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Abstract—A well-known use of the blockchain technology is
Decentralized Finance (DeFi). DeFi makes financial informa-
tion accessible to the public but raises potential privacy and
security issues. In this study, we implemented a DeFi protocol
that protects privacy, which is based on the Mystiko.Network
protocol. As a proxy between the user and DeFi platforms,
the Mystiko.Network protocol offers an auditable confidentiality
mechanism for blockchain transactions. Via the new system, users
may submit anonymous DeFi transactions and get income back
into a shielded tokens pool. Moreover, we implemented a rollup
approach to handle anonymous DeFi transactions in groups. The
evaluation results suggest that the protocol is both practical and
affordable, in fact it is able to save around 90% of the cost for
DeFi transactions.

Index Terms—DeFi, Privacy, Zero-knowledge Proof

I. INTRODUCTION

The most well-known blockchain application, called Decen-
tralized Finance (DeFi), permits peer-to-peer trading, exchang-
ing, and staking through a collection of smart contracts. As of
December 23, 2022, the DeFi sector’s total locked value was
close to $69.95 billion [1]. DeFi exposes user transactions, in-
cluding identification and account balance, to the public, which
might represent a privacy and security risk. This is different
from standard finance apps. Anonymity and confidentiality [2]
are the two basic concepts that are frequently utilized when
discussing transaction privacy. Anonymity involves keeping
the user’s identity a secret, whereas confidentiality means
keeping the transaction’s financial details a secret. The smart-
contract-based DeFi apps, which need the specification of a
transaction value, make confidentiality impossible [3]. An au-
tomatic market maker, for instance, needs the value to decide
on the exchange rate. As a result, we anticipate achieving DeFi
transactions that protect user privacy and anonymity.

The adoption of privacy-preserving payment protocols gave
rise to the idea of decentralized anonymous payment (DAP)
systems, which used a shielded asset pool to conceal own-
ership [4]–[7]. In Zerocash [4], to spend tokens, the owner
uses zero-knowledge proof, which exposes nothing other than
the truth of the assertion, to demonstrate the ownership and
existence of the tokens in the pool. The token cannot be
deanonymized by an attacker and the transaction link can-
not be restored. In their paper [8], Li et al. extended the
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Mystiko.Network [6] system and added a proxy that connects
the external DeFi platforms to the current DAP systems. The
solution enables users to initiate DeFi transactions and receive
income back into their pool of protected assets.

Mystiko.Network is an auditable confidentiality protocol for
blockchain transactions. Li et al. solved two major hurdles in
order to extend the protocol and accommodate DeFi trans-
actions: unpredictable output amounts and high transaction
fees. In contrast to Mystiko.Network, which demands that
the total output amount be known and equal to the input
amount, a DeFi transaction, such as a trade on Uniswap, has
no predetermined output amount when the user initializes the
transaction. Li et al. developed partial tokens, an intermediate
state of shielded tokens with certain ownership but uncertain
value, to address this problem. Also, a user must pay a gas fee
for each DeFi transaction, which can be costly when there are
many transactions. The rollup approach was used by Li et al.
to lower the cost of the protocol. The rollup system compiles
a number of transactions into a single one and uploads it to a
blockchain that is accessible online, such as Ethereum.

In [8], the authors proposed the overview of the system,
but they did not describe the concrete design of the system.
In this paper, we instantiate the cryptography primitives from
[8] with practical algorithms and then evaluate the resulting
performance.

A. Previous Works

Zerocash [4] is the first privacy-preserving blockchain
employing zero-knowledge proof. The sender conceals the
transaction data in a commitment, while the receiver offers
a zero-knowledge proof demonstrating that the issuer holds
the commitment. A Merkle tree is used to organize the com-
mitments. Using Groth16 architecture, Zexe [9], Zkay [10],
and ZeeStar [11] expand the privacy-preserving foundation
to any smart contract. Zexe does not offer any development
tools, instead requiring users to calculate smart contracts off-
chain and then submit a zero-knowledge proof for accuracy.
Zkay and its follow-up work, Zeestar, suggested a language
for smart contracts that protect privacy. Yet those protocols
demand a lot of computing power, such as a lot of CPU cores
(Zkay, 12 cores), or a lot of memory (Zexe, 256 GB of RAM).

