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Mixtures of Probit Regression Models with
Overlapping Clusters∗
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Abstract. Studies with binary outcomes on a heterogeneous population are quite
common. Typically, the heterogeneity is modelled through varying effect coeffi-
cients within some binary regression setting combined with a clustering proce-
dure. Most of the existing methods assign statistical units to distinct and non-
overlapping clusters. However, there are scenarios where units exhibit a more
complex organization and the clusters can be thought as partially overlapping. In
this case, the standard approach does not work. In this paper, we define a mixture
of regression models that allows overlapping clusters. This approach involves an
overlap function that maps the regression coefficients, either at the unit or re-
sponse level, of the parent clusters into the coefficients of the multiple allocation
clusters. In order to deal with this intrinsic heterogeneity, regression analyses have
to be stratified for different groups of observations or clusters. We present a com-
putationally efficient Monte Carlo Markov Chain (MCMC) scheme for the case of
a mixture of probit regressions. A simulation study shows the overall performance
of the method. We conclude with two illustrative examples of modelling voting
behavior, involving United States (US) Supreme Court justices over a number of
topics and members of the United Kingdom (UK) parliament over divisions related
to Brexit. These applications provide insights on the usefulness of the method in
real applications. The method described can be extended to the case of a generic
mixture of multivariate generalized linear models under overlapping clusters.

Keywords: heterogeneity, mixture models, overlapping clusters, Bayesian
inference, binary data, probit regression.

1 Introduction
Clustering approaches are popular in many fields as they allow to identify unknown
grouping structures from multivariate data. In a regression context, mixtures of Gen-
eralized Linear Models (GLMs) provide a natural model-based approach to account
for the heterogeneity in the data due to the presence of heterogeneous clusters. These
models have been developed extensively in the case of a single response variable, i.e.,
via a mixture of univariate GLMs (Grün and Leisch, 2008a). However, with the advent
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of complex multivariate data both at the level of predictors and responses, multivariate
regression models are now common in many fields (Fahrmeir and Tutz, 2013). Mixtures
of multivariate GLMs were introduced by Wedel and DeSarbo (1995) with an implemen-
tation provided in the R package FlexMix (Grün and Leisch, 2008b). Further extensions
to the high dimensional case have been studied recently by Price and Sherwood (2017)
using penalized inferential approaches.

In the traditional formulation of a mixture model, a unit can belong to one and
only one of the clusters, thus limiting the way we can build and discover more complex
grouping structures of the units. Some extensions to allow for overlapping clusters have
been proposed with respect to conventional mixtures of exponential family distributions
and mixtures of univariate regression models. In an early contribution, Blei et al. (2003)
defined overlapping clusters in term of a multivariate random variable whose univariate
components belong to a traditional mixture distribution. To define overlapping clus-
ters at a univariate level, Banerjee et al. (2005) and Fu and Banerjee (2008) proposed
overlapping components in the mixture that arise as a product of conjugate densities
from the exponential family. Heller and Ghahramani (2007) extended this approach in a
nonparametric Bayesian fashion to allow for the selection of the number of components
of the mixture, whereas Heller et al. (2008) provide a mixed membership model where
parameters of some clusters are computed as weighted averages of allocation probabili-
ties and parameters of the other clusters. Recently a further extension was provided in
Hou-Liu and Browne (2021), where the authors describe a finite mixture of Gaussian
distributions where parameters of overlapping or, in their terminology, chimeral clusters
are defined as convex combinations of some prototype original groups.

In all the contributions above, the way the multiple allocation is handled induces
a strict definition of the parameters of the resulting cluster, which are limited by the
mathematical derivation of the product of the densities or the nature of the allocation
vectors, and is implicit within the method. This hinders the flexibility of the model and
the interpretability of the related parameters. An alternative view to account for overlap
is that of re-parameterizing the model in such a way that parameters of the overlapping
clusters are linked explicitly to those of the originating clusters. This idea was explored
by Ranciati et al. (2017) in the context of univariate mixture models and by Ranciati
et al. (2020) in the specific context of two-mode network data. In these approaches, the
term overlap emphasizes the fact that the multiple membership or allocation vector of
a statistical unit affects its parameter value. There is no inherent concept of a mixed
membership. Indeed, once a choice is made about how the parameters of heir and parent
clusters are linked, something that we refer to later on as overlap function, the methods
perform a hard-clustering at the level of heir clusters, allowing for a unit to possibly
belong with certainty to one of the “overlapping” clusters.

Following this latter idea, the main contribution of this work is to develop a mixture
of regression models, that allows for the possibility of overlapping clusters and that
accounts for covariate information, both at the level of the units and at the level of
the responses. This was not considered by previous approaches and expands the appli-
cability of these approaches significantly. Crucially, the approach involves an overlap
function that maps the regression coefficients, either at the unit or response level, of
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the parent clusters into the coefficients of the multiple allocation clusters, providing ad-
ditional model parsimony and enhanced interpretability of the resulting clustering. We
will consider closely the case of multivariate binary data, motivated by two applications
on the modelling of voting behavior. In the first application, US Supreme Court justices
are clustered in two main classes and a joint allocation cluster, which determine their
voting behavior on a number of rulings in 7 main topics. In the second application,
members of the UK Parliament (MPs) are clustered in two clusters and an overlapping
cluster in terms of their voting behavior on a number of divisions related to Brexit,
considering covariates describing the MPs and the topic of the divisions. Our modelling
framework is able to identify in both cases two main clusters, mostly associated to po-
larized opinions due to political affiliations, and a third joint allocation cluster of so
called “swing votes”.

The remainder of the manuscript is structured as follows. Section 2 defines the
mixture of probit regression model and how it accounts for overlapping clusters, while
Section 3 discusses its Bayesian implementation, including cluster allocation and model
selection. Section 4 shows the computational and inferential performance of the proposed
method through a simulation study, whereas Section 5 and Section 6 illustrate the
method on the two different applications mentioned above. Finally, Section 7 is devoted
to some final remarks and potential extensions of the method to the generic case of
mixtures of multivariate generalized linear models under overlapping clusters.

2 Clustering under overlapping groups
In this Section, we describe a mixture of probit regression models that can accommodate
for overlapping clusters. We call our proposal miro, as in mixture of probit regression
models with overlap. The starting point is n multivariate binary observations measured
on a d-dimensional space spanned by j = 1, . . . , d columns (variables), so that each
response vector yi = (yi1, . . . , yid) corresponds to a row of the n×d data matrix Y . The
aim is to cluster these n observations based on their d variables, while accounting for
possible additional information (covariates), either at the level of the units i = 1, . . . , n
or of the variables j = 1, . . . , d. We look first at some motivating examples before
formalizing the approach.

