020). The score bias problem is180

caused by the imbalance between classes in the current data and classes present

only in the replay data. Often, classes in the present experience are represented

by more numerous examples than classes only present in the replay memory,

producing a bias towards the former. This frequently leads to the forgetting of

old knowledge in favor of current data. To address this problem, CWR maintains185

a copy of the weights of the classification head of the previous experience (ψ′)

and at the start of each experience the classification head is reset and only

weights of classes of the current experience are loaded from ψ′. At the end of

the experience, a weight consolidation phase takes place, where the weights ψ

learned in the current experience are consolidated with the weights ψ′. This190

procedure helps to contrast the aforementioned score bias problem, since the

weights associated with classes in the current experience are “averaged” using

weights from past experiences, mitigating every bias than can appear during the

training.

During the weight consolidation phase the negative and positive replay differ.195

In particular, for each parameter group ψc associated to a class c belonging to

the current experience plus the current memory (c ∈ Yk ∪My
k), the mean of all

the parameter group µ(ψc) is calculated, and subtracted to all the parameters

in the group, to force zero mean: ψc = ψc − µ(ψc). This prevents class bias

problems due to the different magnitudes of the weights. Then, there are three200

possibilities, based on c:

1. c is a new class never seen before (c ∈ Yk ∧ c /∈
⋃k−1
i=1 Yi): in this case ψc

is maintained as is.

2. c is a class seen before (c ∈ Yk ∧ c ∈
⋃k−1
i=1 Yi): the consolidation step is

applied, so ψc =
ψ′c·wpastc+ψ

c

wpastc+1 where wpastc is a parameter that balances

the contribution of the past w.r.t. the present, calculated as follows:

wpastc =

√
pastc

currentc
, (11)
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where pastc is the number of data points of class c encountered in past

experiences, while currentc is the number of data points of class c present205

in the current experience.

3. c is not in the current experience but is a replay example (c /∈ Yk∧c ∈My
k):

• in case of positive replay apply consolidation (step 2).

• in case of negative replay ψc is reverted back to ψ′c (no contribution

to the parameters ψc from replay examples).210

The pseudo-code of the above weights consolidation algorithms is reported

in Algorithm 1. It is worth noting that, in the proposed embedding of negative

replay in AR1, the replay pattern can alter the feature extraction weights since

CWR weight consolidation only “protects” the classification head However, in

our experiments, we found that a more complex embedding of negative replay in215

AR1 where we block the gradient propagation for negative patterns throughout

the feature extraction layers performs very similarly, and therefore we opted for

simplicity.

4. Experiments and results

In this section, we describe the experimental setup used to validate the220

proposed negative replay. We focus on difficult continual learning scenarios,

where data is high-dimensional, non-i.i.d. and the number of experiences is very

large. Negative replay, implemented on top of the three CL strategies (ER, LwF,

and AR1) is compared with alternative strategies (e.g. positive replay) and the

role of quality of generated data is investigated by also using, as negative replay225

patterns, real and random data.

4.1. Experimental setup

Datasets. We performed our experiments on the CORe50 dataset (Lomonaco &

Maltoni, 2017) and ImageNet-1000 dataset (Deng et al., 2009). CORe50 dataset

was specifically collected for continual learning (NI, NC, and NIC scenarios) and230

is composed of small video sessions (about 300 frames) of 50 objects taken from

12



Algorithm 1 Weight consolidation

Require: ψ, ψ′, Ye, My
e

1: for each class c ∈ Ye ∪My
e do

2: ψc = ψc − µ(ψc)

3: if c ∈ Ye ∧ c ∈
⋃e−1
i=1 Yi then

4: ψc =
ψ′c·wpastc+ψ

c

wpastc+1

5: end if

6: if c /∈ Ye ∧ c ∈My
e then

7: if positive replay then

8: ψc =
ψ′c·wpastc+ψ

c

wpastc+1

9: end if

10: if negative replay then

11: ψc = ψ′c

12: end if

13: end if

14: end for

15: ψ′ = ψ

an egocentric view. Every class has 11 video sessions (a total of about 3,300

images) with different backgrounds and illuminations. Eight video sessions for

each class are used for training, and three for testing. Images have size 128×128

pixels. ImageNet is composed of 1,000 classes with about 1,000 patterns per class235

for training and 100,000 images for testing. All images are resized to 224×224

pixels.

Classifier architecture. In the experiments with the CORe50 dataset we fol-

low Maltoni & Lomonaco (2019) and Lomonaco et al. (2020) by employing a

MobileNetV1 network (Howard et al., 2017). As suggested by Pellegrini et al.240

(2020) and van de Ven et al. (2020), we opted for latent replay, that is replaying

latent activations instead of input data. As described in Pellegrini et al. (2020),

the choice of the latent replay layer is related to a tradeoff between accuracy

13



and efficiency. For CORe50 experiments, as in Pellegrini et al. (2020), we used

the conv5 4 layer as latent replay layer, and the classifier was pretrained on245

ImageNet-1000. We also substituted all the batch normalization layers of the

network with batch renormalization (Ioffe, 2017). For ImageNet-1000 we use a

ResNet-18 (He et al., 2016) architecture. Following the benchmark proposed by

Masana et al. (2022) the model was not pretrained. To maintain compatibility

with the experiments on CORe50, even on ImageNet-1000 we use latent replay,250

setting the replay layer on the fourth residual block of the network (after conv4 x

using He et al. (2016) nomenclature) The above specifications apply to all three

continual learning algorithms tested. It is worth noting that:

• The experience replay approach fine-tunes the model throughout the ex-

periences with no specific protection against forgetting, except the replay.255

Negative replay was implemented according to the gradient masking ap-

proach (see Figure 2). Without using replay, the ER approach becomes

the naive approach described in (Maltoni & Lomonaco, 2019).

