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Abstract
The recovery of sparse generative models from few noisy measurements is an important and

challenging problem. Many deterministic algorithms rely on some form of `1-`2 minimization to
combine the computational convenience of the `2 penalty and the sparsity promotion of the `1.
It was recently shown within the Bayesian framework that sparsity promotion and computational
efficiency can be attained with hierarchical models with conditionally Gaussian priors and gamma
hyperpriors. The related Gibbs energy function is a convex functional and its minimizer, which
is the MAP estimate of the posterior, can be computed efficiently with the globally convergent
Iterated Alternating Sequential (IAS) algorithm [5]. Generalization of the hyperpriors for these
sparsity promoting hierarchical models to generalized gamma family yield either globally convex
Gibbs energy functionals, or can exhibit local convexity for some choices for the hyperparameters.
[6]. The main problem in computing the MAP solution for greedy hyperpriors that strongly promote
sparsity is the presence of local minima. To overcome the premature stopping at a spurious local
minimizer, we propose two hybrid algorithms that first exploit the global convergence associated with
gamma hyperpriors to arrive in a neighborhood of the unique minimizer, then adopt a generalized
gamma hyperprior that promote sparsity more strongly. The performance of the two algorithms is
illustrated with computed examples.

1 Introduction
The recovery of a sparse vector from noisy indirect observations continues to be an active research
topic. After the groundbreaking work on compressed sensing and its connections to sparsity-promoting
regularization methods [2, 12, 13, 16, 17] and the `1-penalty in particular, the interest in sparse recovery
has been revived by dictionary learning methods in data science, where the goal is to match an observed
vector with few dictionary entries in a huge data base [20, 24, 25]. The connections between regularization
methods and penalty functionals on one hand, and Bayesian inference techniques on the other, have been
thoroughly investigated [3, 19, 4], and families of priors that promote sparsity have been identified in
the Bayesian framework.

Sparsity is a qualitative rather than quantitative trait because in general the size of the support and
its location cannot be specified in advance. While there is a wealth of different priors that promote
sparsity, the results may differ significantly depending on the cost for non-vanishing entries. In the
classical regularization setting, this is well illustrated by the different `p-penalties, with p ≤ 1. Penalty
functionals with 0 ≤ p < 1 tend to promote sparsity more strongly than p = 1. The convexity of the
objective function for the latter, and the results on the exact recovery of sparse generative models under
suitable conditions have contributed to the popularity of `1 regularization for sparse problems, while the
presence of local minima has damped the enthusiasm for penalties with p < 1.

Analogous consideration hold in the Bayesian framework for sparsity promoting hierarchical prior
models, with generalized gamma hyperpriors. Recently [5, 6], it has been shown that the Maximum
A Posteriori (MAP) iterative sparse reconstruction algorithm is particularly well suited for heavily un-
derdetermined but large scale problems (see, e.g., [8] for an application). The Iterative Alternating
Sequential algorithm (IAS) is based on hierarchical Bayesian models, and uses sparsity promoting hy-
perpriors selected from a family of generalized gamma distributions. As pointed out in [6], some choices
of the hyperparameters yield algorithms that are closely related, e.g., to the `p-penalization methods.
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Moreover, the convexity properties of the objective function also depend on the parameter choice, as
does the convergence rate of algorithms for computing the MAP estimate. Our aim is to combine the
properties of generalized gamma hyperpriors to design robust and computationally efficient methods for
sparse recovery from few noisy observations. More specifically, we propose hybrid algorithms for the
MAP computation: a gamma hyperprior guides the approximate solution towards the unique minimizer
of the objective functions at the beginning, and subsequently a greedier hyperprior is employed to pro-
mote sparsity more strongly. We focus on two such hybrid algorithms, that we refer to as local and global
because of the different strategy to switch hyperpriors. In the local version, the hyperprior is changed
componentwise, guaranteeing local convexity, while in the global version, the hyperprior is changed for
all components. In addition to analyzing the convergence properties of each approach, we provide a
criterion for ensuring that the a priori beliefs are consistent with the two different hyperpriors. The
performance of the algorithms is assessed in the light of computed examples.

2 Hierarchical Bayesian models
In this section we introduce the Iterative Alternating Sequential (IAS) algorithm for the MAP compu-
tation, and review some of its key properties: additional details can be found in [8, 5, 6].

Consider the linear observation model with additive Gaussian noise,

b = Ax+ e , e ∼ N(0,Σ),

where A ∈ Rm×n, with m < n, is a known ill-conditioned matrix describing the forward model, x ∈ Rn
is the unknown of interest, Σ ∈ Rn×n is the symmetric positive definite covariance matrix of the noise.
We remark that by letting A′ = SA and b′ = Sb, where S is the Cholesky factor of the precision matrix,
Σ−1 = STS, we can assume the noise to be white, i.e. Σ = I, hence, the likelihood probability density
function (pdf) of b with given x takes the form

πb|x(b | x) ∝ exp
(
− 1

2‖Ax− b‖
2
)
.

We are interested in estimating x from the observed measurements in b under the a priori assumption
that x is sparse, that is, ‖x‖0 = card(supp(x))� n. In general, the approach can be generalized to cases
where the unknown of interest itself is not sparse, but admits a sparse representation in some dictionary,
by making the coefficients of the representation the unknown of primary interest.