2.1 Motivating examples
Examples of real world datasets falling in the modeling framework developed in this
paper are those that will be described in Section 5 and Section 6. In the first one,
the task is of clustering nine justices (n units) of the US Supreme Court according
to their votings (d variables), while considering the nature of the topic they voted on
(variable-specific covariate). While some degree of polarized agreement/disagreement
with the majority vote is expected in the results of the Supreme Court decisions, we
are interested in finding a grouping structure that is able to also highlight the so called
‘swing votes’, which stem from opinions on the discussed topics that are not entirely
polarized, and should be reflected in voting patterns that are a mixture of more polarized
clusters.
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In the second one, the interest lies in modelling the voting behavior of MPs with re-
gards to different divisions that are related to Brexit, following from the referendum that
initiated Brexit. In this example, information is available both at the level of MPs, such
as safeness of the seat of each MP and the general opinion on Brexit of the constituency
they were elected into (unit-specific covariates), and at the level of the divisions, namely
the more general topic of the division itself (variable-specific covariate). Given the con-
troversy around Brexit, we expect, also in this case, a number of MPs whose behavior
may well be explained by some overlap between the two main clusters of Labour versus
Conservative voters.

In the field of network science, both these applications could be seen as a special
case of two-mode networks (Wasserman and Faust, 1994, Chapter 8). Also known as
bipartite or affiliation networks, these are networks consisting of two types of nodes,
where links can occur only between nodes of a different type. An example of a two-
node network is a group of actors attending or not attending a set of events. Thus,
from an agent-based point of view, a two-mode network can be seen as a collection of
d-dimensional multivariate binary response variables for n actors. As shown in Ranciati
et al. (2020), allowing for cluster overlap in these settings can improve significantly the
characterization of the clusters as well as leading to model parsimony. The approach
developed in this paper applied on actor-event data would allow to cluster actors ac-
cording to their pattern of attendance to events, while considering potential covariates,
both at the level of the actors and of the events. These are often available, as in the
examples described above.

2.2 A conventional mixture of regression models

In a mixture of regression framework for multivariate binary data, the usual assumption
is that the response variables for each unit i come from a mixture of K-components (also
called clusters) specified as

yi ∼
K∑

k=1

αkf
(
yi;πki

)
,

where α = (α1, . . . , αK) are the prior cluster probabilities, K is a positive integer, f(·)
is the d-dimensional joint distribution for the vector yi of binary observations, and πki

is the collection of parameters governing the joint distribution, which are cluster-specific
and a function of covariate information. An alternative hierarchical representation of
the mixture model is achieved by introducing a unit-specific binary latent vector ζi =
(ζi1, . . . , ζiK), made up of all zeroes with the exception of a single element ζik = 1 for
unit i belonging to cluster k. Using these latent elements, the hierarchical formulation
is given by

ζi|α ∼ Multinom(α1, . . . , αK), (1)

yi|ζi,πki ∼
K∏

k=1

d∏
j=i

[
Bern

(
yij ;πkij)

)]ζik ,
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where the joint f(·) has been factorized into a product of Bernoulli distributions by
making the common assumption that yij are independent from one another for all
pairs i, j, conditional on the allocation of each unit i into the groups. The cluster-
specific probabilities πkij are now indexed in both i and j because we will consider
both covariate information that can be unit-specific, xi = (xi1, . . . , xiL), or variable-
specific, wj = (wj1, . . . ,wjQ). Here, ‘variable-specific’ refers to information pertaining
to the d observed variables, which are usually called dependent or response variables
in the regression literature, whereas ‘unit-specific’ is reserved for covariates pertaining
to statistical units’ characteristics. For example, the n× L matrix X, with i-th row xi,
could collects L characteristics of the n units, such as age, gender and education in a
social study setting, whereas the d×Q matrix W describes the Q characteristics of the
d variables, i.e., a time or location for the measurement of variable j.

The probabilities of each component are linked to the covariates via an appropriate
link function applied to a linear combination of the predictors (Fahrmeir and Tutz,
2013). In particular, the probability for individual i, variable j, and cluster k is given
by πkij = g(ηkij) with g(·) a link function and ηkij the linear predictor. We choose g(·)
to be the Gaussian cumulative distribution function πkij = Φ

(
ηkij

)
. This choice of a

link function induces a probit regression model formulation that we consider closely in
this paper. The linear predictor is defined as

ηkij = μk + xiβ
ᵀ
k + wjγ

ᵀ
k, (2)

where {μk,βk,γk}k=1,...,K are cluster-specific vectors of parameters. More precisely,
for each cluster k = 1, . . . ,K, the model includes an intercept μk, an L-dimensional
vector of regression coefficients βk for the unit covariates and a Q-dimensional vector
of regression coefficients γk pertaining to the variable-specific covariates. The latter can
be thought as equivalent to random effects in multilevel models. According to (2), the
effect of unit-specific covariates xi is the same for all the d response variables within a
particular cluster k: this means that the elements {ηkij}k=1,...,K of the linear predictor
differ, with respect to j, only due to the effect of the variable-specific covariates wj . We
note that in the case d = 1 and K > 1, the model reverts back to a mixture of univariate
GLMs (Wedel and DeSarbo, 1995; Grün and Leisch, 2008a); when d > 1 but K = 1,
we obtain a multivariate probit, or more generally a multivariate GLM (Fahrmeir and
Tutz, 2013), and if both K = 1 and d = 1, we are back in a simple GLM (McCullagh
and Nelder, 1989).

2.3 Overlapping formulation of a mixture of regression model

In this Section, we describe our proposed extension of the classical mixture of regression
models to the case of overlapping clusters. Using similar ideas to Ranciati et al. (2020),
we modify the hierarchical model in (1) by relaxing conditions on the allocation vectors
ζi in order to allow for a multiple classification of the units. In particular, denoting
with zi = (zi1, . . . , ziK) the new allocation vector, we will allow zi ∈ {0, 1}K , that is,
the set of all sequences of zeroes and ones of length K. If there are K primary clusters,
then there are K� = 2K multiple cluster allocations. Each of these K� allocations is
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a non-overlapping heir cluster, which defines a new K�-dimensional allocation vector
z�
i for each unit i. This new vector satisfies

∑K�

h=1 z
�
hi = 1, and has a 1-to-1 correspon-

dence with the zi, which allocates units into the overlapping parent clusters. The z�

re-parametrization can now be used as the basis of a traditional hierarchical model,
namely

z�
i |α� ∼ Multinom(α�

1, . . . , α
�
K�),

yi|z�
i ,μ,β,γ ∼

K�∏
h=1

d∏
j=1

[(
π�
hij

)yij
(
1 − π�

hij

)1−yij

]z�
ih

,

where the quantities π�
hij are a probit transformation of the linear predictor η�hij .

