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ABSTRACT

Liquid biopsy is a valuable emerging alternative to tissue biopsy with great potential in the noninvasive early diagnostics of cancer. Liquid
biopsy based on single cell analysis can be a powerful approach to identify circulating tumor cells (CTCs) in the bloodstream and could
provide new opportunities to be implemented in routine screening programs. Since CTCs are very rare, the accurate classification based on
high-throughput and highly informative microscopy methods should minimize the false negative rates. Here, we show that holographic flow
cytometry is a valuable instrument to obtain quantitative phase-contrast maps as input data for artificial intelligence (AI)-based classifiers.
We tackle the problem of discriminating between A2780 ovarian cancer cells and THP1 monocyte cells based on the phase-contrast images
obtained in flow cytometry mode. We compare conventional machine learning analysis and deep learning architectures in the non-ideal case
of having a dataset with unbalanced populations for the AI training step. The results show the capacity of AI-aided holographic flow cytome-
try to discriminate between the two cell lines and highlight the important role played by the phase-contrast signature of the cells to guarantee
accurate classification.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0153413

I. INTRODUCTION

Performing an accurate early detection is one of the main chal-
lenges in modern medicine when dealing with cancer related diseases.
Today, medicine mainly relies on the standard tissue biopsy and histo-
logical examination to diagnose the suspect mass. However, tissue
biopsy is a highly invasive and slow diagnostic tool, which cannot be
frequently repeated on the same patient, and might fail to reveal tumor
heterogeneity. In this framework, the paradigm of liquid biopsy (LB) is

becoming crucial due to the unique advantages it offers, since it is a
noninvasive, fast diagnostic tool based on the search of the tumor
derived material in a peripheral blood sample. For example, the detec-
tion of circulating tumor cells (CTCs), i.e., cells detached from the pri-
mary tumor or from metastasis that enter the bloodstream, not only
allows to locate and classify the disease potentially at an earlier stage as
compared to standard diagnostic imaging methods but it allows also
to obtain precious information to guide the patients’ management.
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Most common techniques used to identify and classify CTCs, as
reported by Refs. 1–10, are based on the recognition of a known,
specific indicator that univocally distinguishes them from the healthy
cells composing the bloodstream. Commonly used indicators are
cancer-specific surface antigens; however, given the high tumoral het-
erogeneity, antigen-based methods often lead to false negative results.
To overcome biased epitope analyses, methods based on the recogni-
tion of peculiar functional CTC properties are being developed, such
as matrigel invasion capacity11 or high glycolytic metabolism,12 which
to date, do not offer the high-throughput levels required for screening
programs. On the other hand, using next-generation sequencing
(NGS) analysis to identify tumor-specific mutations in the blood-
stream offers greater potential in terms of throughput, but often
depends on cumbersome CTC enrichment steps and requires cell
destruction. All the above-mentioned strategies, even if commercially
available and objective of extensive research efforts, have the big disad-
vantage of requiring a priori information about the CTC, that might
not be available, making the search highly specific for a particular type
of cancer, considering the great heterogeneity of tumors. In addition,
they often do not allow for high-throughput screening tests, which is
of primary interest in clinics. The latter is mainly due to the fact that a
CTC pre-enrichment step is required to detect rare CTCs in the blood-
stream, typically occurring with a frequency of 1–10 cells per 1ml.13

Finally, most of these approaches imply CTC destruction, not allowing
viable cell recovery after the analysis. Therefore, single cell analysis
approaches based on flow cytometry (FC) have garnered a huge inter-
est for the potentiality they offer to overcome these issues.14,15