To encode the sparsity belief in the prior model, we begin by considering a componentwise Gaussian
prior model,

xj ∼ N(0, θj) , θj > 0 , 1 ≤ j ≤ n,
or equivalently,

x ∼ N(0,Dθ) ,Dθ = diag(θ1, . . . , θn) ∈ Rn×n,

where the variances of the individual components are not known. The conditional prior density of x
given θ is of the form

πx|θ(x | θ) ∝
1∏n

j=1
√
θj

exp
(
−1

2‖D
−1/2
θ x‖2

)
= exp

(
−1

2‖D
−1/2
θ x‖2 − 1

2

n∑
j=1

log θj
)
,

and following the Bayesian paradigm that all unknowns are modeled as random variables, the a priori
belief about θ is encoded in a hyperprior pdf πΘ(θ). The price to pay for this hierarchical prior model is
that we need to estimate not only x but also θ based on data in terms of the joint posterior distribution
of (x, θ) conditioned on b,

πx,θ|b(x, θ | b) ∝ πx|θ(x | θ)πθ(θ)︸ ︷︷ ︸
πx,θ(x,θ)

πb|x(b | x). (1)

A way to promote sparse solutions is to choose a hyperprior πθ that favors small values of θ but allows
occasional large outliers. A family with these properties, thoroughly investigated in [6], is that of the
generalized gamma distributions,

πθ(θ) = πθ(θ | r, β, ϑ) = |r|n

Γ(β)n
n∏
j=1

1
ϑj

(
θj
ϑj

)rβ−1
exp

(
−
(
θj
ϑj

)r )
,
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where r ∈ R \ {0}, β > 0, ϑj > 0.
The MAP estimate of the posterior pdf model (1) is also the minimizer of the negative logarithm of

the posterior pdf,
(x∗, θ∗) = arg min

x,θ

{
− log πx,θ|b(x, θ | b) =:F(x, θ)

}
. (2)

The objective function F(x, θ) can be written as

F(x, θ) = F(x, θ | r, ϑ, β)

=

(a)︷ ︸︸ ︷
1
2‖b− Ax‖2 + 1

2

n∑
j=1

x2
j

θj
−
(
rβ − 3

2

) n∑
j=1

log θj
ϑj

+
n∑
j=1

(
θj
ϑj

)r
︸ ︷︷ ︸

(b)

, (3)

to emphasize that only the terms in (a) depend on x, and only those in (b) depend on θ. These
observations play a key role for the design of a computationally efficient algorithm for computing the
MAP estimate. We start by recalling the IAS algorithm for the solution of problem (2); see [7, 8, 5] for
further details and for a comprehensive study of the effect of the choice of hyperparameters (r, β, ϑ) on
the promotion of sparsity and the properties of the objective function.

2.1 IAS algorithm
Given the initial value θ0, each step of the IAS for problem (2) consists of the two updates,

θt → xt+1 → θt+1, t ≥ 0,

where
xt+1 = arg min

x

{
F(x, θt)

}
, θt+1 = arg min

θ

{
F(xt+1, θ)

}
.

Due to the particular form of the objective function (3), each step comprises first the computation
of the minimizer of (a) with respect to x keeping θ fixed, then the minimizer of (b) with respect to
θ with the updated value of x fixed. While this procedure is remarkably similar to the Alternating
Direction Method of Multipliers (ADMM) [1], there are some fundamental differences. In fact, while in
ADMM, the alternating structure is achieved via an artificial partial decoupling of the fidelity term and
the penalty term by introducing auxiliary variables, in IAS the partial decoupling is automatic, with
the common term of (a) and (b) being the link between the two minimization tasks. Moreover, both
minimization tasks are relatively simple with an exact condition for the minimizer. For some choices of
hyperparameters, IAS has been shown to be globally at least linearly convergent [7, 5]. In the following,
we review some of the computational details of the IAS algorithm that are particularly relevant for the
proposed hybrid schemes.

Update of x The update of x given θ by minimizing part (a) in (3) reduces to solution of a quadratic
minimization problem, i.e.,

xt+1 = arg min
x

{
‖Ax− b‖2 + ‖D−1/2

θ x‖2
}
, θ = θt ,

thus xt+1 is the least squares solution of the linear system[
A

D−1/2
θ

]
x =

[
b
0

]
. (4)

When the dimensions of the problem and the computing resources make it unfeasible to solve the least
squares problem (4) exactly, a suitable approximate solution can be obtained by solving a reduced
problem via the Conjugate Gradient for Least Squares (CGLS) algorithm [9], often without any real loss
of information [6]. To define the reduced problem, introduce the change of variables,

D−1/2
θ x = w,
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which corresponds to a whitening of the conditional prior, and reformulate the linear system (4) in terms
of w as [

Aθ
I

]
w =

[
b
0

]
, Aθ = AD1/2

θ . (5)

The least squares solution of the linear system after the change of variables is the Tikhonov regularized
solution of

Aθw = b (6)
with regularization operator equal to the identity and regularization parameter 1. As pointed out in
[9], the Tikhonov regularized solution solving (5) is remarkably similar to the solution of (6) computed
by the CGLS iteration with an early stopping criterion [6] based on Morozov discrepancy principle and
the coupling between the two least squares problems. More precisely, denote the kth Krylov subspace
corresponding to the above system by

Kk = Kk(AT
θ b,AT

θA) = span
{(

AT
θAθ

)` Aθb | 0 ≤ ` ≤ k − 1
}
.

Define the Reduced Krylov Subspace (RKS) solution as

w(k) = argmin {‖b− Aθw‖ | w ∈ Kk} ,

where k is the first index satisfying

‖b− Aθw(k+1)‖ ≤
√
m, G(w(k+1)) > τG(w(k)),

where τ > 1, ε = τ − 1 > 0 is a small safeguard parameter, and the functional G, given by

G(w) = ‖b− Aθw‖2 + ‖w‖2,

is the objective function approximately minimized by the surrogate reduced model. To update x, we set

xt+1 = D1/2
θ w(k).

The purpose of the early termination of the CGLS iteration is to obtain a good approximation of
the solution to (5) with the surrogate reduced model, not to introduce additional regularization. In
our setting, the information about the type of solutions to favor is included in the matrix Aθ via the
multiplication by the matrix D1/2

θ .