The key questions are: (i) how to connect the new model quantities, π�
hij and η�hij , to

the original ones, πkij and ηkij ; (ii) how to connect the new mixture parameters α� to
the old mixture parameters α and (iii) how to interpret the resulting multiple allocation
groups and their corresponding quantities.

Overlap function: connecting heir parameters to parent parameters The first ques-
tion can be answered with the choice of an appropriate function for linking the quantities
of the z� parametrization to those of the original one, which we call the overlap func-
tion and denote it with ψ. Various overlap functions are possible and each one of them
determines the way we can interpret and build the potential overlap between the com-
ponents of the mixture. Each specific choice leads to different models that have their
own computational and inferential considerations. Although the overlap function can
be applied directly at the level of the probabilities πkij , essentially following Ranciati
et al. (2020), in this new setting where covariates have been added, it is computa-
tionally more advantageous to define the function at the level of the linear predictors
ηkij , or even the regression coefficients {μ,β,γ}, because of the added benefit of inter-
pretation that such a definition can bring. Given the definition of the linear predictor
ηkij = μk + βkx

ᵀ
i + γkw

ᵀ
j , we collect all K elements associated to the pair (i, j) into a

vector η.ij . We can then see three natural choices for the function ψ that defines the lin-
ear predictor in the re-parametrized mixture, i.e., η�hij = ψ(η.ij ,zi): (1) the minimum,
(2) the maximum, and (3) the pointwise average of the linear predictors η1ij , . . . , ηKij ,
according to the multiple allocations vector zi. In particular,

1. minimum overlap function: ψs(η.ij ,zi) = min
k:zik=1

{ηkij},

2. maximum overlap function: ψx(η.ij ,zi) = max
k:zik=1

{ηkij},

3. mean overlap function: ψm(η.ij ,zi) = mean
k:zik=1

{ηkij}.

Figure 1 shows an example of the three overlap functions applied to a single continuous
covariate in a situation with three overlapping clusters. The mean overlap function
ψm(·) is itself linear, whereas both the minimum and maximum overlap functions are
only piecewise linear. Moreover, the mean overlap function can be seen as an average
of the intercepts and regression coefficients across those clusters, to which the unit is
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Figure 1: Example of the maximum, mean and minimum overlap functions for a mul-
tiple allocation cluster z = (1, 1, 1), for a single covariate x; solid lines refer to linear
predictors’ values, whereas dotted lines correspond to different overlap functions.

allocated, since

ψm(η.ij ;zi) = ziμ
ᵀ

||zi||1
+

(
ziB

||zi||1

)
xᵀ
i +

(
ziΓ
||zi||1

)
wᵀ

j ,

where μ = (μ1, μ2, . . . , μK) is the vector containing all the K intercepts, B the K × L
matrix whose rows are β1, . . . ,βK , and Γ the K × Q matrix with rows given by
γ1, . . . ,γK . So, units in multiple allocation clusters have the average effects for each
covariate with respect to their parent clusters, providing enhanced interpretability com-
pared to the other choices of overlap functions.

For the case of being allocated to none of the primary parent clusters, zi = 0, a few
options are possible. First, one could follow an ‘agnostic’ approach and simply consider
K� to be 2K − 1, effectively dropping the special cluster where units have all zero
elements from the allocation vector zi. This is indeed the general recommendation if
there is no prior information or no explicit interest in clustering units into this residual
group. The second option would be to elicit a special definition for the overlap function.
In this sense, this definition depends on the individual situation: sometimes it might
be possible to define the ‘null’ allocation as an a priori interpretable constant, whereas
most other times it can be defined in a data-driven way. In particular, natural choices
would be to use the overall minimum, ψ(η.ij , 0) = min

x,w
{ηkij(x,w)}, overall maximum,

ψ(η.ij , 0) = max
x,w

{ηkij(x,w)} and overall average, ψ(η.ij , 0) = mean
x,w

{ηkij(x,w)}, across
all observed values of x and w, corresponding to the ψs, ψx and ψm cases, respectively.
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Figure 2: Schematic representation of the proposed model for the case of two parent
clusters, one unit-specific covariate and the mean overlap function.

For the rest of this manuscript, we focus on the mean overlap function ψm. In ad-
dition to the advantages of interpretability mentioned above, this function offers also
computational advantages. Assuming that the d response variables are conditionally in-
dependent, given the cluster allocation, the mean overlap function translates the multi-
variate problem into a univariate regression and allows estimations of all the coefficients
of the K clusters simultaneously. We provide the details of the implementation in the
next Section, as well as a full R implementation of the proposed method available at
https://github.com/savranciati/miro.

Allocation probabilities: connecting heir parameters to parent parameters Similarly
to the regression coefficients, a connection between the allocation probabilities α of the
primary clusters z and the allocation probabilities α� of the heir clusters z� can be
elicited, in order to establish a correspondence between the two parametrizations. The
most intuitive choice is an independent allocation mechanism among clusters, in the
sense that the heir allocation probabilities are defined as α�

z� =
∏

k:zk=1 αk. In prac-
tical applications, this is generally too restrictive and not readily verifiable. Moreover,
it also indirectly implies further constraints on the size of each cluster. Therefore, in
our proposed approach the heir allocation probabilities are estimated directly, without
resorting to their corresponding version of the parent clusters.

Figure 2 provides a schematic representation of the proposed model on a small
example with two parent clusters and one unit-specific covariate. The mean overlap
function links explicitly the regression parameters associated to the overlapping cluster
from those associated to the parent clusters. On the right of the plot, the parameter
space is identified. The next Section focuses on statistical inference for the proposed
model.