• LwF (Li & Hoiem, 2016) extends the loss by introducing a distillation

component that regularizes the model being tuned by forcing it to produce260

stable outputs on past data. Here too negative replay was implemented

according to the gradient masking approach (see Figure 2).

• AR1 was used with Synaptic Intelligence (SI) (Zenke et al., 2017) regular-

ization when trained without replay, and without protection on the feature

extraction weights (AR1free) in case of positive and negative replay (Pelle-265

grini et al., 2020). Positive or negative replay was embedded in CWR as

discussed in section 3.3.

Generative model architecture. For the choice of a generative model, we initially

focused on three state-of-the-art approaches whose implementations are open

source (van de Ven et al., 2020; Shin et al., 2017; Ayub & Wagner, 2021).270

However, since they were designed to work in simpler settings (with a lower data

dimensionality and a smaller number of experiences), we were not able to port
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and scale them to our complex setups. Therefore, we implemented a generative

model by trying to combine the most promising techniques and ideas from

different sources and control its overall memory/computation complexity. In275

particular, taking inspiration from van de Ven et al. (2020) we use a Variational

Autoencoder (VAE) model (Kingma & Welling, 2014), but unlike van de Ven

et al. (2020) we opted for a conditional VAE (cVAE) configuration (Sohn et al.,

2015). Moreover, we partially blend the generator (encoder) with the classifier

model: both the networks share the same feature extractor fϕ. Sharing part of280

the model between the classifier and the generator may cause some problems

since the updates of the parameters performed by one model can harm the

performance of the other. Nevertheless, we empirically observed that sharing

only the first layers does not degrade the performance during alternate updates

since the changes performed to the initial layers are minimal and not disruptive.285

Finally, instead of generating raw data, we generate activations at an in-

termediate “latent” level as suggested by van de Ven et al. (2020). A detailed

discussion on the architecture of the generator is provided in Appendix A,

including a pseudo-code that highlights the details of the interleaved training of

the generator and the classifier.290

4.2. Experiments on the NC scenario

The first round of experiments has been performed using the AR1 algorithm on

the NC scenario using CORe50 and ImageNet-1000. For CORe50 the benchmark

is composed of 9 experiences: the first one contains 10 classes while the following

contains five classes each. We used a class-balanced replay memory of 1,500295

patterns, and (for generative replay) we inserted in each minibatch, of size 128, 14

replay patterns, and 114 patterns from the current experience. We train both the

classifier and the generator for 4 epochs for each experience. Hyper-parameters

of the classifier and generator are reported in Appendix C and Appendix D

respectively.300

For ImageNet-1000 the benchmark follows the one proposed by Masana et al.

(2022): the dataset is divided into 25 experiences of 40 classes each. We used a
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class-balanced replay memory of 20,000 patterns, and (for generative replay) we

inserted in each minibatch, of size 128, 36 replay patterns, and 92 patterns from

the current experience. We did not expect negative replay to perform well in this305

setup, because each experience already contains 40 classes and, therefore, the

learning-in-isolation problem is here marginal. Nevertheless, we were interested

in understanding if, in this setup, negative replay hurts the learning process or

still provides some benefits.

The results are shown in Figure 3 and Table 1. In CORe50 the baseline with310

no replay (using the AR1 algorithm) reaches a final accuracy of about 60% while

using replay raises the accuracy to more than 70% (Positive Replay Original

Data - PR-OD). These were expected to be the lower and upper bounds of this

experiment, respectively. However, because of the data degradation problem,

performing positive replay with generated data (Positive Replay Generated Data315

- PR-GD) performed significantly worse than the case with no replay. Using

replay in a negative manner with generated data, as proposed in this work

(NR-GD), only slightly decreases the final accuracy w.r.t. the upper bound

PR-OD.

Method CORe50 ImageNet-1000

No Replay 41.68± 0.62 31.91± 0.17

PR-OD (upper bound) 47.02± 0.45 38.02± 0.08

PR-GD 34.05± 0.29 18.29± 0.07

NR-GD 44.63± 0.77 32.74± 0.17

Table 1: Average accuracy on all the experiences for the CORe50 and ImageNet-1000 NC

scenarios.

For ImageNet-1000, due to the complexity of the experiment and the fact320

that the network is fully trained only during the first experience (blocked after

conv4 x in the following experiences) the final accuracy are quite similar for

all the methods (except PR-GD that performed far worse). However, in the

first 10 experiences some differences can be appreciated: see the inset view in
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Figure 3: Overall accuracy on CORe50 NC scenario, using the whole test set (even at

intermediate experiences) as defined in the CORe50 protocol (Lomonaco & Maltoni, 2017)

(left), and on ImageNet-1000 using a growing test set as defined by Masana et al. (2022) (right).