Update of θ It follows from the independence of the components that the first order optimality
condition that needs to be satisfied by the updated θ can be imposed componentwise. Setting the partial
derivatives of (b) in (3) with respect to θj equal to zero, we find that θj must satisfy

− 1
2
x2
j

θ2
j

−
(
rβ − 3

2

)
1
θj

+ r
θr−1
j

ϑrj
= 0 , x = xt+1 . (7)

While for some values of r, notably r = ±1, (7) admits an analytic solution, in general we need to solve
it numerically. It was shown in [6] that after the changes of variables θj = ϑjξj , xj =

√
ϑjzj , we may

write ξj = ϕ(|zj |), and via implicit differentiation, the function ϕ satisfies the initial value problem

ϕ′(z) = 2zϕ(z)
2r2ϕ(z)r+1 + z2 , ϕ(0) =

(η
r

)1/r
, (8)

therefore the updated θj can be computed by a numerical time integrator.
We conclude this section with the main results on selecting the model parameters (r, β, ϑ). The values

of the parameters r and β affect how strongly the sparsity of the solution is promoted and determine the
convexity of the objective function, while the value of ϑj can be related to the sensitivity of the data to
xj . Recall that for a linear model b = Ax+ ε, a classical measure of the sensitivity of the data b to the
component xj is ‖Aej‖, where ej ∈ Rn is the canonical jth Cartesian unit vector. It was proven recently
[8, 5, 6] that under rather natural conditions, a judicious choice of the parameter ϑ is

ϑj = C

‖Aej‖2
,

where the constant C > 0 is related to the expected sparsity of of the solution and to an estimate of the
signal-to-noise ratio (SNR). Due to the connection with sensitivity, we this choice of ϑ is referred to as
sensitivity scaling.
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3 Hybrid IAS algorithms
In this section, we will propose a hybrid version of the IAS algorithm in which the hypermodel in the
generalized gamma family is updated componentwise as the iteration proceeds. The following theorem,
see [6] for details, summarizes how the values of the hyperparameters r and β affect the convexity
properties of the functional F .

Theorem 1. Let β > 0 and r 6= 0, and let F(x, θ) be the objective function for the minimization problem
in (2).

(a) If r ≥ 1 and η = rβ − 3/2 > 0, the function F(x, θ) is globally convex.

(b) If 0 < r < 1 and η = rβ − 3/2 > 0, or, if r < 0 and β > 0, the function F(x, θ) is convex
provided that

θj < θ = ϑj

(
η

r|r − 1|

)1/r
.

As far as the computation of the MAP estimate is concerned, the global convexity of the objective
function when r ≥ 1 is very convenient, although there are several reasons for considering other choices
of r that yield hierarchical priors that promote sparsity more strongly. It has been observed that, by
and large, the further the objective function is from being globally convex, the stronger the sparsity of
the minimizer is promoted. We review below some recent results, see [10, 5], relating generalized gamma
hyperpriors and classical sparsity-promoting priors.

Let

P(x, θ | r, β, ϑ) = 1
2

n∑
j=1

x2
j

θj
−
(
rβ − 3

2

) n∑
j=1

log θj
ϑj
−

n∑
j=1

(
θj
ϑj

)r

=
n∑
j=1

p(xj , θj | r, β, ϑj)

denote the penalty term (b) in the objective function, and express the IAS updating formula (8) for θj
as a function of xj

gj(xj) = θj = ϑjϕ

(
|xj |√
ϑj

)
.

It has been shown in [5] that for r = 1, as η → 0+ the penalty function P(x, θ, 1, 3/2 + η, ϑ) approaches
a weighted `1-penalty in the sense that

lim
η→0+

P(x, g(x) | 1, 3
2 + η, ϑ) =

√
2

n∑
j=1

|xj |√
ϑj

and, moreover, the corresponding minimizer x∗ found by the IAS algorithm converges to scaled `1
regularized solution.

More generally as shown in [6], by choosing rβ = 3/2, the penalty function coincides with the weighted
`p-norm, with p = 2r/(r + 1),

P
(
x, g(x) | r, 3

2r , ϑ
)

= Cr

n∑
j=1

|xj |p√
ϑj
p , Cr = r + 1

(2r)r/(r+1) .

While this result holds in general, for 0 < r < 1 and β = 3/2r, the model corresponds to `p penalties
with 0 < p < 1, which are known to promote strongly the sparsity of the solution.

For the inverse gamma hypermodel, corresponding to r = −1, the penalty term approaches the
Student distribution, a prominently fat tailed distribution favoring large outliers, and leading to a greedy
algorithm that strongly promotes sparsity [6]. The main problem with the lack of global convexity of
the objective function is that optimization-based algorithms for the MAP computation may stop at a
spurious local minimizer.

In this work, we propose two modifications to the IAS algorithm that take advantage of the global
convexity of the objective function corresponding to the gamma hyperprior (r = 1), and of the stronger
sparsity promotion of hierarchical models with r < 1 whose associated objective functions are only
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locally convex. In both proposed algorithms, the gamma hyperprior is used initially to drive the IAS
iterates towards the unique minimizer of the globally convex objective function, then switched to greedier
hypermodel. The two different algorithms are referred to as local and global hybrid models. In the local
hybrid, the hyperprior is changed componentwise as soon as the corresponding variance falls inside
the convexity region of the second model, while in the global model, the hyperprior is changed for all
components after a given number of IAS steps. Next we present the details relative to the two hybrid
schemes.

3.1 Local hybrid IAS
We write the objective function F(x, θ | r, ϑ, β) with the given model parameters (r, β, ϑ) as

F(x, θ | r, ϑ, β) = ‖b− Ax‖2 +
n∑
j=1

p(xj , θj | r, ϑj , β),

where
p(xj , θj | r, ϑj , β) = 1

2
x2
j

θj
−
(
rβ − 3

2

)
log θj

ϑj
+
(
θj
ϑj

)r
.

Unlike in the standard IAS algorithm, where the parameters r, β and ϑ are kept fixed, the local hybrid
algorithm updates the parameters for those component pairs (xj , θj) that satisfies the convexity criterion
in Theorem 1 for the second hypermodel.