3 Bayesian implementation of miro
We approach inference by following a Bayesian paradigm, which requires specification
of prior distributions for all parameters in our model. First, we assume the prior cluster

https://github.com/savranciati/miro


S. Ranciati, V. Vinciotti, E. C. Wit, and G. Galimberti 851

sizes α� to come from a Dirichlet distribution with hyper-parameters a1, . . . , aK� , where
we set ah = K� if

∑K�

h=1 uh = 1 and 1 otherwise. This choice satisfies the constraints
identified by previous works on the contraction rate of posterior distributions when us-
ing Dirichlet priors in the context of mixture models (Rousseau and Mengersen, 2011;
Malsiner-Walli et al., 2016), and therefore offers some protection against overfitting in
the case of K� being potentially large. The intercepts {μ}k=1,...,K and regression coef-
ficients {βk,γk}k=1,...,K are assumed to be a priori independent, normally distributed,
centered at zero and with scalar variance parameters (σ2

μ, σ
2
β , σ

2
γ) treated as hyper-

parameters. The set of priors is summarized below

α� ∼ Dir(a1, . . . , aK�), (3)
μk ∼ N(0, σ2

μ),
γk ∼ NQ(0Q, σ

2
γ IQ),

βk ∼ NL(0L, σ
2
β IL)

and coupled with the complete likelihood

Ly,z� ∝
n∏

i=1

d∏
j=1

[
Φ(η�ij)

]yij
[
1 − Φ(η�ij)

]1−yij
.

Once one writes the complete joint posterior distribution of all the parameters and
latent quantities in the model, an MCMC algorithm can be defined to sample from it.
The pseudo-code for miro is an MCMC algorithm with Gibbs samplers, that iterates
the following instructions across t = 1, . . . , T iterations:

1. Use the full conditional of z�
i , which is

f(z�ih = 1|Y,α�,β,γ,μ,Σ�) =
α�
h ·

∏d
j=1

[(
π�
hij

)yij
(
1 − π�

hij

)1−yij
]z�

ih

∑K�

h′=1 α
�
h′ ·

∏d
j=1

[(
π�
h′ij

)yij
(
1 − π�

h′ij

)1−yij
]z�

ih′

to sample the allocation vectors {z�
i }i=1,...,n, and then compute the updated clus-

ter sizes nh =
∑n

i=1 z
�
ih;

2. Sample new values for {α�
h} from their full conditional

α�|Y,zi=1,...,n,a ∼ Dir(a1 + n1, . . . , ah + nh, . . . , aK� + nK�);

3. Sample intercepts and regression coefficients (μ,B = {β},Γ = {γ}) from their full
conditional distributions, with B and Γ being matrices collecting all the regression
coefficients associated to, respectively, the individual-specific and variable-specific
covariates.
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3.1 The specific case of the mean overlap function

Of particular notice is the fact that, (i) using the probit link and (ii) choosing the mean
overlap function, one is able to cast the inferential procedure as a single Bayesian probit
regression model, effectively collapsing the mixture structure during the sampling of the
regression coefficients. This provides significant computational gains in sampling the set
of regression coefficients (Step 3), as we further explain here.

First, we let ỹᵀ be an ñ × 1 vector obtained by stacking the columns of the data
matrix Y , with ñ = n · d. Furthermore, we stack together the cluster-specific vector
of intercepts and regression coefficients for individual covariates into a vector β̃ =
[μ1 β1 μ2 β2 . . . μK βK ], and we do the same with variable-specific covariates coef-
ficients as a vector γ̃ = [γ1 γ2 . . . γK ]. We can then define a single probit regression
model, simultaneously for all components, as follows

ỹi|β̃, γ̃,zi ∼ Bern
(
Φ(η̃i)

)

with η̃i being the i-th element of η̃ = X̃β̃
ᵀ + W̃γ̃ᵀ. The design matrices X̃ and W̃ are

built by filtering the corresponding matrices of covariates’ values X and W through the
allocation of each unit, and building a block structure to reflect the possible configu-
rations of zi. In particular, we collect in a matrix X[h] the predictors’ recorded values
for the nh =

∑n
i=1 z

�
hi units allocated into cluster h, and we stack them vertically d

times. In addition, we append a column unitary vector of length nh to account for the
intercept. The matrix W[h] is simply built by stacking W exactly nh times, in order to
have conforming dimensions. The resulting matrices have nh · d rows and (L + 1) and
Q number of columns, respectively. This process is repeated for h = 1, . . . ,K�. Finally,
the block structures of X̃ and W̃ are defined such that

X̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
||u1||1 ⊗ X[1]

...
uh

||uh||1 ⊗ X[h]

...
uK�

||uK� ||1 ⊗ X[K�]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, W̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
||u1||1 ⊗ W[1]

...
uh

||uh||1 ⊗ W[h]

...
uK�

||uK� ||1 ⊗ W[K�]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where uh is the h-th row of U and ⊗ is the Kronecker product, and || · ||1 is the
sum of the absolute values of the elements of the vector. The final design matrices X̃
and W̃ have ñ = n · d rows and (L + 1) × K and Q × K columns, respectively. The
sub-matrices involving h = 1 are not used to sample the regression coefficients if the
corresponding cluster (0, . . . , 0) is not considered in the model or has been assigned some
fixed parameter values. The matrix U is defined to contain all the possible configurations
of 1s and 0s of length K, so that we have z�hi = 1[uh=zi] with uh denoting the h-th row
of U and 1[·] the indicator function.
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As a simple example, when K = 2 and only unit-specific covariates are considered,
the relevant quantities are

U =

⎛
⎜⎜⎝

0 0
1 0
0 1
1 1

⎞
⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎥⎥⎥⎥⎦
, X̃ =

⎡
⎢⎢⎢⎢⎢⎣

01+L 01+L

X[2] 01+L

01+L X[3]

1
2X[4]

1
2X[4]

⎤
⎥⎥⎥⎥⎥⎦
, β̃

ᵀ =

⎡
⎢⎢⎢⎢⎣

μ1

β[1]

μ2

β[2]

⎤
⎥⎥⎥⎥⎦

and each unit i may be assigned:

• to none of the two clusters, zi = u1 = (0, 0), corresponding to z�
i = (1, 0, 0, 0);

• only to the first parent cluster, zi = u2 = (1, 0), corresponding to z�
i = (0, 1, 0, 0);

• only to the second parent cluster, zi = u3 = (0, 1), corresponding to z�
i =

(0, 0, 1, 0);

• to both of them, zi = u4 = (1, 1), the heir cluster corresponding to z�
i =

(0, 0, 0, 1).