For a direct comparison of the two benchmarks, a plot of the experiments on CORe50 NC

using a growing test set is included in Appendix Appendix E. Every experiment is averaged

over 3 runs using different seeds and class order. The standard deviation is reported in light

colors. Better viewed on a computer monitor.

Figure 3-right. The impact of the generated data quality on negative replay is325

more evident in Table 1: using negative replay with generated data (in this case

highly degraded) improve the average accuracy (calculated as the mean of the

accuracy after each experience) of more than 24 points and the final accuracy of

more than 10 points w.r.t. using replay data in a positive manner. Furthermore,

even if in this scenario the advantage of negative generative replay is little with330

respect to the no replay case, we note that negative replay is not hurting the

training process even in scenarios where learning in isolation is only a minor

issue.

4.3. Experiments on the NIC benchmark

AR1 algorithm was here tested on CORe50 NIC-391 protocol, which is335

composed of 391 learning experiences, each containing examples of a single class

(300 frames of a short video). This scenario is particularly challenging and

prone to learn-in isolation issues, hence we may expect the role of replay to be
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Figure 4: Overall accuracy on CORe50 NIC391 scenario, using the whole test set as defined in

the CORe50 protocol (Lomonaco & Maltoni, 2017). Every experiment is averaged over 3 runs

using different seeds and class order. The standard deviation is reported in light colors. Better

viewed on a computer monitor.

more important here. In this scenario, we used a replay memory of only 300

patterns. The minibatch size is 128, and when generative replay is employed, we340

generate 64 patterns for every mini-batch (plus 64 from the current experience).

Hyper-parameters of the classifier and generator are reported in Appendix C

and Appendix D respectively.

The results are shown in Figure 4 and they are quite in line with the previous

experiment, but here the accuracy gaps grow and the benefit of replay is more345

evident. The proposed negative replay with generated data (NR-GD) performs

quite well, about 10 points better than no replay and just less than 5 points

worse than positive replay with real data, the upper bound. In the latter case, a

decline in performance after 350 experiences is visible. This can be explained by

the distribution of class patterns throughout the NIC 391 experiences, which350

can lead to a sort of saturation in the last 30-40 experiences when all the classes

have been already introduced, and only new instances of existing classes are

provided. As we expect, using generated data in a positive manner (PR-GD) is

18



here even worse than in the NC case, because the data degradation is amplified

during so many learning iterations: PR-GD is losing 30 points w.r.t. not using355

replay at all, and performs about 40 points worse than using the same replay

data with the proposed generative negative replay approach.

4.4. Comparing negative replay across different strategies

This section aims to show that the negative replay idea is somewhat algorithm

agnostic, and can bring benefits to other CL approaches (besides AR1). Therefore,360

we repeated the test on the CORe50 NC scenario for the ER and the LwF

algorithms (Figure 5-left and 5-center, respectively), maintaining unchanged the

generative model and the training dynamics. In Figure 5-right we report again

AR1 results for the sake of comparison. The hyper-parameters of the strategies

are reported in Appendix C. As expected the accuracy of ER is lower than LwF365

and, consistently with Maltoni & Lomonaco (2019), the accuracy of LwF is lower

than AR1. However, all the approaches benefit from negative replay, whose

accuracy is higher than no replay and Positive Replay with Generated Data

(PR-GD). In particular, even the ER approach, which has no specific protection

against class bias and could be hassled by the gradient masking of negative370

classes, shows a consistent improvement. Finally we observe that, for LwF,

the gap between negative and positive is smaller than for the other algorithms,

probably because distillation makes this approach quite robust w.r.t. generated

data quality. On the other hand, the accuracy of LwF with both positive and

negative replay is more than 10 points lower than AR1 with negative generative375

replay.

4.5. Negative replay with original and random data

The effect of generated data quality on negative replay is investigated by

performing two further experiments using AR1: NR-OD uses original data

(max. quality) for negative replay, while NR-RD uses randomly generated replay380

data, obtained by uniform random sampling in the latent replay layer and

assigning to each data point a random class label. Since in our experiments we
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Figure 5: Overall accuracy on CORe50 NC scenario, using the whole test set as defined in the

CORe50 protocol (Lomonaco & Maltoni, 2017), for ER, LwF, and AR1. Every experiment is

averaged over 3 runs using different seeds and class orders. The standard deviation is reported

in light colors. Better viewed on a computer monitor.

replay hidden features, to produce reasonable replay data we first calculated the

range of latent activations on a sample dataset, and then we set our random

generator to produce values in the range: 0 (since we use ReLU activation385

functions) - 90th percentile of the real activation values. We used CORe50 NC

and CORe50 NIC in these experiments.

The results are reported in Table 2. Surprisingly, even with random replay

data (that we assume to be the worst degradation possible), negative replay is

still able to perform better than no replay. Furthermore, the difference between390

original and generated data is minimal, thus proving that negative replay is

tolerant in terms of data quality. Note that in both experiments using random

data with negative replay performs way better than using generated data in a

classical (positive) manner (PR-GD in previous figures). Comparisons in all the

benchmarks of all the experiments (positive and negative replay with original,395

generated, and random data) are reported in Appendix E.