Another Bitcoin-based blockchain that protects anonymity
is Monero [7], although unlike Zerocash, Monero makes use



of ring signatures and range-proofs [12]. Certain kinds of zero-
knowledge proofs called range-proofs demonstrate that a value
is within a range. For instance, in order to prevent overflow,
users of Monero must demonstrate that the inputs and outputs
of their transactions are inside a legal range. Zether [13] is
a project built on Ethereum that is comparable to Monero,
which is the first construction to update a user’s balance
via homomorphic addition. The size of range-proofs is not
constant, hence scaling is fundamentally constrained for both
Monero and Zether.

It should be noted that earlier projects similar to Zerocash
and Monero only supported secret transactions on one chain.
Zerocross [14] is a cross-chain solution for Monero that
protects privacy and makes use of a sidechain and zero-
knowledge proofs for set membership [15]. The sender and
the recipient cannot maintain anonymity from one another,
and their work only permits cross-chain transactions using
Monero. P2DEX [16] is a safe multiparty computation-based,
privacy-preserving exchange (MPC) [17]. Due to MPC’s high
cost as a cryptographic primitive [18], P2DEX is unable to
handle high frequency trading. Some efforts [19], [20], which
are unfeasible, demand that all users use specialized hardware
(TEEs). TEEs can also be seriously vulnerable [21], [22].

All of the previously mentioned suggested solutions lack
auditability and are vulnerable to unauthorized usage. Us-
ing non-interactive zero-knowledge proof and homomorphic
commitments, ZkLedger [23] and Fabzk [24] enable au-
ditability. Nevertheless, because these systems prioritize cross-
organizational transactions and their efficiency suffers as user
counts rise, they are unsuitable for handling large chains. ZE-
BRA [25] is a privacy-preserving blockchain for an auditable
anonymous credential system, but ZEBRA does not support
DeFi applications.

A secure system for blockchain transactions that sup-
ports well-known chains is called Mystiko.Network [6]. Mys-
tiko.Network has a shielded tokens pool, like Zerocash, but
it also offers single-chain and cross-chain private payment
using an inter-chain data bridge. The Groth16 [26] system
and a ZK-rollup method were used by Mystiko.Network to
process transactions in the batch, which increased throughput
and reduced the cost of the protocol. The protocol also permits
the audits of private transactions.

Using a layer-2 blockchain and a bridge connecting it to the
layer-1 DeFi platform, Aztec [27] addresses the privacy issue
with DeFi. The layer-2 blockchain allows for private payments
utilizing Plonk [28] and shielded assets. Plonk just needs a
single universal setup, as opposed to Groth16, which requires
a trusted setup for each assertion to be proved. Yet, Groth16
outperforms Plonk in terms of concrete efficiency. A rollup
miner is also used by Aztec to batch DeFi transactions, but
Aztec’s miner must produce a zero-knowledge proof, adding to
the protocol’s expense. The rollup procedure in [8], however,
does not need zero-knowledge verification. Furthermore, [8]
enables users to spend plain tokens directly, unlike Aztec,
which requires users to first transfer assets to the shielded
tokens pool before using them for DeFi transactions.

Flex [2] is an addition to the ERC20 standard [29], which
serves as the common interface for exchanging different
Ethereum tokens. Although ERC20 serves as the foundation
for DeFi apps, anonymous transfer is not natively supported
by the standard at this time. Flex demonstrates how to create
composable DeFi apps while protecting privacy by demon-
strating how to create an anonymous token standard from pre-
existing DAPs [4], [7], [13], [30]–[32]. Flex, however, needs
to be modified or it is incompatible with current DeFi apps.
Instead, [8] might be implemented in DeFi apps that already
exist. Also, [8] has better compatibility, as it works with DeFi
apps on blockchains other than Ethereum.

While the previous paper provided an overview of the sys-
tem, this contribution focuses on instantiating the cryptography
primitives from the previous work using practical algorithms.
The resulting performance of the system is evaluated, presum-
ably to assess its effectiveness and feasibility in real-world
scenarios.

B. Paper Organization

This paper is organized as follows. In Section II, we intro-
duce the background on blockchain, zero-knowledge proofs,
and the other needed building blocks. Section III provides an
overview of the proposed architecture and of the implementa-
tion. Section IV details the performance of the protocol, and
in Section V, we discuss the conclusion and future works.

II. BACKGROUND

In this section, we introduce the background on blockchain,
zero-knowledge proofs, and the other needed building blocks.