We can now employ this formulation of the linear predictor, which accounts simul-
taneously for all K clusters and their overlappings, into the probit model framework of
Holmes and Held (2006) as a single regression procedure. More specifically, in Step 3 of
the pseudo-code, the set of regression coefficients, μ, B, and Γ, is sampled together in
a single probit regression step. We adopt the framework suggested by Holmes and Held
(2006), where a random latent utility r is introduced, such that yij = 1 if rij > 0, and
zero otherwise, for i =, . . . , n and j = 1, . . . d. Then the utility is defined as rij = η�ij+εij
with εij ∼ N (0, 1) and the linear predictor η�ij is the same of a probit regression on the
original yij . The approach leads to the following update mechanism for the regression
coefficients θᵀ = [B Γ] in η�ij :

i) D ← 0;

ii) for i = 1, . . . , n and j = 1, . . . , d

mij ← Aij θ
(t−1),

rij ← truncNorm(yij ;mij , 1),
D ← D + rijSij

with truncNorm(·) denoting sample values from a truncated Normal distribution;

iii) C ← N(0, I);

iv) θ(t) ← D + Chol(V )�C,

where V is the prior block-covariance matrix of the coefficients in θ; A is the full design
matrix obtained by stacking side-by-side both X̃ and W̃, S = V A� and Chol(·) extracts
the lower-triangular matrix from the Cholesky decomposition.
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3.2 Model selection, posterior allocation, and label switching
In the context of our approach, model selection is equivalent to choosing the number
of primary clusters K. A fully Bayesian specification would prescribe a prior on this
quantity and, due to the nature of the model, would require the implementation of a
trans-dimensional MCMC version of our algorithm, such as a reversible jump MCMC
(Green, 1995). For two reasons we avoid this approach. First, sampling K from its
posterior distribution might lead to computational issues within our framework. In
fact, given that K� scales exponentially with K, the support of the prior distribution
would have to be rather narrow to avoid unfeasible values of K�, which defeats the main
purpose of using a distribution for K. Second, we expect the ‘true’ number of primary
clusters K to be small in practice, as even K = 4 can accommodate for up to K� = 16
clusters with the proposed approach.

On the basis of these considerations, we opt for a more heuristic model selection ap-
proach, in which we fit our model for different values of K and then select the optimal
one through an information criterion. In particular, we rely on the Bayesian Informa-
tion Criterion MCMC (BIC-MCMC) (Frühwirth-Schnatter, 2011), recently employed
to select infinite mixtures of infinite factor analyzers models (Murphy et al., 2019). The
BIC-MCMC criterion typically encourages the selection of parsimonious models, and it
is defined as

BIC-MCMC = −2lmax + log(n · d) · pθ,
where lmax is the maximum value of the log-likelihood across the MCMC chain (after
burn-in) and pθ is the number of parameters in the model effectively sampled and not
computed (Wit et al., 2012). In particular, pθ refers to the parameters involved in the
K original clusters and not their heir counterpart, which are instead computed using
the selected overlap function and do not contribute to effective number of parameters.

After the choice of K and, implicitly, K� is made, units are allocated into clusters
according to their average posterior probabilities and using the Maximum-A-Posteriori
(MAP) rule. In particular, unit i will be assigned to the cluster h that attains the highest
value for

P̄(z�
i = h|Y,α�,θ) = 1

T

T∑
t=1

P(z�
i = h|Y,α�,θ),

computed after the initial burn-in window.

A well-known problem with mixture models in the Bayesian paradigm is the label
switching phenomenon (Celeux, 1998; Stephens, 2000; Sperrin et al., 2010). Although,
in theory, a desirable property of the formulation, as it allows the MCMC chain to visit
all the modes of the target distribution, the label switching arises from the invariance
property of the likelihood with respect to the order of the cluster labels. From a practi-
cal point of view, this is reflected in unwanted difficulties while summarizing posterior
quantities, i.e., posterior means, posterior standard deviations, etc., for some parameters
of interest. To tackle this issue, we reorder the MCMC output of the algorithm through
the geometrically-based Pivotal Reordering Algorithm (PRA) (Marin et al., 2005; Marin
and Robert, 2007), available as a function in the R package label.switching (Papas-
tamoulis, 2016). The procedure needs a pivotal labelling, which we select according to
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the strategy proposed in Carmona et al. (2018). In particular, we first compute the ma-
trix of co-occurrences C(t) at each iteration t = 1, . . . , T of the MCMC (after burn-in).
This is an n × n matrix where a generic element cij is equal to one if unit i is in the
same cluster of unit j for that iteration, and zero otherwise. Then, an average of these
matrices is computed, denoted by C̄. Finally, we select the labelling of iteration tmin as
our pivotal quantity, where

tmin = argmin
t

{[
C(t) − C̄

]2}
.

Once samples have been relabelled according to the algorithm, we can compute posterior
quantities of interest.

4 Simulation study
We investigate the performance of our model under two different data generating pro-
cesses: (i) data coming from our proposed model, described in Section 2; (ii) data ob-
tained from a mixture of non-overlapping components, with covariates and a logit link
function. For each simulation, we simulate 25 independent datasets, and we average the
results across the replicates. The performance is measured via: (i) the misclassification
error rate (MER), which is the fraction of wrongly allocated units with respect to the
true labeling, and (ii) the Adjusted Rand Index (ARI ), that measures how much the
true and inferred labellings agree with each other. As both simulation settings are char-
acterized by four non-overlapping components, the benchmarks values for MER and
ARI are, respectively, 68.5% and 0%. The first is computed as

∑
k[αk(1 − αk)], where

α = (0.10, 0.45, 0.25, 0.20) is the chosen vector of cluster sizes: thus, it is the probability
of a wrong allocation under random assignments of units to clusters. The second is by
definition the rand index obtained under a random allocation, with maximum value
of 100.0% indicating a perfect match in classification. In both simulation studies, we
perform inference using four competing models: (i) mixtbern, a conventional mixture of
Bernoulli distributions; (ii) manet, a mixture of Bernoulli distributions with overlapping
clusters (Ranciati et al., 2020); (iii) mixtprobit, a classical mixture of probit regression
models; (iv) miro, our proposed model. For manet and miro, the prior distributions
on the cluster sizes are set to P(α�

1, α
�
2, . . . , α

�
h, . . . , α

�
K�) = Dir(a1, a2, . . . , ah, . . . , aK�)

with ah = K� if
∑K�

h=1 uh = 1 and 1 otherwise. Moreover, for these methods, the MER
and ARI values are calculated at the level of the K� heir clusters. In each scenario,
Bayesian inference is conducted by running the algorithms for 10000 MCMC iterations
with a 50% burn-in window. In the following Sections, we give more details about each
setting and discuss the results.