5. Related works

The use of negative examples to learn more discriminative class boundaries

can be traced back to one-class support vector machines (one-class SVM) (Chen

et al., 2001), where the data points belonging to the other classes in the training400
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Method CORe50 NC CORe50 NIC

No Replay 60.99± 0.49 52.71± 1.02

NR-OG 68.60± 1.38 67.93± 0.31

NR-GD 68.87± 0.88 61.46± 0.67

NR-RD 64.05± 0.71 58.85± 0.58

Table 2: Final accuracy on CORe50 NC and NIC using original (NR-OD), generated (NR-GD),

and random (NR-RD) data with negative replay. The results with no replay are reported as

references. Every experiment is averaged over 3 runs using different seeds and class orders.

set are used as negative examples. Malisiewicz et al. (2011) proposed using

an ensemble of one-class SVMs instead of a single multi-class classifier. This

approach operates in a scenario that is similar to the experiments on the CORe50

NIC benchmark, whose experiences contain only one class and all the replay

data points (possibly belonging to many past encountered classes) are used as405

negative examples. The use of negative examples can also be seen as a kind of

contrastive learning (Khosla et al., 2020), where negative examples are used to

cluster embeddings of data points of the same class while moving away from

embeddings of data from different classes.

Masking parts of a neural network have been experimented before in continual410

learning. Wortsman et al. (2020) masked the weights of a randomly initialized

neural network to find a sub-network that yields good performance for a particular

task. The loss masking proposed for ER using negative replay introduced in

section 3.3 (without using any continual learning strategy) is similar to the

continual learning method proposed by Masana et al. (2021). In that work, each415

feature can be used normally, masked (not used), or used only during forward

(no modification of the related parameters during network update).

Generative replay for continual learning was first introduced by Shin et al.

(2017) who proposed Deep Generative Replay (DGR). In that work, a generative

adversarial network (GAN) (Goodfellow et al., 2014) is used as a generative420

model, showing promising results but only on simple datasets. The method
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used a teacher-student framework, where the generative model resulting from

the previous experience is used to train the current generative model. Wu et al.

(2018) noted that generative replay almost completely shifts the problem of

continual learning from the classifier to the generator. They proposed a GAN-425

based distillation approach to address the issue. However, these approaches

lead to rapid degradation of the quality of the generated images for old tasks.

To overcome this issue Ostapenko et al. (2019) proposed Dynamic Generative

Memory (DGM), where a GAN architecture is used both to generate data and

classify it. Moreover, the generative model used a combination of binary masks430

and network expansion, to maintain a fixed number of free parameters for every

experience. All these works use GANs as generative models, but GANs are

usually slow and complex to train, even in non-incremental scenarios. Kemker

& Kanan (2018) proposed FearNet, a brain-inspired model that employs dual-

memory storage (short and long term) with a transfer phase of information435

between the two memories in a consolidation phase inspired to mammalian

sleep. Recently, Ayub & Wagner (2021) proposed a generative replay framework

based on autoencoders and neural style transfer (Gatys et al., 2016) that showed

interesting results even with high-dimensional data. However, that approach

requires maintaining a generative model for every experience encountered so far,440

making it not scalable to long incremental sequences. Instead of generating raw

images, van de Ven et al. (2020) proposed to generate internal features of the

classifier through a Variational Autoencoder (VAE) (Kingma & Welling, 2014).

This approach shares some similarities on how memory works in the human brain

and with our proposed approach, showing significant results in continual learning445

scenarios with dozens of experiences. However, even this approach was not tested

on high dimensional data and in scenarios with hundreds of experiences.

The crucial role of the dimensionality and the complexity of data on the

quality of generation is evident in Zhai et al. (2019), where a simple generative

model can effectively generate faithful results if trained continually on low-450

dimension data (e.g. the MNIST dataset LeCun (1998)), but it fails to generate

acceptable results if the dimensionality of the data increases (e.g. using the
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Flowers dataset (Nilsback & Zisserman, 2006)). Another example of this behavior

is introduced by Mundt et al. (2019), where the Flower dataset, with image

dimensionality of 256× 256 pixels, is almost impossible to faithfully reconstruct455

if learned continually, even if the number of incremental experiences is low.

6. Conclusions

In this paper, we addressed the problem of continual learning with generative

replay, focusing on the obstacles of generative replay in complex scenarios. Our

experience confirms that incrementally training a generator over a long number460

of experiences with high dimensional data is a very challenging problem and

remains an open issue. Therefore, instead of trying to design a better generative

model, we focused on classifier training. We found that even inaccurate replay

data can be useful to contrast the learning in isolation problem, especially in

scenarios where only a limited number of classes is present in each experience.465

We called this approach negative replay since the replay data is used as negative

examples when the model is trained with data from the current experience. We

validated negative replay using complex continual learning scenarios, with high

dimensional data and hundreds of incremental experiences. The results show that

using negative replay largely improves classification performances w.r.t. using470

the generated data in a traditional fashion. We also investigated the impact of

generated data quality, by considering the two extremes of using original data

and random data for negative replay, and, surprisingly, we found that negative

replay is effective even using random replay data.

Preliminary experiments have also been reported to show that negative replay475

can be easily applied to other continual learning strategies (besides AR1), and we

believe that many other CL approaches may benefit from our proposal, especially

when complex scenarios are addressed. Moreover, negative replay could be used

in different scenarios, such as the pre-training phase of large models in order to

make them more robust to noise or degraded data, to improve robustness against480

adversarial examples, or to address open set classification problems. Finally, our
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replay experiments have been carried out by generating data in the latent space;

in fact, as pointed out by many researchers this brings several advantages on

complex high-dimensional problems (Hayes & Kanan, 2020; van de Ven et al.,

2020; Pellegrini et al., 2020; Thandiackal et al., 2021); however, the evaluation485

of data quality in the latent space is more complex and further work will be

necessary to better investigate the relationship between negative/positive replay

and sample quality.