More precisely, consider two hypermodels with parameters (r(1), β(1), ϑ(1)) and (r(2), β(2), ϑ(2)), with
r(2) < 1 ≤ r(1), r(2) 6= 0, referred to as M1 and M2, respectively, and start the IAS algorithm with the
model M1.

Let (x, θ) = (xt, θt) denote the IAS iterate after t steps. For each component xj of x, we compute
the θj update corresponding to model M2,

θ
(2)
j = g(xj | r(2), β(j), ϑ

(2)
j ) = g(2)(xj).

If

θ
(2)
j < θj = ϑ

(2)
j

(
η(2)

r(2)|r(2) − 1|

)1/r(2)

, (9)

we update θj switching to M2, otherwise we continue with M1. Observe that since the function g(2) is
strictly increasing for xj > 0, we may write the above condition in terms of xj ,

|xj | <
[
g(2)

]−1
(θj) = xj .

Let I ⊂ {1, 2, . . . , n} denote an index set such that

j ∈ I if and only if |xj | < xj ,

and by Ic its complement. Define the local hybrid objective function,

F(x, θ | I) = ‖b− Ax‖2 +
∑
j∈Ic

p(xj , θj | r(1), ϑ
(1)
j , β(1)) +

∑
j∈I

p(xj , θj | r(2), ϑ
(2)
j , β(2)).

whose convexity can be guaranteed by a bound constraint

|xj | < xj for j ∈ I. (10)

It was shown in [6] that to add a bound constraint to the IAS algorithm it suffices to project the updated
vector x onto the feasible set. The selection of the hyperparameter ϑ(j), j = 1, 2, deserves some attention.
For M1, the value of ϑ(1) can be decided by taking sensitivity analysis into consideration, as suggested
in [6]. We assign the value of ϑ(2) based on the following consideration: If xj = 0, the corresponding
variance θj should be the same regardless of the choice of the hypermodel, and should reflect the expected
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variance of a background signal. We recall that if xj = 0, the updating of θj in the IAS algorithm
according to (7) yields

g(0 | r, β, ϑj) = ϑj

(η
r

)1/r
, η = rβ − 3/2,

and in order for the two models to agree, it suffices to set

ϑ
(2)
j =

(
η(1)

r(1)

)1/r(1) (
r(2)

η(2)

)1/r(2)

ϑ
(1)
j .

We are now ready to summarize the proposed local hybrid IAS scheme in algorithmic form. Here we
assume that x ∈ Rn itself is sparse; suitable adjustments need to be made when the sparsity assumption
concerns the increments.

Algorithm 1 Local Hybrid IAS

inputs: Noisy data b ∈ Rm,
linear forward operator A ∈ Rm×n, noise covariance matrix Σ ∈ Rm×m

hyperparameters (r(1), β(1), ϑ(1)), (r(2), β(2), ϑ(2))
output: estimated signal and variance x∗, θ∗ ∈ Rn

1. initialize: set t = 0, θt = ϑ(1), I = ∅
2. for t = 0, 1, 2, . . . until convergence do:
3. update xt+1 by solving (6)
4. project components xt+1

j , j ∈ I, to [−x, x]
5. for j = 1, . . . , n
6. if θj ≥ θ
7. update θt+1

j = g(xt+1
j | r(1), β(1), ϑ

(1)
j )

8. else
9. update θt+1

j = g(xt+1
j | r(2), β(2), ϑ

(2)
j )

10. update I = I ∪ {j}
11. endif
12. end for
13. x∗ = xt+1, θ∗ = θt+1

Before discussing a modification of the above algorithm, a comment on the projection on convexity
interval (step 4) is of order. The projection step is included in the algorithm to ensure that the index set
I of components being updated using the hypermodel M2 is monotonically increasing, which, in general,
may not be automatically guaranteed. However, the numerical experiments show that the projection
step in practice may not be necessary, and the bound constraint |xj | < x is not active.

In [6], the stability of the convexity condition was briefly discussed in terms of the scaled (dimen-
sionless) variables, zj = xj/

√
ϑ

(2)
j , ξj = θj/ϑ

(2)
j . It was shown (see Lemma 4.2 in [6]) that if ξtj < ξ,

then
|zt+1
j | ≤Mξtj = Mϕ(|ztj |),

where ϕ is the IAS updating function of the scaled variable ξj given the current zj , and M depends on
the matrix A and the data b. For example, in the case r = 1/2, the convexity bound is ξ = 16η2. A
natural question is whether, if |ztj | < ε < z, where z = ϕ−1(ξ) is the convexity bound for the scaled
variable zj , it can be guaranteed that |zt+1

j | < z, or, equivalently,

ϕ(|zt+1
j |) < ξ = 16η2,

where η = r(2)β(2) − 3/2. In [6] it was shown that

ϕ(s) = 4η2 + 1
η
s2 + O(s4),
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therefore,
|zt+1
j | ≤M(4η2 + 1

η
ε2).

To check if (9) is satisfied up to fourth order terms, it suffices to have

4η2 + 1
η

(M(4η2 + 1
η
ε2))2 < 16η2,

or
M2(4η2 + 1

η
ε2)2 < 12η3,

that is,

ε2 <

√
12
M

η3/2 − 4η2.

The positivity of the right side can be guaranteed by choosing η sufficiently small. While the above
estimate is only approximate and qualitative, it conveys the idea that the stability of the convexity
condition may depend on the forward model as well as on hyperparameter selection.

3.2 Global hybrid IAS
As the numerical experiments confirm, the gain from switching to the model M2 for components that
are already in the convexity region of that model is not so much in enhancing, e.g., sudden disconti-
nuities in the solution, but more on cleaning the background. An alternative approach is to relax the
convexity requirement and use the global convexity of the first model to find a good starting point for
the optimization with the second model, taking the risk of minimizing a non-convex objective function
from an initial guess sufficiently close to the global minimum of the first model.