4.1 Synthetic data from miro model

Data are simulated from K = 2 overlapping clusters, using the hierarchical formula-
tion of the miro model as the data generating process, namely a mixture model with
overlapping components and a probit regression formulation. We consider 5 scenarios in
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Type of covariates Sample size n MER (%)
# of variables d mixtbern manet mixtprobit miro

unit-specific n = 50, d = 10 36.16 25.60 34.88 27.44
unit-specific n = 50, d = 20 30.24 21.28 24.16 14.72

variable-specific n = 50, d = 15 26.08 19.44 20.24 15.60
variable-specific n = 150, d = 15 21.87 20.56 20.69 13.73
unit & variable n = 250, d = 21 22.13 21.79 22.42 18.00

Table 1: Simulation study with data generated from miro: Misclassification Error Rate
(MER), averaged across 25 replicated datasets, for each of the four competing models.
Performance values associated to the best model are reported in bold font.

Type of covariates Sample size n ARI (%)
# of variables d mixtbern manet mixtprobit miro

unit-specific n = 50, d = 10 31.29 50.41 30.57 43.09
unit-specific n = 50, d = 20 41.44 61.77 53.66 68.51

variable-specific n = 50, d = 15 51.60 65.98 62.50 67.62
variable-specific n = 150, d = 15 59.16 61.70 62.48 70.61
unit & variable n = 250, d = 21 59.89 55.15 59.23 66.00

Table 2: Simulation study with data generated from miro: Adjusted Rand Index (ARI),
averaged across 25 replicated datasets, for each of the four competing models. Perfor-
mance values associated to the best model are reported in bold.

total, according to the type of covariates considered, and by varying either the sample
size n or the number of binary variables d. In particular, we consider:

• Settings with unit-specific covariates only: sample size n = 50 units, d = {10, 20}
variables, L = 1 continuous covariate x sampled from a Standard Normal distri-
bution;

• Settings with variable-specific covariates only: sample size n = {50, 150} units,
d = 15 variables, Q = 2 binary covariates (w1,w2) from one categorical covariate
with three levels;

• Setting with unit- and variable-specific covariates: sample size n = 250 units,
d = 21 variables, L = 1 continuous covariate x sampled from a Standard Normal
distribution, Q = 2 binary covariates (w1,w2) from one categorical covariate with
three levels.

The results are reported in Table 1 and Table 2 for MER and ARI, respectively. With
the exception of the scenario with the lowest sample size and number of variables, n = 50
and d = 10, respectively, the proposed model (miro) outperforms the competitors in
every other scenario considered, both in terms of MER and ARI. This is expected, given
that we are simulating from the same model which is then used for inference. We further
notice that not only sample size but also increasing the number of variables leads to
better performances. In particular, increasing the number of variables d has a positive
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effect for the setting with only unit-specific covariates: this is due to the fact that, having
more attendances to events, using an actor-event terminology, is analogous to having
more time points in a repeated measures model framework. A similar argument can be
made for the effect of sample size n on the performances in scenarios where there are
only variable-specific covariates.

4.2 Synthetic data from misspecified model
We now simulate data from K = 4 non-overlapping groups via a mixture model of binary
regression models, where probabilities {πkij} are computed as a logit transformation of
the linear predictor

ηkij = μk + βk1xi1 + γk1wj1.

Here, we simulate n = 300 units and d = 20 variables. This data generating process
differs from miro due to the fact that: (i) logit is used instead of the probit link function;
(ii) units belong only to one component at a time, as in a conventional mixture model. As
covariates, we use: L = 1 continuous unit-specific covariate x sampled from a standard
Normal distribution; Q = 1 binary variable-specific covariate w. The results are reported
in Table 3.

Performances degrade in this setting with respect to the previous simulation (Sec-
tion 4.1), due to the misspecification of all the models that we fit. However, the results
for miro with K = 3 and K = 4 are less affected than those for the two competing
models, mixtbern and manet. As expected, mixtprobit performs on par or slightly
better than miro in terms of ARI and MER. Indeed, this is the model closest to the
data generating process, with the only difference being in the use of a probit link in
place of the logit link.

Model MER (%) ARI (%) BIC-MCMC
mixtbern, K = 2 46.29 21.46 9049.91
mixtbern, K = 3 44.43 16.59 8765.40
mixtbern, K = 4 44.69 16.11 8954.96

manet, K = 2 46.61 20.61 7462.24
manet, K = 3 44.92 16.62 7442.89
manet, K = 4 48.87 15.35 7513.01

mixtprobit, K = 2 41.88 29.74 7171.69
mixtprobit, K = 3 27.09 49.35 6973.28
mixtprobit, K = 4 25.25 50.86 6948.71

miro, K = 2 41.65 25.67 7022.59
miro, K = 3 26.37 50.26 6944.91
miro, K = 4 29.01 45.37 7019.25

Table 3: Simulation study from a misspecified setting, with data generated with K = 4
non-overlapping components, mixture of logistic regression models, n = 300 units, d =
20 variables. Misclassification error rate (MER), Adjusted Rand Index (ARI), and BIC-
MCMC values are averaged across 25 replicated datasets. Performance values associated
to the best model are reported in bold.
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As a further comparison between the methods, we evaluate the fit of the models to
the data via BIC-MCMC. The last column of Table 3 reports the value for each model,
as an average out of the 25 replicated datasets. These results point to miro with K = 3
clusters as the best model. Looking at the individual BIC values for each dataset, we
find that almost 70% of the time miro with K = 3 clusters was the preferred choice,
with the remaining cases selecting mixtprobit with K = 4 as the best model. We also
compute the proportion of times each K was selected according to BIC-MCMC within
each model class, and find that (i) K = 3 was the optimal choice 96% of the times for
miro; (ii) K = 4 was the selected number of clusters 92% of the times for mixtprobit;
(iii) manet performed better in terms of the BIC-MCMC 64% of the times with K = 3
and approximately 36% of the times with K = 2; (iv) 96% of the times, K = 3 was
the best model within the mixtbern class. In conclusion, miro was often the optimal
choice according to BIC-MCMC, with a clear choice of K for achieving the best trade-off
between fitness and parsimony.