A. Blockchain

A distributed ledger shared by a network of computers
is referred to as a blockchain. Bitcoin [33], which uses a
blockchain to record peer-to-peer transactions, is considered
to be the first generation of blockchain technology. Smart
contracts were introduced into the blockchain by Ethereum
[34]. Decentralized applications on blockchains are made
possible via smart contracts, which are computer programs
on the blockchain that execute themselves when specific
circumstances are met. All nodes in the network must concur
on the current status as the blockchain expands and attach
the same block. The blockchain defines a group of protocols
called consensus algorithms to guarantee consistency among
nodes.

B. Commitment Scheme

A commitment scheme, a cryptographic primitive, is widely
used in various advanced protocols, e.g., zero-knowledge
proofs and multiparty computations. The notion of Commit-
ment means a sender selects a value from a finite set and
commits the selection such that he/she cannot change his mind
later. The sender may send the commitment to a receiver.
A secure commitment scheme requires that the committed
value is hidden from the reviewer, which is called the hiding
property. Moreover, the sender cannot open the commitment to



values other than the original one, which is called the binding
property. There are many realizations of the scheme, and a
simple example of a commitment scheme is based on the RSA
cryptosystem [35], [36].

C. Zero-Knowledge Proof

The concept of zero-knowledge proof was first developed
in 1985 by Goldwasser, Micali, and Rackoff [37]. It enables a
prover to establish the veracity of a claim without disclosing
anything other than the claim itself. For example, the prover
may prove that two graphs are isomorphic without revealing
anything, especially the isomorphism between the two graphs.
In addition, Blum, Feldman, and Micali [38] developed the
non-interactive zero-knowledge proof, which allows for public
verification of the proof without involving the prover. The
early zero-knowledge proof protocols, however, are redundant
or inefficient in terms of proof size; as a result, those protocols
are not practicable. One of the earliest workable protocols is
the zk-SNARK algorithm [39], [40], which stands for Zero-
Knowledge Succinct Non-Interactive Argument of Knowledge.
The proof size in zk-SNARK is brief and unrelated to the
complexity of the statement. We used the Groth16 construction
[26], [41] of the zk-SNARK in this study since it offers the
best concrete efficiency and shortest proof size. Zk-SNARK
generates proofs in three phases:

1) For a language L in NP, Prover and Verifier jointly
compute the public parameters and the SNARK.

2) Prover generates a proof π with the instance x and the
witness w.

3) Verifier can check the validity of π and x.

D. Merkle Tree

Every non-leaf node in a Merkle tree [42], also known as
a hash tree, is labeled with the hash value of each of its child
nodes’ labels. The root hash is at the top of the tree, and there
is an authentication path from each leaf node to the root. It
enables effective membership verification in a sizable data set.
This 1 is an illustration of a Merkle tree with labels l1, l2, l3, l4
and a root hash of rt. All that is required to confirm the label
l1’s membership is H2 and H6.

rt = h(H5||H6)

H5 = h(H1||H2)

H1 = h(l1)

l1

H2 = h(l2)

l2

H6 = h(H3||H4)

H3 = h(l3)

l3

H4 = h(l4)

l4

Fig. 1. Merkle Tree.

III. IMPLEMENTATION

In this section, we introduce the proposed architecture as
illustrated in Figure 2, and we describe its implementation.
We employed the Groth16 proof system provided by ZoKrates
[43], a toolbox for zkSNARKs on Ethereum. We developed
smart contracts by using the Solidity language and initialized
each cryptography primitives. Namely, we build statistically-
hiding commitments from Poseidon [44] and Merkle tree from
Keccak [45].

Partial Tokens

Plain Tokens

Shielded Tokens

DeFi Protocol
DeFi-Rollup

DeFi-Deposit

DeFi-Withdraw

DeFi-Rollup/Defi-Refund

Fig. 2. Technical overview of the proposed approach.

The system provides three different token types: plain
tokens, shielded tokens, and partial tokens. A set of smart
contracts allows for DeFi-Deposit, DeFi-Withdraw, DeFi-
Rollup, and DeFi-Refund. Plain tokens are regular cryptocur-
rencies with public ownership and value, such as Bitcoin and
ETH. On the other hand, shielded tokens conceal ownership
and value. The commitments of shielded tokens are organized
in a Merkle tree, and shielded token owners can use zero-
knowledge proof to confirm their ownership and spend the
tokens. The value of tokens that are returned during DeFi
transactions is not verified until after transactions are complete.
The system offers partial tokens with clear ownership, albeit
the value won’t be known for a while.