As a concluding remark, it is worth noting that dealing with imprecise replay

data can be viewed as a biological feature since human’s memory is far from490

being accurate, but is thought to be essential to consolidate learning (van de Ven

et al., 2020), therefore investigating the role of negative replay-like mechanisms

in biological learning could be an interesting research direction for computer and

neuro-scientists.
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Appendix A. Details of the generative model implementation

We designed our generative model using different insights from previous works

in the fields, bringing together different ideas and proposals. We extensively

tested the generative model alone to find the better combination of building675

blocks that yield the best performance. Our design choices have been also

influenced by the computation complexity since we aim to develop a (near)

real-time system. This is a particularly hard constraint since many incremental

generative replay methods are based on generative adversarial networks (GANs)

(Goodfellow et al., 2014), which notably have long training phases and often680

suffer from instabilities due to the adversarial nature of the training procedure.

As discussed in the main text, we took inspiration from some state-of-the-

art methods, trying to combine promising techniques and ideas from different

sources. Taking inspiration from van de Ven et al. (2020) we use a Variational

Autoencoder (VAE) model (Kingma & Welling, 2014), but unlike van de Ven685

et al. (2020) we opted for a conditional VAE (cVAE) configuration (Sohn et al.,

2015). So, while in van de Ven et al. (2020) a mixture of Gaussian is used to

sample latent vectors and soft labels are provided to the classifier itself, in our

approach the latent vector is sampled from the normal distribution N (0, 1) and

conditioned to the desired class. This results in a faster and less complicated690

sampling of a replay pattern. Moreover, as in van de Ven et al. (2020) we

partially blend the encoder part of the generative model with the classifier model:

both the networks share the same feature extractor fϕ. For the classifier, this

branch is connected with the classification head cψ, while, for the generator,

it is connected with some other layers that transform the feature into a latent695

vector z. The bifurcation is located in the latent replay layer. The resulting

on-the-loop training of the generative model is consistent with brain structures
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Figure A.6: A visual schema of the generative model training. Losses are represented by

dashed arrows. The shared branch of the classifier and the encoder are depicted using the

same color (yellow). The encoder and the classifier’s additional layers are drawn in red and

blue respectively.

and neuroscience’s findings (van de Ven et al., 2020).

Since we use a cVAE, the objective for the generative model can be expressed

as:

γ∗, ξ∗ = argmin
γ,ξ

[−Ez∼qγ(z|xk
i )
[log pξ(z|yki )] +DKL(qγ(z|xki )||p(z))], (A.1)

where (xki , y
k
i ) are the data point and the label of the i-th pattern of the k-

th experience, and the DKL term represents the Kullback-Leibler divergence700

between the latent space distribution and the target distribution p(z) = N (0, 1).

The two terms of Equation A.1 determine two losses:

Lrecon = ∥xki − pξ(qγ(xki ))∥22 (A.2)

LKL = DKL(qγ(x
k
i )||N (0, 1)) (A.3)

We also add another loss term, denoted as classification loss, which is similar

to the classifier loss adopted in the AC-GAN model (Odena et al., 2017). The

rationale is to guide the generative model to produce data that are not only
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visually similar to the original ones (L2 loss) but that is also classified by the

current classifier in the same way. Hence, we use fΘ as “auxiliary” classifier,

adding the following term to the generator’s loss:

Lclass = − log fΘ(y
k
i |pξ(qγ(xki )|yki )), (A.4)

which represents a typical negative log-likelihood classification loss. Note that

the parameters Θ of the classifier are not trained in this phase, since only the

generative model is updated. Overall, the generative model is trained using the

following loss function:

LGM = Lrecon + βLKL + ηLclass, (A.5)

where β is a hyper-parameter inspired to the β-VAE framework (Higgins et al.,

2017), and η is a hyper-parameters that weights the importance of the classifica-

tion loss.

A visual representation of generative model training is shown in Figure A.6.705

To keep notation light, in the equations above the replay memory is not

used, but it is trivial to include patterns from the replay memory, since there is

no distinction in the generative model training procedure between current and

replay data.

Note that the utilization of raw images is not mandatory for the method, and710

any intermediate (or latent representation) can be used, making our proposal

compatible with latent replay methods (Pellegrini et al., 2020; van de Ven et al.,

2020). In fact, in the case of latent replay, the data points xki in the above

equations can be simply substituted with fϕ′(xki ), where fϕ′ is the set of feature

extraction layers before the latent replay layer.715

The blending of a part of the generative model into the classifier poses some

difficulties in the training, especially regarding the balancing of the two models

and how to train each of them without destructive inference on the other. After

some initial experiments, we opted for blocking model parameters when the other

model is trained. Detailed pseudo-code for the proposed negative generative720

replay strategy is provided in Algorithm 2.