More specifically, we run first the IAS algorithm for a fixed number t of iterations with model M1,
whose conservative parameter choice guarantees convergence towards a global minimizer, and then switch
to the less conservative hypermodel M2, trading the global convexity for stronger sparsity promotion.
We refer to this scheme as global hybrid IAS, since the change of hyperprior is carried out at once for
all the variances θj . unlike in the local version where only selected components followed the model M2.
The computational details are summarized in Algorithm 2.

Algorithm 2 Global Hybrid IAS

inputs: Noisy data b ∈ Rm,
linear forward operator A ∈ Rm×n, noise covariance matrix Σ ∈ Rm×m

hyperparameters (r(1), β(1), ϑ(1)), (r(2), β(2), ϑ(2))
integer t > 0 defining the switch point

output: estimated signal and variance x∗, θ∗ ∈ Rn

1. initialize: set θ0 = ϑ(1)

2. for t = 0, 1, 2, . . . until convergence do:
3. update xt+1 by solving (6)
4. for j = 1, . . . , n
5. if t < t

6. update θt+1
j = g(xt+1

j | r(1), β(1), ϑ
(1)
j )

7. else
8. update θt+1

j = g(xt+1
j | r(2), β(2), ϑ

(2)
j )

9. endif
10. end for
11. x∗ = x(t+1), θ∗ = θ(t+1)

In the description of the Algorithm 2, the value t is given as input. Alternatively, one could run the
model M1 until the variances θ stop changing significantly. Since in general we have little information
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of the nature of the minima of the objective function when r < 1, a definitive automatic switching rule
is not easy to justify. We illustrate the performance of the algorithm on a few test cases in the section
on computed examples.

4 IAS for sparse increments
The IAS algorithm, and the hybrid versions of it, assume that the unknown has a sparse representation,
and x is the vector of coefficients in this representation. In the case where the a priori sparsity belief is
not about the signal x but its increments, the IAS algorithms needs to be suitably adapted. In the one
dimensional case the changes are rather straightforward, while the treatment in the higher dimensional
cases is more delicate.

In the one-dimensional case assume that the unknown is a piecewise constant signal in R characterized
by few discontinuities. If f(s) is the signal, 0 ≤ s ≤ 1 and xj = f(jh), where h = 1/n is the discretization
parameter, we may express x in terms of the increments,

xj = x0 +
j∑

k=1
(xk − xk−1), 1 ≤ j ≤ n,

or, letting yj = xj − xj−1, as
x = x0e1 + L−1y,

where

L =


1
−1 1

. . . . . .
−1 1

 , e1 =


1
0
...
0

 .
Assuming, for simplicity that x0 = 0, it follows from the invertibility of L that we may reformulate the
problem as estimating y from the observation model

b = AL−1y + ε,

with the a priori belief that y is sparse. We update x in the IAS algorithm by computing

yt+1 = argmin

1
2‖b− AL−1y‖2 + 1

2

n∑
j=1

y2
j

θtj

 , xt+1 = L−1yt+1,

where the sparsity of y is playing a role in the update of the θ

θt+1 = argmin

1
2

n∑
j=1

(yt+1
j )2

θj
+
(
rβ − 3

2

) n∑
j=1

log
(
θj
ϑj

)
−

n∑
j=1

(
θj
ϑj

)r .

The passage from the signal to its increments is more challenging in dimensions d ≥ 2 where the
one-to-one correspondence no longer holds.

To illustrate how to proceed, consider a quadrilateral graph, the nodes representing, e.g., the pixels in
an image that we want to estimate, with adjacent pixels connected by an edge, see Figure 1. Assume for
simplicity that the values of the image vanish at the boundary nodes, that we refer to as bound nodes,
thus we are only interested in estimating the values at the remaining nodes, referred to as free nodes.
Let nv be the number of the free nodes and ne the number of edges with at least one free node as an end
point, referred to as free edges. Let L ∈ Rne×nv denote the mapping from the free nodal values collected
in the vector x to the increments along free edges in the vector y,

y = Lx. (11)

Since the nodal values at the bound nodes, not included in the vector x, are equal to zero, the matrix L
has a trivial null space, i.e., N (L) = {0}.

Let n` denote the number of all loops Tj in the graph, see Figure 1, including those defined by the edges
between bound nodes, and let M ∈ Rne×n` be the matrix computing the circulation around each loop by
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Figure 1: Schematics of the circulation condition Mz = 0. In this figure, the black dots indicate the free
nodes and the green dots are bound nodes in which the grid function is assumed to vanish. Between free
nodes, no edge is defined, thus corresponding to a zero contribution to the circulation. If z is a jump
vector corresponding to a grid function x, the sums around edges of each loop must vanish.

summing the increments over edges in clockwise order. If the increments along the edges correspond the
nodal values, then the circulation in each element must vanish, i.e., My = 0 or, equivalently, y ∈ N (M)
for every y ∈ R(L). Since the edge increments associated with the nodal values are computed via the
matrix L. Consequently, the matrices L and M define a short exact sequence,

{0} −→ Rnv L−→Rne M−→Rn` −→ {0}.

To define a prior promoting sparse increments, we consider a conditionally Gaussian prior model in
terms of the increments yj along the free edges, written concisely as

πy,θ(y, θ) = πy|θ(y | θ)πθ(θ) ∝ exp

−1
2

ne∑
j=1

y2
j

θj
+ φ(θ)

 , (12)

where the function φ(θ) = φr,β(θ) does not depend on y. It follows from the definition of the increments
in terms of the nodal values (11) that y ∈ R(L) = N (M), therefore the support of the prior is restricted
to N (M). Introducing the auxiliary variable

β = D−1/2
θ y,

where Dθ ∈ Rne×ne is the diagonal matrix with entries θj , the compatibility condition on y can be
written in terms of β as

β ∈ R(Lθ), Lθ = D−1/2
θ L.