Through a process known as DeFi-Deposit, a regular user
can transfer plain tokens to a DeFi contract and get shielded
tokens in return. The user may also utilize shielded tokens
as inputs and get shielded tokens as income during DeFi-
Withdraw. Fees associated with processing each DeFi trans-
action make them less affordable. DeFi-Rollup, in which a
DeFi-Rollup miner transmits a batch of DeFi transactions to
an external DeFi smart contract, allows the transaction fees
to spread out among other users. In unlikely corner scenarios,
the DeFi platform might not be available or the protocol could
be unable to reach the platform. The money reimbursement
in this instance is handled by the miners and is known as a
DeFi-Refund. In particular, the funds are added to the pool
of shielded tokens, and the new shielded token’s ownership is
the beneficiary of the DeFi transaction.

This system, inherited from Mystiko.Network, allows ex-
ternal auditors to review transactions. The system will not
disclose users’ transaction data unless a large enough partition
of the auditors agrees so, which enables the auditability by
threshold secret sharing of commitments and encryption of
each shares. We instantiated the algorithms from Shamir’s se-
cret sharing [46] and key-private Elliptic-Curve Integrated
Encryption Scheme.



A. DeFi-Deposit
During DeFi-Deposit, a user deposits plain tokens to a DeFi

platform via their wallet, which creates partial tokens that are
packed into a transaction and include partial commitments
and zero-knowledge parameters. The protocol waits for DeFi-
Rollup before adding the events to the appropriate queue. In
particular, a queue is made up of operations to the same DeFi
platform. The liquidity pool has sealed up the plain tokens.
We implemented the smart contract in Solidity, which takes a
DeFi address, the deposit amount, a partial commitment, and
other essential information as inputs. If the inputs are valid, the
partial commitment is enqueued while waiting for the DeFi-
Rollup.

B. DeFi-Withdraw
Users can utilize DeFi-Withdraw to remove their assets

from the shielded token pool and use them to fund DeFi.
Users must employ zero-knowledge proof to demonstrate their
ownership to withdraw tokens from the pool. The proof also
demonstrates the existence of the commitments in the Merkle
tree. Then, the user selects the DeFi platform and creates par-
tial tokens using the wallet, which condenses crucial data into a
single transaction. If the proof is legitimate, the protocol serves
as the verifier and permits the user to withdraw the token. After
that, while awaiting the DeFi-Rollup, the transaction will be
enqueued. We implemented the proof and verification schema
with the ZoKrates toolbox, which outputted a smart contract
acting as the verifier. Inputs for the smart contract include a
proof, the Merkle tree root, a serial number, the withdrawal
amount, a partial commitment, and other essential information.

C. DeFi-Rollup
DeFi-Rollup can significantly lower transaction expenses.

Before transmitting a DeFi transaction to the DeFi platform,
the DeFi-Rollup miner combines DeFi transactions of the
same kind into a single transaction, and the transaction cost
is shared among many users. The rollup miner is in charge of
calculating the token value and producing the shielded tokens
in accordance with each partial token. The token value is
specifically equal to (user’s deposit amount/batched deposit
amount) × total revenue. We implemented and tested the
protocol with 1, 2, 4, 8, and 16 input DeFi transactions.

D. DeFi-Refund
A DeFi-Refund takes place only when the DeFi transaction

fails. When the external DeFi platform is unable to meet the
conditions, the DeFi rollup miner returns the money, which is
then returned to the shielded tokens pool. The ownership and
value are identical to those of the DeFi transaction’s benefi-
ciary and the initial input, respectively. We also implemented
and tested the protocol with 1, 2, 4, 8, and 16 input DeFi
transactions.

IV. EXPERIMENTS

We implemented the proposed protocol by using Ganache
1, an Ethereum simulator, and then evaluated its performance

1https://trufflesuite.com/ganache/

by means of the Truffle Suite 2. We employ the Groth16 proof
system provided by ZoKrates [43], a toolbox for zkSNARKs
on Ethereum. We developed smart contracts with the Solidity
language.