33



Algorithm 2 Generative negative replay

1: fΘ ← RandInit or PreTrained

2: gΩ ← RandInit or PreTrained

3: Mx ← ∅, My ← ∅

4: R = memory size

5: for each k from 1 tp NE do

6: if k > 1 then

7: Sample {z1, ..., zR} ∼ N (0, 1)

8: Sample {c1, ..., cR} ∼
⋃k−1
t=1 Yt

9: Block generator parameters (γ, ξ)

10: PopulateMx
k = pξ(zj |cj)), j = {1, ..., R}

11: PopulateMy
k = {c1, ..., cR}

12: end if

13: # classifier training

14: ψ′ = ψ

15: Block generator parameters (γ, ξ)

16: Unlock classifier parameters (ϕ, ψ)

17: ϕ∗, ψ∗ = Optimize(fΘ,Xk ∪Mx
k,Yk ∪M

y
k) using Equation 7

18: WeightConsolidation(ψ,ψ′,Yk,My
k) (see Algorithm 1)

19: # generator training

20: Block classifier parameters (ϕ, ψ)

21: Unlock generator parameters (γ, ξ)

22: γ∗, ξ∗ = Optimize(gΩ,Xk ∪Mx
k,Yk ∪M

y
k) using Equation A.5

23: end for

Appendix B. Validation of AR1 on ImageNet-1000

To validate the chosen AR1 algorithm we performed a test on a competitive

benchmark on ImageNet-1000, following the NC benchmark proposed by Masana

et al. (2022), which is composed of 25 experiences, each of them containing 40725

classes. The benchmark is particularly challenging due to a large number of
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classes (1,000), the incremental nature of the task (with 25 experiences), and

the data dimensionality of 224× 224 (as with ImageNet protocol).

With this experiment we want to assess the performance of AR1 in a complex

continual learning scenario, validating the choice of AR1 as the main algorithm730

on which the majority of tests on negative replay are conducted. In this experi-

ment, we tested AR1 against both regularization-based methods (Dhar et al.,

2019; Kirkpatrick et al., 2017; Li & Hoiem, 2016) and replay-based approaches

(Belouadah & Popescu, 2019; Castro et al., 2018; Chaudhry et al., 2018; Hou

et al., 2019; Rebuffi et al., 2017; Wu et al., 2019). We use the same classifier735

(ResNet-18 (He et al., 2016)) and the same memory size for all the tested meth-

ods (20,000 patterns, 20 per class); for the regularization-based approaches, the

replay is added as an additional mechanism.

For AR1, we trained the model with an SGD optimizer. For the first

experience, we used an aggressive learning rate of 0.1 with momentum 0.9 and740

weight decay of 10−4. We multiply the initial learning rate by 0.1 every 15 epochs.

We trained the model for a total of 45 epochs, using a batch size of 128. For all

the subsequent experiences we used SGD with a learning rate of 5 · 10−3 for the

feature extractor’s parameters ϕ and 5 · 10−2 for the classifier’s parameters ψ.

We trained the model for 32 epochs for each experience, employing a learning745

rate scheduler that decreases the learning rate as the number of experiences

progresses. This was done to protect old knowledge against new knowledge when

the former is more abundant than the latter. As in the first experience, the

batch size was set to 128, composed of 92 patterns from the current experience

and 36 randomly sampled (without replacement) from the replay memory.750

The results are shown in Table B.3. Replay-based methods exhibit the

best performance, with iCaRL and BiC exceeding a final accuracy of 30%. AR1

outperforms all the baselines (33.1%), demonstrating the validity of this approach

also in difficult continual learning benchmarks. However, considering that top-1

ImageNet accuracy for a ResNet-18, when trained on the entire dataset, is755
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Method Final Accuracy

Fine Tuning (Naive) 27.4

EWC-E (Kirkpatrick et al., 2017) 28.4

RWalk (Chaudhry et al., 2018) 24.9

LwM (Dhar et al., 2019) 17.7

LwF (Li & Hoiem, 2016) 19.8

iCaRL (Rebuffi et al., 2017) 30.2

EEIL (Castro et al., 2018) 25.1

LUCIR (Hou et al., 2019) 20.1

IL2M (Belouadah & Popescu, 2019) 29.7

BiC (Wu et al., 2019) 32.4

AR1 (Maltoni & Lomonaco, 2019) 33.1

Table B.3: Final accuracy on ImageNet-1000 following the benchmark of Masana et al. (2022)

with 25 experiences composed of 40 classes each. For each method, a replay memory of 20,000

patterns is used (20 per class at the end of training). Results for other methods reported

from Masana et al. (2022).

69.76%2, even for the best methods the accuracy gap in the continual learning

setup is very large. This suggests that continual learning, especially in complex

scenarios with a large number of classes and high dimensional data, is far to be

solved, and further research should be devoted to this field.

2Accuracy taken from the torchvision official page.
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Appendix C. Classifier hyper-parameters760

Appendix C.1. CORe50 NC

Hyper-parameter Value

Common

optimizer SGD

momentum 0.9

weight decay 10−4

minibatch size 128

SI (Synaptic Intelligence) λ 8 · 105

SI Fisher matrix clip value 10−3

SI Fisher matrix multiplier 10−6

1st experience

nr. epochs 4

lr ϕ (feature extractor) 3 · 10−4

lr ψ (classification head) 3 · 10−4

Following experiences

nr. epochs 4

lr ϕ (feature extractor) 3 · 10−4

lr ψ (classification head) 3 · 10−4

Table C.4: Hyper-parameters of the model trained with no replay using the AR1 algorithm.