Consider the QR factorization of Lθ,

Lθ = QR =
[

Q1 Q2
] [ R1

O

]
,

where the orthogonal matrix Q is partitioned in the two blocks, Q1 ∈ Rne×nv , Q2 ∈ Rne×(ne−nv), and
R1 ∈ Rnv×nv is upper triangular and nonsingular because L is of full rank, and O is the zero matrix of
size(ne − nv)× nv. For any β ∈ R(Lθ), there exists x ∈ Rnv such that

β = Lθx = QRx, (13)

hence, by multiplying both sides of (13) by the transpose of Q, we get

QTβ =
[

QT
1β

QT
2β

]
=
[

R1x
0

]
,

or, equivalently,
R−1

1 QT
1β = x, QT

2β = 0.
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Therefore we can express the compatibility condition in terms of the auxiliary variable as

β ∈ N (QT
2 ) = H .

The posterior density for the prior (12) on the increments,

π̃β|b,θ(β | b, θ) ∝ exp
(
−1

2‖b− AR−1
1 QT

1β‖2 −
1
2‖β‖

2 + φ(θ)
)

(14)

if we neglect the compatibility conditions, when restricted to the subspace H becomes

πβ|b,θ(β | b, θ) = π̃post(β | b, θ)⊗ δH (β) (15)

∝ exp
(
−1

2‖b− AR−1
1 QT

1β‖2 −
1
2‖Q

T
1β‖2 + φ(θ)

) ∣∣∣∣
QT

2β=0
,

where δH is the singular measure concentrated on H . The following theorem shows that it is possible
to carry out the iterations of the IAS algorithm for the posterior (15) working directly with (14).

Theorem 2. The vector β∗ that maximizes (14) satisfies QT
2β∗ = 0, therefore also maximizes (15).

Moreover, β∗ can be found by minimizing the expression

F (β) = 1
2‖b− AL†θβ‖

2 + 1
2‖β‖

2,

where L†θ is the pseudoniverse of Lθ.

Proof. From the observation that

‖β‖2 = ‖QTβ‖2 = ‖QT
1β‖2 + ‖QT

2β‖2,

it follows that
1
2‖b− AR−1

1 QT
1β‖2 + 1

2‖β‖
2 − φ(θ)

= 1
2‖b− AR−1

1 QT
1β‖2 + 1

2‖Q
T
1β‖2 + 1

2‖Q
T
2β‖2 − φ(θ).

and its minimizer, for fixed θ, is

β∗ = argmin
{

1
2‖b− AR−1

1 QT
1β‖2 + 1

2‖Q
T
1β‖2

}
, QT

2β
∗ = 0,

which also maximizes (15). Moreover, for β∗ such that QT
2β
∗ = 0,

R−1
1 QT

1β∗ = L†θβ∗,

which completes the proof. �
The previous theorem shows that to find the MAP estimate, is not necessary to form the matrix M

or to compute the QR factorization of the matrix Lθ. Instead, it suffices to solve the linear system[
AL†θ

I

]
β =

[
b
0

]
in the least squares sense, because its solution automatically satisfies QT

2β = 0, thus guaranteeing the
existence of a vector x such that (13) holds. The vector y = D1/2

θ β satisfies the compatibility condition
My = 0, representing feasible and consistent increments along the edges. When resorting to the RKS
approximation of the update of the signal inside the IAS iteration, we need to have a procedure to
multiply a vector β by the matrix AL†θ and its transpose. The matrix-vector product of β with AL†θ can
be computed by first solving Lθα = β for α in the least squares sense, then multiplying α by A. To
evaluate the product of a vector z we observe that the transpose of AL†θ is(

L†θ
)TAT = Lθ

(
LT
θ Lθ
)−1AT,

where, fortunately, in our case LT
θ Lθ is very sparse. Therefore we solve

(
LT
θ Lθ
)
w = ATz, then multiply

the solution w by Lθ.
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5 Computed examples
In our evaluation of the performance of the local and global hybrid IAS algorithms, we focus on the
following questions:

Stability of the convexity condition in local IAS: To monitor how the components behave with respect
to the local convexity region, we run the local hybrid IAS and monitor the behavior of the index set I
in Algorithm 1. In particular, we track the indices j ∈ I, pointing to components xj that enter the local
convexity region, satisfying (10), and check whether or not they remain in I without forcing the bound
constraint for xj .

Identification of the support: It is of particular interest to see whether the local hybrid method
identifies correctly the support of a generative signal, avoiding stopping at a local minimum that may
miss some of the components in the support, as sometimes happens when the non-convex prior models are
used. Likewise, with the global hybrid algorithm, we monitor the indices corresponding to the variances
in the convexity region at the switching iteration t and at the final iteration of Algorithm 2.

In our examples, the hyperpriors for the hybrid schemes are the gamma (r(1) = 1) and the inverse
gamma (r(2) = −1). The performance of local and global hybrid IAS algorithms are also compared
with the plain IAS with either the gamma or the inverse gamma hyperprior. In the global hybrid IAS
algorithm, the switch to the non-convex model occurs at iteration t = 10.

Example 1 The first test case is a one-dimensional deconvolution problem. The generative model
is a piecewise constant signal f : [0, 1] → R, f(0) = 0, and the data consist of a few discrete noisy
observations,

bj =
∫ 1

0
A(sj − s)f(s)ds+ εj , 1 ≤ j ≤ m, A(s) =

(
J1(κ|s|)
κ|s|

)2
,

where J1 is the Bessel function of the first kind and κ is a scalar controlling the width of the kernel that
we set to κ = 40, yielding a kernel with FWHM = 0.08. We discretize the integral as∫ 1

0
A(sj − s)f(s)ds ≈

n∑
j=1

wkA(sj − tk)f(tk), 1 ≤ k ≤ n,

where tk = (k − 1)/(n− 1) and the wk’s are the trapezoidal quadrature weights. We generate the data
with a dense discretization with n = ndense = 1253, while in the forward model used for solving the
inverse problem, we set n = 500. The observation points are given by sj = (4 + j)/100, 1 ≤ j ≤ m = 91,
and the additive noise is assumed to be scaled white noise, with standard deviation σ set to 2% of the
maximum of the noiseless generated signal. We denote xj = f(tj). Figure 2 shows the generative signal
and the data.

