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Abstract—Strongly quantized fixed-point arithmetic is con-
sidered the key direction to enable the inference of CNNs
on low-power, resource-constrained edge devices. However, the
deployment of highly quantized Neural Networks at the extreme
edge of IoT, on fully programmable MCUs, is currently limited
by the lack of support, at the Instruction Set Architecture (ISA)
level, for sub-byte fixed-point data types, making it necessary
to add numerous instructions for packing and unpacking data
when running low-bitwidth (i.e. 2- and 4-bit) QNN kernels,
creating a bottleneck for performance and energy efficiency of
QNN inference. In this work we present a set of extensions
to the RISC-V ISA, aimed at boosting the energy efficiency
of low-bitwidth QNNs on low-power microcontroller-class cores.
The microarchitecture supporting the new extensions is built
on top of a RISC-V core featuring instruction set extensions
targeting energy-efficient digital signal processing. To evaluate
the extensions, we integrated the core into a full microcontroller
system, synthesized and placed&routed in 22nm FDX technology.
QNN convolution kernels, implemented on the new core, run 5.3×
and 8.9× faster when considering 4- and 2-bit data operands
respectively, compared to the baseline processor only supporting
8-bit SIMD instructions. With a peak of 279 GMAC/s/W, the
proposed solution achieves 9× better energy efficiency compared
to the baseline and two orders of magnitudes better energy
efficiency compared to state-of-the-art microcontrollers.

I. INTRODUCTION

An increasing number of Internet-of-Things (IoT) applica-
tions in several fields such as agriculture, health monitoring,
surveillance, structural monitoring require to acquire data
from low-power sensors, process the data, and transmit it
wirelessly after extensive processing, recognition, or classifi-
cation. Machine Learning (ML) algorithms, including state-
of-the-art Deep Learning (DL), provide effective solutions
for data processing on the end-nodes of the IoT thanks to
their capability to “squeeze” raw sensor data in a much more
semantically dense format (e.g., classes or extracted high-
level features/symbols). Recently, there has been significant
interest in deploying DL functionality on top of embedded
microcontrollers (MCUs), which are the standard compute
platform chosen to build extreme-edge nodes thanks to their
flexible software programmability, low-cost and low-power.

This effort has to run against the severe limitations that
these platforms present in terms of computing capabilities and
memory footprint, which may prevent meeting latency and
accuracy requirements of the target DL-enhanced applications.
A recently introduced algorithmic technique to reduce both the
computational cost and the memory footprint of Deep Neural
Networks (DNNs) is quantization, i.e., the representation of
network weights and activations with 8-bit or smaller data
types, incurring a reduced or even negligible accuracy penalty
[6], [10], [11]. The authors of [11] show that coupling per-
layer quantization techniques with integer thresholding based
quantization, a 4-bit MobileNetV1 achieves an accuracy loss

TABLE I
OVERVIEW OF QNN EMBEDDED COMPUTING PLATFORMS AND MAIN

METRICS

Throughput Energy Power Flexibility
Efficiency Budget

[Gop/s] [Gop/s/W] [mW]
ASICs [2], [9] 1K - 50K 10K - 100K 1 - 1K Low

FPGAs [8] 10 - 200 1 - 10 1 - 1K Medium
MCUs [3] 0.1 - 2 1 - 50 1 - 1K High
This Work 1 - 5 80 - 550 1 - 100 High

of only 4% on Top1 accuracy with respect to the fully fixed-
point precision, reducing the memory footprint by 7×. Thanks
to these properties, Quantized Neural Networks (QNNs) are
a natural target for execution on constrained MCU-based
platforms. Efforts in this direction include the CMSIS-NN
library [7] proposed by ARM for 16-bit and 8-bit QNNs on
Cortex-M microcontrollers; as well as PULP-NN, an open-
source library targeting RISC-V processors, and supporting
heavily quantized QNNs working on 8-bit, 4-bit, 2-bit, or 1-
bit data [3].