5 US Supreme Court: agreement and polarization
In this section, we describe how during the 2000–2001 term the 9 US Supreme Court
justices could be clustered with respect to their decisions on 26 important cases (Green-
house, 2001). These data were analyzed in Doreian and Fujimoto (2003) and then further
explored in Doreian et al. (2004). The n = 9 units in the data are justices Breyer, Gins-
burg, Souter, Stevens, O’Connor, Kennedy, Rehnquist, Scalia and Thomas, whereas the
decisions represent the d = 26 binary variables. According to Greenhouse (2001), the
decisions can be categorized into 7 main topics, which can be used as a categorical
covariate W with the following levels: “Presidential Election”, “Criminal law”, “Federal
authority”, “Civil rights”, “Immigration law”, “Speech and Press”, “Labor and Prop-
erties”. Each observation is coded as yij = 1 when justice i was part of the majority
decision j, while yij = 0 stands for the situation where the justice voted with the mi-
nority. The goal of the analysis is to be able to cluster the nine justices according to
their voting patterns, considering a situation where both patterns of polarized opinions
and overlapping agreements/disagreement with the majority vote can exist.

We apply four clustering algorithms on this dataset: mixtbern, manet, mixtprobit
and miro, as in the simulations. For all of them, we opt for 10,000 MCMC iterations
with a generous 5,000 burn-in window. Model fit comparison is conducted quantitatively
in terms of BIC-MCMC and qualitatively using the clustering output. In Table 4 we
report the selected number of clusters K according to the BIC-MCMC value. We also

Model K, # of cluster BIC-MCMC # of parameters
mixtbern 3 571.06 81
manet 2 438.73 56

mixtprobit 3 368.15 24
miro 2 332.28 18

Table 4: Model selection criterion reported for the three competing algorithms; K is the
number of cluster selected for each model.
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provide a proxy for the complexity of the models by reporting the number of parameters.
The results show how miro achieves the lowest BIC-MCMC. Moreover, manet and
miro produce the same classification of the justices, which suggests that no real better
fit is provided by manet at the expense of increased model complexity. In particular,
these models allocate justices Breyer, Ginsburg, Souter, and Stevens into a primary
cluster (1, 0), whereas Rehnquist, Scalia, and Thomas are grouped together in the second
primary cluster (0,1). Appropriately, O’Connor and Kennedy are allocated into the
multiple allocation cluster (1, 1). Indeed, it has been well-documented that Kennedy
and O’Connor constituted the swing vote in the Supreme Court (Toobin, 2008). On the
other hand, mixtbern identifies three separate clusters, where Kennedy is put together
with Rehnquist, Scalia, and Thomas, while O’Connor is allocated alone into a third
group. Finally, BIC-MCMC suggests a value of K = 3 in the case of mixtprobit,
although the posterior classification of the units leaves one cluster empty, with Breyer,
Ginsburg, Souter and Stevens in one cluster and O’Connor, Kennedy, Rehnquist, Scalia
and Thomas in the other. This clustering seems less meaningful.

Unlike manet and mixtprobit, miro is able to make use of additional covariate in-
formation to aid the clustering, while allowing for potential overlapping of the resulting
groups. Figure 3 visualizes the results for miro in terms of clustered data and posterior
means of regression coefficients for the two primary clusters. Coherently with the allo-
cations of the model, there are some decision types that better discriminate between the
voting behavior of the two primary clusters. In particular, those decisions belonging to
the categories “Federal Authority”, “Presidential Election” and “Labor and Properties”
on the right side of the bottom plot in Figure 3 clearly discriminate the liberal judges in
cluster 2 from the conservative judges in cluster 1. For the other four decision categories,
the 9 justices are in much closer agreement.

6 Brexit: divisions and parties
We present here an analysis of parliamentary votes of UK MPs on motions related to
Brexit. We use data originally studied by Berrettini et al. (2021) and retrieved using
the R package hansard (Odell, 2017). The votes, also known as “meaningful votes”, are
divisions taken under the terms of Section 13 of the United Kingdom’s European Union –
Withdrawal – Act 2018 (Parliament, 2018), which required UK to discuss parliamentary
motions at the end of the negotiations that followed Brexit. Our sample size concerns
a subset of 281 MPs, who voted either “Aye” (coded with yij = 1) or “No” (yij = 0) on
each voting occasion during the time frame of 25/03/2019 to 01/04/2019; for this reason,
MPs with at least one abstention or not present during at least one of the divisions are
excluded from the data. Of all the votings, we focus on eight divisions, described as
follows: (1) “No deal”: Conservative MP Mr John Baron’s proposal to immediately leave
the European Union (EU) without any deal; (2) “Common market 2.0”: the proposal
to join the Single Market and a customs union; (3) “European Free Trade Association
(EFTA) and European Economic Area (EEA)”: the proposal to remain in the Single
Market outside of a customs union; (4) “Customs union”: the proposal for a permanent
customs union; (5) “Labour’s plan”: Labour’s alternative position proposed by MP
Mr Jeremy Corbyn, including a comprehensive set of arrangements and agreements
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Figure 3: Observed data and results for miro with K = 2; (top plot) black tiles repre-
sent observations equal to 1, while empty tiles code for 0; row names are the justices,
while column names indicate decisions: tiles are horizontally separated by white lines
according to the three clusters; (bottom plot) regression coefficients associated to each
category for the covariate “type of decision”, with solid black line for primary cluster
k = 1 and the dotted black line for the other primary cluster k = 2.

with the EU; (6) “Revocation to avoid no deal”: Scottish National Party’s proposal
to revoke Article 50; (7) “Confirmatory public vote” the proposal for a public vote on
any withdrawal bill; (8) “Managed no deal”: the proposal to immediately leave the EU
seeking a tariff-free trade agreement. The final data matrix consists then of n = 281
rows for each of the MPs and d = 8 columns representing the eight divisions.

Additional covariates are available for this study, both at the level of units and
variables. In particular, we consider:

• (unit-specific) “Leave” (x1i): the share of Leave votes at the Brexit referendum in
the parliament constituency MP i was elected into;
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Figure 4: Posterior distributions of the regression coefficients for all covariates and their
interaction terms; light-shaded distributions refer to parameters for cluster 1 and dark-
shaded distributions refer to parameters for cluster 2.