Common hyper-parameters are the same for each experience, 1st experience hyper-parameters

are used in the first experience, the following experience hyper-parameters are used in all the

following experiences.
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Hyper-parameter Value

Common

optimizer SGD

momentum 0.9

weight decay 10−4

minibatch size 128

SI (Synaptic Intelligence) disabled

1st experience

nr. epochs 4

lr ϕ (feature extractor) 3 · 10−2

lr ψ (classification head) 3 · 10−2

Following experiences

nr. epochs 4

lr ϕ (feature extractor) 5 · 10−5

lr ψ (classification head) 5 · 10−4

memory size 1,500

replay pattern in the minibatch 14

latent replay layer conv5 4

Table C.5: Hyper-parameters of the model trained with replay (generative replay, random

data, and real data), using the AR1 algorithm. Common hyper-parameters are the same for

each experience, 1st experience hyper-parameters are used in the first experience, the following

experience hyper-parameters are used in all the following experiences.

38



Hyper-parameter Value

Common

optimizer SGD

momentum 0.9

weight decay 10−4

minibatch size 128

1st experience
nr. epochs 4

learning rate 10−3

Following experiences
nr. epochs 4

learning rate 3 · 10−4

Table C.6: Hyper-parameters of the model trained with no replay, using the ER algorithm.

Common hyper-parameters are the same for each experience, 1st experience hyper-parameters

are used in the first experience, the following experience hyper-parameters are used in all the

following experiences.
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Hyper-parameter Value

Common

optimizer SGD

momentum 0.9

weight decay 10−4

minibatch size 128

1st experience
nr. epochs 4

learning rate 10−3

Following experiences

nr. epochs 4

learning rate 3 · 10−4

memory size 1,500

replay pattern in the minibatch 14

latent replay layer conv5 4

Table C.7: Hyper-parameters of the model trained with replay (generated and real data),

using the ER algorithm. Common hyper-parameters are the same for each experience,

1st experience hyper-parameters are used in the first experience, the following experience

hyper-parameters are used in all the following experiences.

Hyper-parameter Value

optimizer SGD

momentum 0.9

weight decay 10−4

minibatch size 128

LwF α 0.1

temperature 2

nr. epochs 4

learning rate 3 · 10−4

Table C.8: Hyper-parameters of the model trained with no replay, using the LwF algorithm.
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Hyper-parameter Value

Common

optimizer SGD

momentum 0.9

weight decay 10−4

minibatch size 128

LwF α 0.1

temperature 2

1st experience
nr. epochs 4

learning rate 10−3

Following experiences

nr. epochs 4

learning rate 3 · 10−4

memory size 1,500

replay pattern in the minibatch 14

latent replay layer conv5 4

Table C.9: Hyper-parameters of the model trained with replay (generated and real data),

using the LwF algorithm. Common hyper-parameters are the same for each experience,

1st experience hyper-parameters are used in the first experience, the following experience

hyper-parameters are used in all the following experiences.
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Appendix C.2. ImageNet-1000 NC

Hyper-parameter Value

Common

optimizer SGD

momentum 0.9

weight decay 10−4

minibatch size 128

SI (Synaptic Intelligence) disabled

1st experience

nr. epochs 45

lr ϕ (feature extractor) 10−1

lr ψ (classification head) 10−1

lr scheduler lr · 0.1 every 15 epochs

Following experiences

nr. epochs 32

lr ϕ (feature extractor) 5 · 10−3

lr ψ (classification head) 5 · 10−2

lr scheduler see Equation C.1

Table C.10: Hyper-parameters of the model trained with no replay, using the AR1 algorithm.

Common hyper-parameters are the same for each experience, 1st experience hyper-parameters

are used in the first experience, the following experience hyper-parameters are used in all the

following experiences.
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Hyper-parameter Value

Common

optimizer SGD

momentum 0.9

weight decay 10−4

minibatch size 128

SI (Synaptic Intelligence) disabled

1st experience

nr. epochs 45

lr ϕ (feature extractor) 10−1

lr ψ (classification head) 10−1

lr scheduler lr · 0.1 every 15 epochs

Following experiences

nr. epochs 32

lr ϕ (feature extractor) 5 · 10−3

lr ψ (classification head) 5 · 10−2

lr scheduler see Equation C.1

memory size 20,000

replay pattern in the minibatch 36

latent replay layer layer4 (4th resnet block)

Table C.11: Hyper-parameters of the model trained with replay (generative replay and real

data), using the AR1 algorithm. Common hyper-parameters are the same for each experience,

1st experience hyper-parameters are used in the first experience, the following experience

hyper-parameters are used in all the following experiences.

Due to the complexity of the ImageNet-1000 scenario, we found it useful to

use a learning rate scheduler that decreases the learning rate as the number of

experiences progresses. The scheduler can be formalized as:

lr = lrinit ·
(
− 0.9

1 + e−1.5i+8
+ 1

)
, (C.1)

where i indicates the index of the current experience.
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Appendix C.3. CORe50 NIC

Hyper-parameter Value

Common

optimizer SGD

momentum 0.9

weight decay 10−4

minibatch size 128

SI (Synaptic Intelligence) λ 2.3 · 106

SI Fisher matrix clip value 10−3

SI Fisher matrix multiplier 2 · 10−5

1st experience

nr. epochs 4

lr ϕ (feature extractor) 10−3

lr ψ (classification head) 10−3

Following experiences

nr. epochs 4

lr ϕ (feature extractor) 10−4

lr ψ (classification head) 10−3

Table C.12: Hyper-parameters of the model trained with no replay, using the AR1 algorithm.