An inherent limitation of current-generation MCUs is that
their ISAs lack support for low-bitwidth Single Instruction
Multiple Data (SIMD) arithmetic instructions; typically, only
16-bit (e.g., ARMv7E-M) or 8-bit (e.g., RV32IMCXpulpv2
[4]) are supported. This means that in these platforms quanti-
zation is effective as a memory compression technique [11] but
not as a way to save time and energy in computation; rather,
it leads to non-negligible overhead [3], [12] as low-precision
data have to be unpacked and extended to data types natively
supported by the underlying hardware. In this work, we attack
this limitation by proposing an instruction set extension to the
RISC-V ISA targeting specifically the requirements of QNN
inference, with support for low-bitwidth operations (8-bit,
4-bit, 2-bit). The approach we propose enables the execution
of low-memory footprint and high-energy efficient (up to 550
Gop/s/W) QNN at the edge of the IoT, in a full software-
programmable environment.

The main contributions of this paper are the following:

• We define an ISA extension to the RISC-V ISA tar-
geting software programmable QNN inference, namely
XpulpNN, implementing low-bitwidth SIMD arithmetic
instructions, and other domain-specific instructions to
boost the performance of the quantization process [6];

• We integrate the proposed extensions on the register
transfer level (RTL) description and the GCC toolchain
of an open-source RISC-V processor (RI5CY [4]) fea-
turing extensions targeting energy-efficient digital signal
processing;

• We implement (i.e., full layout) a full microcontroller
system (based on the open-source PULPissimo [13])
integrating the proposed processor in a commercial 22nm
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Fig. 1. Baseline and extended RI5CY pipeline.

FDX technology, to evaluate its overheads with respect
to the baseline RI5CY processor. The results show that
the extended processor features 11.1% area overhead,
5.9% power overhead, and negligible timing overhead
compared to the original one;

• We compare the extended processor with state-of-the-art
architectures and software, by running quantized convo-
lutional layers on both commercial architecture and the
baseline RI5CY core, outperforming by up to 19.3× in
performance and by up to 354× in energy efficiency
existing systems leveraging ARMv7E-M and XpulpV2
ISAs.

To put our results into perspective, Table I provides a sum-
mary of embedded computing platforms for QNNs targeting
an operating power below 1W with our proposed work.
ASICs [1], [2], [9] can achieve up to a few Top/s/W, at
the cost of inflexible execution models, and high cost for
devices that have to be cheap to be economically feasible
at the extreme edge of the IoT. On the other hand, edge-
targeted FPGA platform such as Lattice SenseAI [8] can be
reconfigured using hardware design languages or high-level
synthesis. The productivity of using these solutions is not
as high as that of embedded MCU programming, but they
anyways guarantee higher flexibility than ASICs. However,
FPGAs are much less efficient than ASICs, with typical figures
[5] ranging between 1 and 10 Gop/s/W. Finally, current-
generation commercial MCUs are not fast enough to target
complex DNNs, and, as previously discussed, they cannot
scale up their performance with quantization. Therefore, the
order-of-magnitude improvements that we achieve compared
to the state-of-the-art on MCUs demonstrate for the first time
that software programmable edge inference of QNN models at
ASICs-like efficiency is indeed possible on MCUs by mixing
architectural and micro-architectural design with leading-edge
near-threshold FD-SOI technology.

II. BACKGROUND

1) RI5CY core: The RI5CY core, which we extend to
support the proposed ISA extensions, is a 4 stage in-order
single-issue pipeline, supporting the RV32IMC instruction
set, plus extensions targeting energy-efficient digital signal
processing (XpulpV2) [4]. The XpulpV2 extensions include
hardware loops, auto-incrementing load/store operations, bit
manipulation instructions, fixed-point and 8-bit and 16-bit
packed single-instruction-multiple-data (SIMD) operations.
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Fig. 2. Binary tree implementation of the staircase compression function for
4-bit operands and iterative construction of the result.

2) QNN Execution Model: The execution model we rely
on for QNN inference on MCUs is the one proposed by ARM
[7] and also adopted in [3] for RISC-V processors. Efficient
execution of the convolution on MCUs requires two phases:
the im2col step arranges the 3D input features of the current
convolution into a 1D vector, while the dot product step is
implemented as a Matrix Multiplication (MatMul) [7]. The
MatMul kernel fetches from memory the weights from two
consecutive filters and the input activations from two different
im2col buffers. The reuse of the loaded buffers enables the
computation of two activation outputs related to two consec-
utive channels in the same inner loop of the MatMul. While
for 8-bit operands scaling and clamp operations are used for
compression, to compress back the higher-precision result (16-
bit) from the MatMul into 4- or 2-bits, an effective procedure
consists of using a thresholding-based compression, described
as a staircase function [6], [11]. This operation compares
an input with a set of offline thresholds, which absorb bias
and batch normalization, and the result determines the output
quantized value. The optimal algorithm to implement the
staircase function makes use of a balanced binary tree where a
16-bit comparison takes place at every node. The complexity
of the algorithm is O(n), where n is the number of bits in the
result. Figure 2 depicts the 4-bit case, and we also show how it
is possible to compute the output bits incrementally based on
the result of the comparisons. Each convolution layer requires
2Q−1 threshold values per channel to produce a Q-bit output.
Starting from the binary-tree algorithm, we have designed a
dedicated ISA instruction to speed up the compression phase.