There are three main phases in the system to be considered:
DeFi-Withdraw, DeFi-Deposit, and DeFi-Rollup/DeFi-Refund.
During each phase, the protocol submits a transaction to the
blockchain and then executes a corresponding smart contract.
During the DeFi-Withdraw phase, the protocol also computes
SNARKs for withdrawing coins. As a methodology to collect
and report the results from the experiments, each experiment
has been repeated forty times and the collected results have
been averaged. The reported equivalent USD cost was based
on the gas price (about 40 gwei) and ETH price (about
1600 USD) at the time of writing (Feb 2023). The system
environment used for running this performance evaluation is
described in Table I.

TABLE I
SYSTEM SPECIFICATION OF THE TESTING ENVIRONMENT.

OS CPU RAM
macOS 13.2.1 Apple M1 Pro 16GB

A. Deposit

During the DeFi-Deposit experiment, a user submitted a
defi-deposit transaction txdefi−deposit to the blockchain. The
blockchain then locked the token and enqueued the transaction
while waiting for the DeFi-Rollup. The experiment results are
shown in Table II.

TABLE II
DEFI-DEPOSIT EXPERIMENT RESULTS.

Gas amount USD
DeFi-Deposit 25,297 1.61

B. Withdraw

During the withdrawal experiment, a user computed a
witness and generated the ZK-snark proof. We evaluated the
running time (in seconds) of each stage in the environment as
shown in Table I. The user then submitted a DeFi-Withdraw
transaction txdefi−withdraw to the blockchain. The time cost
of each stage is reported in Table III. We evaluated the case
when the user withdrew one shielded token and generated a
partial token.

TABLE III
DEFI-WITHDRAW ZK-SNARK EXPERIMENT RESULTS.

Compute Witness Generate Proof Verify
Time 0.19 2.395 < 0.01

We also recorded the required gas amount and the equivalent
USD value of on-chain verification in Table IV.

2https://trufflesuite.com/



TABLE IV
DEFI-WITHDRAW ON-CHAIN EXPERIMENT RESULTS.

Gas amount USD
DeFi-Withdraw 493,529 31.58

C. DeFi-Rollup

During DeFi-Rollup, the rollup miner generated shielded
tokens for each partial token and submitted a DeFi-Rollup
transaction txdefi−rollup to the blockchain. We evaluated
different rollup types with 1, 2, 4, 8, 16 input partial tokens.
The obtained results are reported in Table V.

TABLE V
DEFI-ROLLUP EXPERIMENT RESULTS WITH DIFFERENT ROLLUP TYPES.

Type Gas amount USD

DeFi-Rollup

1 45,725 2.92
2 67,046 4.29
4 98,856 6.33
8 162,535 10.4

16 289,422 18.52

D. DeFi-Refund

When the DeFi transaction failed, the rollup miner refunded
the tokens to the beneficiary and then submitted a DeFi-Refund
transaction txdefi−refund to the blockchain. Also in this case,
we evaluated different rollup types with 1, 2, 4, 8, 16 input
partial tokens. The obtained results are reported in Table VI.

TABLE VI
DEFI-REFUND EXPERIMENT RESULTS WITH DIFFERENT ROLLUP TYPES.

Type Gas amount USD

DeFi-Refund

1 51,271 6.08
2 65,806 4.21
4 95,030 6.33
8 155,119 9.93
16 274,838 17.59

E. Discussion

In this section, we reported the performance and gas
consumption of our protocol. Generation of zero-knowledge
proofs is the most time-consuming process, which takes up
to 3 seconds when withdrawing tokens. The performance
is practically acceptable considering other privacy-preserving
payment protocols take much more time, e.g., 75 seconds
for Zcash 3 and 120 seconds for Monero 4. A DeFi-Rollup
averagely consumes 18,088 (289422/16) gas when ZK-rollup
16 commitments, equivalent to 1.15 USD. As a comparison,
a DeFi transaction in Uniswap consumes 149,040 gwi (13.16
USD) in Feb 2023. Therefore, the rollup process is able to
save around 90% of the transaction cost.

3https://z.cash/support/faq/
4https://www.monero.how/how-long-do-monero-transactions-take

V. CONCLUSION

In this paper, we implemented and evaluated a privacy-
preserving DeFi protocol. This protocol is based on [8], an
auditable confidentiality architecture for DeFi. By means of
performance evaluation, we found that the proposed solution
is both practical and affordable for privacy-preserving DeFi
transactions. In future work, we aim to test complex scenarios
when the user withdraws more than one shielded tokens
and outputs multiple partial tokens. Moreover, the current
implementation will be extended to support also other concrete
cryptography primitives.
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