Common hyper-parameters are the same for each experience, 1st experience hyper-parameters

are used in the first experience, the following experience hyper-parameters are used in all the

following experiences.
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Hyper-parameter Value

Common

optimizer SGD

momentum 0.9

weight decay 10−4

minibatch size 128

SI (Synaptic Intelligence) disabled

1st experience

nr. epochs 4

lr ϕ (feature extractor) 10−3

lr ψ (classification head) 10−3

Following experiences

nr. epochs 4

lr ϕ (feature extractor) 10−4

lr ψ (classification head) 10−3

memory size 300 (N/A for random data)

replay pattern in the minibatch 64 (21 for random data)

latent replay layer conv5 4

Table C.13: Hyper-parameters of the model trained with replay (generative replay, random

data, and real data), using the AR1 algorithm. Common hyper-parameters are the same for

each experience, 1st experience hyper-parameters are used in the first experience, the following

experience hyper-parameters are used in all the following experiences.

Appendix C.4. On the amount of replay data in the minibatch765

The amount of replay data included in each minibatch has a direct impact on

the performance of the continual learning strategy adopted. We observed that

the optimal value changes with the quality of the replay data and that a large

amount of degraded replay data in each minibatch may decrease disruptively

the performance of the model.770

We compared different original/replay proportions, finding that when using

real replay data, the model is not much sensitive to the amount of replay data in

the minibatch and different proportions work well: we empirically noticed a peak

of performance around a 50-50 split. Using generated (degraded) or random

45



data is quite different. We noticed that if the data used is highly degraded the775

maximum gain in performance is when 10-30% replay data are added. Exceeding

30% usually leads to a degradation of performance, and if the amount of replay

data is still higher (depending on the replay data quality) the accuracy of the

model can be lower than not using replay data.

Appendix D. Generative model hyper-parameters780

Appendix D.1. CORe50 NC

Hyper-parameter Value

Common

optimizer Adam

betas 0.9 - 0.999

weight decay 0

minibatch size 128

latent space dim. 100

β 0.1

η 0.01

lr 2 · 10−3

lr scheduler None

nr. epochs 4

Following experiences replay patterns in the minibatch 27

Table D.14: Hyper-parameters of the generative model trained on CORe50 NC. Common

hyper-parameters are the same for each experience, while following experience hyper-parameters

are used in all the experiences except the first one.

46



Appendix D.2. ImageNet-1000 NC

Hyper-parameter Value

Common

optimizer SGD

momentum 0

weight decay 0

minibatch size 128

latent space dim. 100

β 0.25

η 0.01

lr 1

lr scheduler see Equation C.1

nr. epochs 32

Following experiences replay patterns in the minibatch 36

Table D.15: Hyper-parameters of the generative model trained on ImageNet-1000 NC. Common

hyper-parameters are the same for each experience, while following experience hyper-parameters

are used in all the experiences except the first one.
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Appendix D.3. CORe50 NIC

Hyper-parameter Value

Common

optimizer Adam

betas 0.9 - 0.999

weight decay 0

minibatch size 128

latent space dim. 100

β 0.1

η 0.01

lr 2 · 10−3

lr scheduler None

nr. epochs 4

Following experiences replay patterns in the minibatch 64

Table D.16: Hyper-parameters of the generative model trained on CORe50 NIC. Common

hyper-parameters are the same for each experience, while following experience hyper-parameters

are used in all the experiences except the first one.

Appendix E. Additional plots
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Figure E.7: Overall accuracy on the CORe50 NC scenario, using a growing test set. After each

experience, the model was evaluated using a test composed of only data belonging to the classes

seen so far, similar to the benchmark proposed by Masana et al. (2020). Every experiment is

averaged over 3 runs, with different seeds and class order. The standard deviation is reported

in light colors. Better viewed if zoomed on a computer monitor.
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Figure E.8: Overall accuracy on the CORe50 NC scenario for all the experiments performed in

this work (included random data and negative replay with original data). After each experience,

the model was evaluated using the cumulative test set as proposed by Lomonaco & Maltoni

(2017). Every experiment is averaged over 3 runs, with different seeds and class order. The

standard deviation is reported in light colors. better viewed if zoomed on a computer monitor.
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Figure E.9: Overall accuracy on the ImageNet-1000 NC scenario for all the experiments

performed in this work (included random data and negative replay with original data). After

each experience, the model was evaluated using the whole test set as proposed by Masana et al.

(2022). Every experiment is averaged over 3 runs, with different seeds and class order. The

standard deviation is reported in light colors. better viewed if zoomed on a computer monitor.
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Figure E.10: Overall accuracy on the CORe50 NIC scenario for all the experiments performed

in this work (included random data and negative replay with original data). After each

experience, the model was evaluated using the cumulative test set as proposed by Lomonaco &

Maltoni (2017). Every experiment is averaged over 3 runs, with different seeds and class order.

The standard deviation is reported in light colors. better viewed if zoomed on a computer

monitor.
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