III. RISC-V ISA EXTENSIONS

A. XpulpNN ISA Extension

The RISC-V ISA that we use as a baseline already supports
an extension (XpulpV2) providing 8-bit and 16-bit SIMD in-
structions in three addressing variations: the first variation uses
two registers (pv.instr.{b,h}), the second uses an immediate
value (pv.instr.sci.{b,h}), and the third replicates the scalar
value in a register as the second operand for the vectorial
operation (pv.instr.sc.{b,h}).

The proposed XpulpNN instructions extend the
RV32IMCXpulpV2 ISA with SIMD operations for 4-bit
and 2-bit operands, namely nibble (indicated with n) and
crumb (indicated as c) respectively, to accelerate the low-
bitwidth QNN kernels. Because of the limited room available
in the encoding space of RV32IMCXpulpV2 ISA, we can
not address all the addressing variations mentioned above for
sub-byte vector types. Consequently, we have selected only
two formats, leaving aside the one which uses an immediate



TABLE II
OVERVIEW OF XpulpNN INSTRUCTIONS FOR nibble (4-BIT) VECOTR

OPERANDS. THE DESCRIPTION CAN BE EXTENDED TO crumb (2-BIT). i IN

THE TABLE REFERS TO THE INDEX IN THE VECTOR OPERAND, I.E.
i ∈ [0; 7] IN THE nibble CASE.

ALU SIMD Op. Description for nibble

pv.add[.sc].{n, c} rD[i] = rs1[i] + rs2[i]
pv.sub[.sc].{n, c} rD[i] = rs1[i] - rs2[i]
pv.avg(u)[.sc].{n, c} rD[i] = (rs1[i] + rs2[i])>>1
Vector Comparison Op.
pv.max(u)[.sc].{n, c} rD[i] = rs1[i] > rs2[i] ? rs1[i] : rs2[i]
pv.min(u)[.sc].{n, c} rD[i] = rs1[i] < rs2[i] ? rs1[i] : rs2[i]
Vector Shift Op.
pv.srl[.sc].{n, c} rD[i] = rs1[i] >> rs2[i] Shift is logical
pv.sra[.sc].{n, c} rD[i] = rs1[i] >> rs2[i] Shift is arithmetic
pv.sll[.sc].{n, c} rD[i] = rs1[i] << rs2[i]
Vector abs Op.
pv.abs.{n, c} rD[i] = rs1[i] < 0 ? -rs1[i] : rs1[i]
Dot Product Op.
pv.dotup[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7]
pv.dotusp[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7]
pv.dotsp[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7]
pv.sdotup[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7] + rD
pv.sdotusp[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7] + rD
pv.sdotsp[.sc].{n, c} rD = rs1[0]*rs2[0] + ... + rs1[7]*rs2[7] + rD
Quantization Op.
pv.qnt.{n, c} see Section III-B2

value (i.e., pv.instr.sci.{n,c}). We argue that such a choice is
not a concern for QNN applications, as immediate values can
be preventively stored in a register, without the addition of
significant overhead to the execution.

The core of the XpulpNN extensions consists of dot product
operations, performed in a SIMD-like manner on packed
vectors of 4- or 2-bit elements. We support different variants
which are commonly used in QNN inference, providing differ-
ent interpretations of the input registers; the dotp instruction
can be executed interpreting one of both operands as signed
or unsigned vectors. The same idea also applies to the third
input register (scalar) of the sum of dot product instruc-
tions. Moreover, we support SIMD maximum, minimum,
and average instructions, which are useful to speed up the
average/maximum pooling QNN layers, as well as the ReLu
activation function.