• (unit-specific) “ExpEntr” (x2i): the exponential of the entropy, computed on the
shares of votes each party took in the corresponding constituency, as a measure
of competitiveness for the seat MP i was given after election;

• (variable-specific) “ProBrexit” (wj): an indicator denoting if voting “Aye” in di-
vision j equates to being ‘ProBrexit’ (wj = 1) or ‘Against Brexit’ (wj = 0),

as well as all the interaction terms between these three. We refer the reader to Berrettini
et al. (2021) for additional details on both the dataset and the covariate information.

We apply our proposed method on this dataset, in order to discover its underlying
structure. The best model selected according to the BIC-MCMC criterion (1335.09) is
a mixture with K = 2 parent clusters, obtained from 10000 iterations of the MCMC
algorithm with an initial 50% burn-in window as in the first example. Figure 4 visualizes
posterior distributions of the regression coefficients (and intercepts) for both clusters.
In terms of covariates, the two clusters are mainly characterized by having different –
in sign and magnitude – effects with respect to the main effect of the variable-specific
covariate “ProBrexit” as well as the interaction term between the same “ProBrexit”
covariate and the unit-specific covariate “Leave”. In particular, MPs allocated to cluster
1 have a higher probability of voting “Aye” on a motion, when doing so corresponds
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Party
Cluster C GP Ind. Lab. LD

z = (1, 0) −→ 1 98 0 0 0 0
z = (0, 1) −→ 2 21 1 7 63 1
z = (1, 1) −→ 3 83 0 4 3 0

Table 5: Two-way table for cluster allocation according to miro and party allegiance of
each MP; Parties are coded as: C=Conservative, GP=Green Party, Ind.=Independents,
Lab.=Labour, LD=Liberal Democrats.

Figure 5: Average probability of voting ‘Aye’ in “Pro-Brexit” (left) or non “Pro-Brexit”
(right) divisions, as a function of the covariate “Leave” and cluster allocation: dot,
cluster 1; square, cluster 2; triangle, cluster 3.

to being ProBrexit (first and last division). This effect is further exacerbated if the
proportion of “Leave” in the Brexit referendum is higher in the constituency those MPs
have been elected into.

As a further characterization of the discovered clusters, Table 5 shows the cross-
tabulation of the cluster allocations with the MPs’ parties affiliations; in Figure 5, we
visualize the averages – on the retained MCMC iterations – of the estimated probabilities
of voting “Aye”, conditional on the potential cluster membership and main effects of
the covariates (Figure 5). The results show how the two main clusters identified by the
model are predominantly comprised of MPs affiliated to, respectively, the Conservative
Party (group k = 1) and the Labour Party (group k = 2).

Indeed, cluster 1 is exclusively composed of MPs of the Conservative Party, whereas
in the other main cluster we can find mostly MPs from the Labour Party, but also
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one MP belonging to the Liberal Democrats and one MP from the Green party. The
overlapping group (cluster 3) contains MPs from the Conservative party who, however,
exhibited a voting pattern which is a mixture of the two originating groups.

This characterization of the clusters is enriched by looking at the estimated average
probabilities of voting “Aye” conditional on the cluster allocation of the MPs and as
a function of selected covariates. In particular, the plot on the left of Figure 5 depicts
the effect that the proportion of “Leave” in the Brexit referendum, for each MPs’ con-
stituency, has on the probability of them voting “Aye” in “ProBrexit” divisions. Those
belonging to cluster 1 (dot point) are associated with a high probability, almost close
to 1, of voting “Aye”, regardless of the opinion electors of the constituency might have
had on the Brexit referendum. Conversely, for cluster 2, this probability is close to zero.
On the other hand, units in the overlapping cluster (3) exhibit a probability of voting
“Aye” influenced by the “Leave” proportion, with large values of the covariate push-
ing this probability to be almost a fifty-fifty chance. For divisions where voting “Aye”
means being against a hard Brexit option (right plot of Figure 5), the description of
the clusters is reversed. Here, there is a clearer relationship between the probability of
“Aye” and the covariate for cluster 1 and 2, while the behavior of cluster 1 remains the
most extreme.

7 Conclusions
In this manuscript we have presented an approach to perform model-based clustering on
multivariate binary data, via a mixture of probit regression models that allows for units
to be allocated to more than one cluster, while incorporating additional information in
the form of covariates. The proposed method has the advantage of allowing the user to
define, from a modeling perspective, how the multiple allocation clusters are related to
the main parameters of the model, and, in particular, how to combine the regression
coefficients in order to have a high degree of interpretability as well as an accurate
identification of the clusters.

A simulation study provided encouraging results with respect to the performance
of the method, in terms of the correct identification of the underlying clusters, even
in situations where the simulated environment is not the same as the fitted model.
The comparison was favorable also against some close competitors, such as mixtures
of regression models without overlapping clusters or mixtures with overlapping clusters
but without covariates. Finally, we show how the proposed methodology is useful in
describing voting behavior both in an example of voting records of the US Supreme
Court and on data regarding UK MPs’ decisions on Brexit related motions. The data
and R code for the analysis can be found in https://github.com/savranciati/miro.

The mixture of probit regressions investigated in this paper can be extended into
a more general framework of mixtures of generalized linear regression models, in order
to account for data of different types. For example, a multinomial probit formulation
could be used to model Brexit data by incorporating all three categories of voting (“Aye”,
“No”, “Absent”). The way overlapping clusters are handled in miro poses no direct lim-
itation to the type of data that can be modeled, with the only practical restriction being

https://github.com/savranciati/miro
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the computational advantage in each situation, i.e., what is the “best” overlapping func-
tion to select in such a way that it would lead to efficiency both in terms of mathematical
derivations and computational complexity. The other distribution-specific issue is how
to account for additional nuisance and/or dispersion parameters that describe some of
the distributions belonging to the exponential family class: in particular, how to com-
bine them for the overlapping clusters and whether they should be set cluster-specific
or not.

Another potential trajectory for future work involves the definition of the linear pre-
dictor, which could be further enriched by adding, for example, random effects for known
grouping structures, or regression coefficients that vary for each possible combination
of cluster k, unit i, and variable j. However, this may have the drawback of increasing
significantly the number of parameters to be inferred. Finally, further extensions could
revolve around the idea of introducing dependence between the response variables. In
this direction, Nikoloulopoulos and Karlis (2010) adopted copula models in the context
of multivariate GLMs, while other authors explored the case of mixtures of bivariate
Poisson GLMs (Bermúdez and Karlis, 2012).
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