While the generative signal, a piecewise constant function, is not sparse, it admits a sparse repre-
sentation in terms of its increments zj = xj − xj−1 over the interval of definition. Assuming x0 = 0,
then

z = Lx , L =


1 0 . . . 0
−1 1 . . . 0

. . .
0 . . . −1 1

 ∈ Rn×n,

hence

x = Cz with C = L−1 =


1 0 . . . 0
1 1 . . . 0
...

. . .
1 . . . 1 1

 ∈ Rn×n.

Therefore our inverse problem is to estimate the vector z, assumed to be sparse, from the data vector b,
given the forward model

b = ACz + e, ε ∼ N(0, σ2I), Ajk = wkA(sj − tk).

The reconstruction results, together with the final variance vector θ and the number of CGLS steps
per IAS iteration, are shown in Figure 3. The locations of the first two increments in the generative signal
are not easy to detect from the data, see Figure 2, and they are not sharply restored by the IAS algorithm
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Figure 2: Left: The generative model. Right: the blurred and noisy data vector b ∈ R91.

with gamma hyperprior (see the first row of Figure 3), while the IAS with inverse gamma (second row)
hyperprior lumps the increments, stopping at a local minimizer that corresponds to a simpler profile.

The reconstruction with the local hybrid algorithm is shown in the first panel of the third row of
Figure 3. The middle panel of the same row shows in dashed blue the components of θ that follow the
inverse gamma distribution at the last iteration of IAS, and in solid red those that never switch from the
gamma distribution. The effect of changing to the inverse gamma is a cleaner background. The global
hybrid hyperprior returns a sharp restoration of the signal, as shown in the first panel of the fourth row
of Figure 3, with the five jumps accurately identified in the correct positions. In both cases, after a few
steps, the number of CGLS steps per IAS iteration equals the number of increments detected, indicating
that both hybrid IAS algorithms can determine very accurately the cardinality of the support: see also
[6].

To address the stability of the convexity condition, we follow iteration by iteration the convexity
condition, classifying each index in the sets I (convexity condition satisfied) and its complement Ic
(condition not satisfied). The left panel of Figure 4, where the indices in I are marked in green, and
those in Ic in yellow, indicate that the set I is monotonously increasing, that is, once a component enters
the convexity region, it does not leave it, thus effectively removing the need for imposing the bound
constraint (10).

The middle panel of Figure 4 shows the variances θj in the global hybrid algorithm at the end of
the iteration t − 1 = 9, prior to switching to the inverse gamma model. The components θj satisfying
the convexity bound, in dashed blue, are those for which the switch to the inverse gamma distribution
does not compromise the convexity of the objective function. The panel on the right indicates for
each component at each global hybrid IAS iteration whether it satisfies (green) or not (yellow) the
convexity bound. Although in this case, unlike for the local hybrid IAS algorithm, the index set I is not
monotonically increasing, eventually the support is correctly detected to high accuracy.

Example 2 The second test case is an image restoration problem. Let Ω be a square compact region
in R2 and x be the generative image defined over Ω. The discrete and noisy data consists of observation
at points qj ∈ Ω of a convolved version of the image,

bj =
∫

Ω
A(qj , p′)x(p′)dp′ + εj .

with a Gaussian convolution kernel

A(p, p′) = 1
2πw2 exp

(
−‖p− p

′‖22
2w2

)
, with w = 0.015. (16)

The integral is discretized over an n×n pixel grid with n = 136, whereas the number of observation points
is m = 68× 68. The noiseless signal is corrupted by additive scaled white noise with standard deviation
approximately 2% of the maximum noiseless signal. We assume a priori sparsity of the horizontal and
vertical increments of the discrete image x, and implement the sparsity prior in the IAS algorithm
according to the procedure detailed in Section 4. The original image, the observed data, vertical and
horizontal increments of the original image are shown in Figure 5.

The IAS is performed by constraining the values xj in the interval [0, 1], 1 ≤ j ≤ n2. More details
on constrained IAS are given in [6].

The restored images computed by the IAS algorithm with gamma, inverse gamma, and by the local
and global IAS algorithms are shown in Figure 6. Figure 7 shows the logarithmic plot of variances θj ,
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Figure 3: Reconstruction of the signal via gamma, inverse gamma, local hybrid and global hybrid
hyperprior (left), the hyperparameter θ (center) and the CGLS iterations per each IAS iteration (right).
For the gamma hyperprior in the top row the parameter values are η = 10−2 and ϑ = 10−5, for the
inverse gamma hypeprior in the second row η = −4.5 and ϑ = 10−5. The hybrid hyperpriors in the
bottom rows inherit the parameters from the generative hyperpriors.

Figure 4: Left: Pseudocolor image of the indices iteration by iteration of the local hybrid algorithm,
green indicating the indices of those components that are in the convexity domain (index set I), and
yellow those that are outside of it (index set Ic). Observe that when moving up, the yellow intervals
shrink and the green ones increase, indicating stable convexity without the need to force the bound
constraint (10). Center: Variables θj in the global hybrid algorithm at the iteration t − 1 = 9, before
the switch to inverse gamma model. The values in the convexity region are indicated in blue, the rest
in red. Right: Pseudocolor image of the indices iteration by iteration in the global hybrid algorithm,
green indicating the indices with components in the stability region. Observe that while the algorithm
converges, correctly identifying the support, the index sets are not monotonous. In particular, after the
switch (t = 10), the discontinuities close to the left end of the interval create some confusion.
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Figure 5: From left to right: original test image x ∈ R136×136; observed data b ∈ R68×68 corrupted
by Gaussian blur and additive Gaussian noise; vector of horizonal increments of the image; and vertical
increments.