As the QNN MatMul kernel generates higher-bitwidth re-
sults (16-bit for sub-byte kernels), a quantization step is needed
to bring back the value into the target bitwidth. Adopting
the QNN execution model presented in Section II-2, this step
requires a staircase function which compares the intermediate
output with pre-trained thresholds to obtain the quantized
activation. Its implementation through a balanced binary tree
is valuable from an algorithmic point of view, but it is still
inefficient when executed on a tiny microcontroller. Many
cycles would be wasted due to the high number of branch
instructions that occur at each node of the tree, where the
comparison takes place, and their negative impact on the
overall performance of convolution or linear layers becomes
not negligible. To highly speed up this phase, we design
a multicycle instruction, namely pv.qnt.{n,c}, which handles
the quantization process in hardware. This instruction takes
as input two 32-bit registers, the first storing two 16-bit
activations and the second the entry address of the binary tree
(the address for the second activation derives from the first
one, as explained in Section III-B2); as output, it computes
two quantized activations in parallel, which are subsequently
stored into a single 32-bit register. The instruction latency
is only 9 cycles in the 4-bit case, favorably comparing to
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Fig. 3. Simplified block diagram of the Dot-Product Unit, including the two
groups of multipliers added to support nibble and crumb operations, as well
as the clock gating design to reduce the operand switching activity.

the 18 clock cycles needed on average to compress only
one activation if implementing the binary tree in software. A
detailed description of the instruction, as well as the hardware
design to enable it, is provided in Section III-B2. To comply
with RV32IMCXpulpV2 ISA, we also extend the support for
nibble and crumb to ALU SIMD instructions and shifting
operations.

B. Microarchitecture

In this subsection, we detail the microarchitectural design
to support the ISA extensions presented above.

1) Dot-Product Unit: The baseline dot-product (dotp) unit
available in the RI5CY core consists of two sets of multipliers,
supporting 16- and 8-bit vector operands [4]. We extend the
architecture, reported in Figure 3, to support also 2- and 4-
bit vector operands. The proposed multipliers compute the
dotp between two vectors, each containing either eight 4-bit
or sixteen 2-bit elements, and accumulate the result in a 32-
bit register through an adder tree, in one clock cycle. The
MAC equivalent is the sum-of-dot-product (sdotp) operation,
implemented with an additional 32-bit accumulation input at
the adder tree. Both these operations are supported interpreting
the operands as signed or unsigned, or the first signed and the
second unsigned. To perform signed and unsigned multiplica-
tions, the 4- or 2-bit inputs are sign or zero extended; therefore,
each element is a 5- or 2-bit operand, as shown in Figure 3.

The design of the extended dot-product unit aims at min-
imizing the impact of its longest path, making it shorter or
equal to the critical path of the overall system; in our case,
this is the path from the processor core to the memories and
vice versa. The 4- and 2-bit vector dotp operations are near to
be timing critical since the amount of logic required to sum up
the partial products is higher than the 8-bit and 16-bit cases.
For this reason, sharing the multiplication resources among
the different bitwidth “regions“ would be detrimental from
a timing point of view, as the additional circuitry to select,
split and distribute the operands and to enable the selected
bitwidth SIMD operation would increase the impact on the
overall operation speed. The main drawback of not sharing
resources is in terms of area since we replicate a set of different
bitwidth multipliers four times. However, some area could be
saved by sharing the adder trees of the four multipliers. Also
this solution, though, makes the unit slower, which is why
we design the extended dotp-unit by adding two additional
sets of multipliers, each equipped with a dedicated adder tree,
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as shown in Figure 3. To mitigate the effects of hardware
duplication on the power consumption of the core, we add a
set of registers on the inputs of each bitwidth region, and we
perform clock gating to avoid the switching of operands not
involved in current SIMD operation.

Despite the area overhead of 19.9% with respect to the start-
ing dotp-unit, this design choice avoids increasing the critical
path, avoiding to look at strategies that would consider pipeline
registers in between the multiplication and the accumulation
phases. Including a pipeline would result in additional stalls
when computing back-to-back dotp operations, resulting in a
considerable overhead for QNN workload, where most of the
computation consists of sdotp-based operations.

2) Quantization Unit: To provide the hardware support
for the pv.qnt instruction, we extend the ex-stage of the
RI5CY core with a dedicated hardware block, the quantization
unit, pictured in Figure 4. The unit quantizes higher-bitwidth
inputs (16-bit) into a crumb or nibble data type, through a
thresholding-based compression, described so far in Section
II-2. The hardware block consists of two regions, the first
compares the threshold with the input (green blocks in the
Figure) and the second, accordingly to the comparison result,
updates the address for the next memory access (blue blocks).
The quantized result is computed iteratively following the
algorithm introduced in Figure 2, by inserting a result bit in an
intermediate register and shifting it until the last comparison.