Figure 6: From left to right: Restored images by IAS algorithm based on gamma and inverse gamma
hyperpriors, and by the local and global hybrid IAS algorithm using the combination of gamma and
inverse gamma models. In the gamma hyperprior, the parameter values are η = 10−4 and ϑ = 10−3, and
in the inverse gamma hypeprior, η = −6.5 and ϑ = 10−4. The hybrid hyperpriors inherit these parameters
from the generative hyperpriors. The dotted horizontal line indicates a cut across the reconstruction
defining the profiles shwn in Figure 7.

the profile of the restorations along the dotted horizontal cut lines indicated in the reconstructions of
Figure 6, and the profile of the original image. Not surprisingly, the restoration using gamma hyperprior
shows slightly rounded corners, while the algorithm based on inverse gamma hyperprior produces some
staircasing artifacts along the edges. Both effects are mitigated in the restorations computed with the
hybrid IAS algorithms. The reconstruction of the global hybrid IAS algorithm is of remarkably high
quality.

The number of CGLS steps in each IAS iteration for the four models is reported in Figure 8.
The left panels of Figure 9 display pseudocolor images of the indices of the variances θj of the hor-

izontal and vertical increments at the last iteration of local hybrid IAS, with green corresponding to
increments that satisfy the local convexity condition for the inverse gamma, and yellow to the comple-
ment. The remaining panels of Figure 9 show the corresponding pseudocolor images for the global hybrid
algorithm at the switching iteration t (center), and at the last iteration of global hybrid IAS (right),
respectively.

Example 3 In the third example, we consider the problem of estimating a nearly black two-dimensional
object. The generative model is a starry night impulse image, defined as a distribution on Ω = [0, 1]×[0, 1],

dµ(p) =
J∑
k=1

akδ(p− pk)dp, pk ∼ Uniform(Ω), ak ∼ Uniform([1.5, 2]) ,

is observed through a Gaussian convolution kernel - see (16), with the discrete and noisy data at obser-
vation points qj ∈ Ω given by

bj =
∫

Ω
A(qj , p′)dµ(p′) + εj =

K∑
k=1

akA(qj , pk) + εj .

To solve the inverse problem, we subdivide the image Ω into n = 128× 128 = 16 384 pixels, denoted by
Ω`, and let A be the matrix representing the discretized kernel,∫

Ω
A(qj , p)dµ(p) ≈

n∑
`=1
|Ω`|A(qj , q′`)︸ ︷︷ ︸

=Aj`

x`, x` = 1
|Ω`|

∫
Ω`
dµ(p),
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Figure 7: From top to bottom: Logarithmic plots of variances corresponding to vertical and horizontal
increments, and on the right, one-dimensional profiles extracted from the restorations in Figure 6 for the
gamma, inverse gamma, local hybrid and global hybrid hyperprior.

Figure 8: Number of CGLS steps per outer iteration, from top to bottom and from left to right, for
gamma, inverse gamma, local hybrid and global hybrid hyperprior.
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Figure 9: Pseudocolor image of the indices to the variances θj for vertical (top) and horizontal increments
(bottom) with color coding indicating whether θj < θ̄ (green) or θj ≥ θ̄ (yellow). The right panels
represent the final iteration of the local hybrid algorithm, middle panels the iteration t− 1 right before
the switch of the global hybrid algorithm, and right panels the final iteration of global hybrid algorithm.

where q′` denotes the center point of the pixel Ω` and |Ω`| is its area. The number of observation points is
m = 64× 64 = 4 096 and the noiseless signal is corrupted by scaled white noise with standard deviation
approximately 1.8% of the maximum noiseless signal. In this case, since the signal itself is sparse, no
change of variable is needed. Figure 10 shows the original impulse image characterized by k = 80 non-zero
points, and the noisy blurred image with kernel width w = 0.015.

The restored images and the variances θ represented as pixel images obtained with the IAS algorithm
with gamma and inverse gamma hyperpriors, and the local and global hybrid IAS algorithms are shown
in Figure 11. The differences in the four algorithms are clearly visible from the estimates of the variance
θ and the one-dimensional profiles along the dotted horizontal cut line in the image. The changes in the
image of the variances estimated by the IAS with gamma hyperprior (top row, middle) is less pronounced
than for the estimates obtained with the other three algorithms, and the intensity of the second star
along the cut line (top row, right panel) is significantly lower than in the original image. On the other
hand, while the reconstruction from the IAS with inverse gamma hyperprior (second row) is very sharp,
the algorithm is too greedy and misses the second star on the horizontal cut line (right panel). Both
hybrid reconstructions (third and fourth row) are sharper than that obtained with the gamma hyperprior

0
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2
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Figure 10: Left: Original generative impulse image plotted on a 128 × 128 grid as a pixel image.
This is the discretization used in the inverse solver, so the pixel image shown here represents the best
reconstruction that the algorithm could produce. The reconstructions are compared with this image.
Right panel: The 64× 64 blurred and noisy observation, degraded by Gaussian blur and additive while
Gaussian noise, scaled so as to achieve SNR ≈ 25.
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image, and reproduce the original profile with higher fidelity than the IAS algorithm with inverse gamma
hyperprior.

Finally, in Figure 12 the behavior of the variances in terms of distribution is shown as a pseudocolor
map in the local hybrid case at the final IAS iteration (left panel) and for the global hybrid case at the
switching (middle panel) and final (right panel) IAS iteration.

6 Conclusions
In the present work, we discuss the minimization of conditionally Gaussian hypermodels under the
adoption of generalized gamma hyperpriors. Based on the results derived in [6], the two proposed hybrid
algorithms, namely the local and global hybrid IAS, exploit the global convexity ensured by gamma
hyperpriors (r = 1) and the stronger sparsity promotion of the generalized gamma hyperpriors with
r < 1. The local hybrid hypermodel preserves the global convexity characterizing the gamma hyperpriors
and, as confirmed by numerical examples, is particularly effective in cleaning the background, while not
ensuring a sharp recovery of sudden discontinuities in the signals. On the other hand, the global hybrid
hypermodel, which relies on the detection of a suitable initial guess for the minimization of the locally
convex hypermodel M2, returns high quality restorations at the expense of global convexity.
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