The critical path of the system is from the processor core
to memories and vice versa; this complicates the design of
the quantization unit since it has to fetch data from memory
at specific addresses. In the initial design, this unit receives
the value of two registers from the ID/EX pipeline, the
first containing the 16-bit operand to be quantized and the
second the entry point of the quantization thresholds. The two
regions are cascaded without any pipeline stage in the middle;
consequently, the two phases of the operation, including the
threshold comparison with input data and the address update
required to fetch the next threshold, occur in a combinatorial
manner. After an initialization cycle to fetch the first threshold,
a comparison takes place at each next step, and the address
of the next threshold is generated accordingly to the result;
the execution takes in total 5 cycles (3 cycles) on average (if
no memory stalls occur) to obtain the 4-bit (2-bit) quantized
result. Our analysis though, shows that this design increases
the critical path of the system by 90%.

To meet the timing requirements of the system, the two
blocks of the quantization unit must be pipelined, interleaving
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the comparison and the address update phases. The drawback
of a pipeline execution is that it increases the output latency
by almost a factor of two. However, by exploiting the 16-
bit bitwidth results of the matrix multiplication, we can pack
two 16-bit partial results into a single 32-bit register, passed
as input to the quantization unit, to perform the quantization
of two activations in an interleaved manner. To this purpose,
we double the hardware resources of the quantization unit,
and we split the datapath to host two half-word activations to
be quantized, as visible from Figure 4. As the thresholds are
stored in memory at consecutive addresses, we can compute
the address of the entry point of the quantization thresholds for
the second activation by adding a hard-wired fixed offset to the
first one, with no need of an additional source operand to the
pv.qnt instruction. Moreover, assuming the threshold vectors
aligned in memory without loss of generality, our exploration
shows that only 6-bits are needed to update the next memory
address from the previous one. This remark reduces the logic
in the address update block, furthermore saving timing and
power resources. For the same reasons, we perform operand
isolation on the comparator inputs, as depicted in Figure 4, to
avoid unnecessary switching activities for this block, which is
directly connected to the input of the Load Store Unit.

The pipeline execution is orchestrated by a 3-bit Finite State
Machine, sending proper control signals to each sub-unit to
interleave the comparison and the address update phases and to
handle the eventual memory stalls, rarely happening since the
quantization unit, when enabled, takes the whole control of the
execution, stalling the core pipeline until the quantized result
is ready. The only cause of memory stalls concerns misaligned
accesses to the memory. The proposed design allows us to keep
the critical path of the system unaltered and to compute two
4-bit (2-bit) quantized activations in 9 clock cycles (5 clock
cycles).

IV. RESULTS AND DISCUSSION

To perform power, performance and area evaluations, we
implement the original RI5CY core and the extended version
in a full open-source microcontroller system, namely PULPis-
simo, featuring a µDMA with a full set of peripherals and
512 kB of SRAM memory. Figure 5 provides an overview of
the PULPissimo architecture. We synthesize the two platforms
with Synopsys Design Compiler-2016.03, and we perform
complete place & route flow using Cadence Innovus-15.20.100
in a 22nm FDX technology using the worst-case corner (SS,
0.59 V, -40 ◦C / 125 ◦C). To compare the average power con-



TABLE III
AREA AND POWER CONSUMPTION.

Area [µm2] (Overhead vs. baseline [%])
RI5CY [4] Ext. RI5CY Ext. RI5CY

No Pow. Manag. Pow. Manag.
Total 19729.9 21424.9 (8.59%) 21912.8 (11.1%)
dotp-Unit 5708.9 6755.8 (18.3%) 6844.4 (19.9%)
ID Stage 6363.1 6530.2 (1%) 6677.8 (5%)
EX Stage 9500.9 11129.1 (17.1%) 11251.6 (18.4%)
LSU 518.0 610.8 (17.9%) 591.2 (14.1%)
Core Power Consumption on 8-bit MatMul at 0.75V, 250MHz [mW]
Leak. Power 0.023 0.032 0.031
Dyn. Power 1.13 1.38 1.19
Tot. Power 1.15 1.41 1.22
Overhead [%] – 22.5% 5.9%
PM Savings [%] – – 13.5%
PULPissimo SoC Total Power Consumption at 0.75V, 250MHz [mW]
8-bit MatMul 5.93 6.28 (5.8%) 6.04 (1.8%)
4-bit MatMul – 8.14 5.71
2-bit MatMul – 8.99 5.87
GP application 5.65 8.20 (45.2%) 5.85 (3.5%)

sumption, the performance and the energy efficiency, we im-
plement a set of convolution layers operating on a 16×16×32
input tensor with a filter size of 64×3×3×32, characterized
by different bitwidth (8-, 4-, 2-bits), extending the kernels
described in [3] with XpulpNN. As sub-byte data types are
not available in compilation toolchains, we have extended
the open-source GCC compiler targeting PULPissimo with
the machine description of the new instructions and a set of
related built-in functions, which provide an interface based on
integer values; this approach enables efficient use of the 32-bit
hardware registers while ensuring a higher optimization level
of the binary code compared to inline assembly.

A. Implementation Setup Results

The total area of the extended core is 0.022 mm2, with an
overhead of 11.1% with respect to the RI5CY core, due to the
extended dotp unit and the addition of the quantization unit in
the ex-stage of the core, while the PULPissimo SoC area is
0.998 mm2 with the new core.

To provide an accurate power consumption estimation of
the two PULPissimo SoC, implementing the RI5CY and the
extended core respectively, and to characterize the whole
system-level power consumption of both original 8-bit integer
sdotp operation and the new sub-byte (4- and 2-bit kernels)
instructions, we conduce post-place-&-route power simulation
in the typical corner (TT, 0.65 V, 25 ◦C). To this end, the
Value Change Dump (VCD) traces of the systems executing
the various instructions are generated with Mentor Modelsim
10.6c and passed to Synopsys Prime Time-2016.03 to extract
the power numbers. The core power estimation is performed at
250 MHz, running an 8-bit MatMul kernel on the RI5CY and
on the extended core. To assess the benefits of clock gating and
operand isolation design, the latter core is synthesized in two
versions, with and without the power management. As visible
in Table III, the extended core without power management
features a not negligible power overhead of 22.5%. Performing
operand isolation on critical operands highly reduces their
switching activity, achieving a total power consumption only
5.9% higher than the RI5CY baseline. The improvements
given by the power management are clearly visible also at the
system level, where a general-purpose application, consisting
of a mix of load/store, control and arithmetic operations, runs
in the same power envelope on the PULPissimo Soc imple-
menting the RI5CY core and the new one, not jeopardizing
the efficiency of the core on general-purpose benchmarks.

0

0,5

1

1,5

2

2,5

3

8-bit conv Xpulpnn 4-bit conv Xpulpnn

(no qnt unit)

4-bit conv Xpulpnn 2-bit conv Xpulpnn

(no qnt unit)

2-bit conv Xpulpnn

E
xe

cu
ti

o
n

cl
o

ck
 c

y
cl

e
s

[M
]

MATMUL QNT IM2COL IDEAL SCALING

21%
4%

23%
11%

1.85x 3.32x

1.21x

1.16x

Fig. 6. Linear scaling of sub-byte kernel performance with respect to 8-bit
one and impact of the pv.qnt.{n,c} on the 4- and 2-bit kernel execution cycles.

0

1

2

3

4

5

6

7

8

8-bit conv 4-bit conv 2-bit conv

E
X

E
C

U
T

IO
N

 L
A

T
E

N
C

Y
 [

C
LK

 C
Y

C
LE

S
]

RI5CY Extended RI5CY

0

50

100

150

200

250

300

8-bit conv 4-bit conv 2-bit conv

E
N

E
R

G
Y

 E
F

F
IC

IE
N

C
Y

 [
G

M
A

C
/s

/W
]

RI5CY Extended RI5CY

5.3x
8.9x

5.5x

9x

Fig. 7. Execution latency and energy efficiency of convolution kernels run
on RI5CY and the extended RI5CY cores.

B. Benchmarking

To evaluate the performance and the energy efficiency gain
of the proposed RISC-V ISA extensions, we benchmark the
proposed core on a set of different bitwidth convolution layers.
To justify the need of a dedicated instruction to speed up
the quantization phase (i.e., pv.qnt{n,c}), we implement two
variants of sub-byte convolution kernels, the first performing
the quantization in software, the second fully exploiting the
XpulpNN ISA extensions. The results of their execution on the
extended RI5CY core, in terms of clock cycles, are reported
in Figure 6. The adoption of the pv.qnt instruction reduces the
impact of quantization on the total number of execution cycles
down to 4% for 4-bit and 11% for 2-bit, overall reducing the
execution cycles of 4- and 2-bit kernels by 1.21× and 1.16×
with respect to the ones using a software quantization. The
results also highlight that, with the XpulpNN extensions, the
performance of sub-byte kernels scales almost linearly with
respect to the 8-bit kernel execution.

As a further evaluation we compare the execution of 8-, 4-,
and 2-bit convolution kernels, in terms of execution cycles, on
the RI5CY core, using the XpulpV2 ISA, and on the extended
one, implementing the XpulpNN extensions. To run the sub-
byte kernels on RI5CY, additional instructions to unpack and
pack the low-bitwidth operands must be included in the code
[3], as the lowest data type supported at ISA level with
SIMD instructions is 8-bit. Due to fully ISA support for
nibble and crumb SIMD operations, on the new core the sub-
byte kernels run 5.3× (4-bit convolution) and 8.9× (2-bit
convolution) faster than the ones implemented on RI5CY,
where the additional packing/unpacking functions introduce a
high overhead. Then, relying on the power estimations of the
two PULPissimo reported in Table III, we also compare our
core with the baseline in terms of energy efficiency. The results
in Figure 7 show that our proposed power-aware core design
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highly increases the energy efficiency of sub-byte kernels up
to 9× without reducing the efficiency for 8-bit QNN kernels.
These achievements demonstrate the effectiveness of extending
the ISA support to low-bitwidth operands to obtain high
performance and high energy efficiency on highly-quantized
QNN kernels. To compare with state-of-the-art architectures
and software, we run the sub-byte kernels on off-the-shelf
STM32H743 [14] and STM32L476 [15] commercial micro-
controllers based on ARM CORTEX-M7 and CORTEX-M4
cores respectively, using the extended CMSIS-NN [12] library.
Figure 8 shows the execution latency, in clock cycles, of 8-,
4- and 2-bit kernels running on our proposed core, RI5CY,
STM32L4 and STM32H7, while Figure 9 shows the energy
efficiency. In terms of performance, with the proposed ISA
extensions and the micro-architectural design to support them,
we improve the execution of sub-byte kernels by one order
of magnitude with respect to the execution on STM32L4
and STM32L7. Moreover, coupling the proposed power-aware
micro-architectural design with leading-edge near-threshold
FD-SOI technology, we achieve energy efficiency which is two
orders of magnitudes higher with respect to the state-of-the-art
microcontrollers, 103× and 354× better than STM32L4 and
STM32H7 respectively, on the 2-bit kernel.

V. CONCLUSION

In this work we have presented XpulpNN, a set of RISC-
V ISA extensions to accelerate low-precision QNN models
on embedded microcontrollers. The proposed ISA exten-
sions, which include SIMD operations for nibble and crumb
operands, as well as a dedicated instruction to speed up the
quantization process, have been integrated into the micro-
architecture of an open-source RISC-V core (RI5CY). To
evaluate the proposed extensions we have integrated the ex-
tended core into an open-source MCU platform (PULPissimo),
and synthesized and place&routed it into a commercial 22nm
FDX technology, at the operating frequency of 250 MHz and
the supply voltage of 0.65 V. We have shown that from a
physical implementation viewpoint, the extended core features
a negligible overhead in timing, an overhead of 11.1% in
area, an overhead of 5.9% in power (when executing an 8-bit
convolutional kernel), compared to the original baseline, due to
the additional hardware required to implement the instructions.
It should be noted that, at the system level, the proposed
extension features a power overhead of only 1.8% with respect
to the original RI5CY, not jeopardizing the general-purpose
nature of the extended core. On the other hand, providing a
speedup ranging from 5.3× and 8.9× for execution of QNN
convolutional layers, it boosts the energy efficiency of QNN
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Fig. 9. Energy efficiency comparison on different bitwidth convolution
kernels.

layers inference by 5.5× to 9× with respect to the baseline,
and by more than two orders of magnitude when compared
to commercial microcontrollers based on ARM architectures
such as STM32L4 and STM32H7, paving the way to software
programmable QNN inference at the edge of the IoT at ASIC-
like efficiency.
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