FC is a widely used technique for examining, characterizing, and
sorting cells that are let flow suspended in a fluid and analyzed one-
by-one. Therefore, FC is one of the most appropriate ways of investi-
gating biological materials that naturally live in suspension, e.g., all
blood cells. The standard parameters measured over the cells are
obtained by exploiting scattering processes or the optical readout in
transmission microscopy modes; imaging-FC (IFC) allows to obtain
much more useful information about the morphology and possibly
the inner structures of each cell. In fact, IFC allows to combine the
high-throughput imaging capabilities of conventional flow cytometry
with the specificity of the single-cell analysis. All this information
available is precious in tasks like detection and classification of CTCs
and allows to exploit high content analysis such as deep learning (DL)
approaches or conventional machine learning (ML); accordingly, in
this work, we will focus on image-based LB. Since biological specimens
such as CTCs are transparent and, therefore, not suitable for bright-
field microscopy imaging, the standard way used to investigate these
samples requires the use of labels to mark them, typically linked to
fluorescence emission. This method, even though highly specific, has
some important drawbacks. First, staining procedures must be set up
to label the cells; this requires highly trained personnel, increases the
costs of the analysis for supplying and for properly disposing reagents,
and slows down the imaging process. Second, the labels alter the physi-
ological behavior of the specimens and may create phototoxicity;
although this impairment does not exclude the possibility of in vivo
imaging, it may mine the reliability of the detection process itself,
changing the way in which the CTCs respond to a designated detec-
tion marker. Moreover, fluorescence-based markers create photo-
bleaching. These important drawbacks caused a shift in attention to
label-free ways to perform imaging of transparent samples, and the

most promising class of methods in this framework is referred to as
quantitative phase imaging (QPI).16,17 QPI methods are particularly
interesting because they yield a morphometric characterization of the
samples; the produced images, the so-called quantitative phase-
contrast maps (QPMs), are measurements of the optical path delays
produced by the specimens. This gives access to a wide variety of mea-
sured features relative to single cells such as the optical thickness, bio-
volume, and dry mass distributions, which might be of primary
interest for detection and classification and that would be unavailable
with merely qualitative methods. Moreover, since the phase-shift
information encodes 3D volumetric information into a single image,
the refractive index 3D distribution can be retrieved if different QPMs
relative to different projections are acquired and tomographic recon-
structions are performed.18,19 Among the wide plethora of QPI
approaches, such as phase-shifting interferometry, Fourier ptychogra-
phy, transmission intensity equation (TIE), spatial light interference
microscopy (SLIM), or gradient light interference microscopy
(GLIM), digital holographic microscopy (DHM) is one of the most
affirmed techniques. As the entire information of the complex wave-
front is recorded, DHM is independent of the focus at which the image
is acquired. Therefore, all the cells visible in the field of view can be
dealt with as they show up, with no need of real-time focusing, as the
best focus will be adjusted via numerical post processing. This pecu-
liarity makes DHM the most suitable candidate to image cells through
the continuous stream of microfluidic systems.

In flow, DHM is the one that better combines the need to obtain
very fast, high-throughput morphometric measurements with high
accuracy and noninvasiveness. The last decade has seen the growth
and widespread use of lab-on-a-chip (LoC) technology, which allows a
very accurate flow engineering, manipulation of small amounts of liq-
uid samples, from microliters to nanoliters, and enables establishing
laminar flows along predetermined pathways. Hence, DHM in opto-
fluidic configurations well suits the discussed need to capture and clas-
sify rare tumoral cells in the bloodstream. In this work, different
classification techniques will be analyzed and compared, namely, a ML
approach and a DL approach, both applied to classify QPM recon-
structions of cells in continuous flow inside a LoC, using the setup
sketched in Fig. 1. In particular, artificial intelligence (AI) is used to
perform classification between model cell lines, i.e., ovarian cancer
(OC) cells (A2780) and monocytes (THP-1), whose AI training sets
were unbalanced in ration 1 monocyte every 6.36 OC cell. It is impor-
tant to note that it is simple to filter out red blood cells, whereas it is
harder to discriminate CTCs from monocytes because of their similar-
ity in size; therefore, the discrimination problem is non-trivial. Both
the conventional ML and the DL classification approaches are shown
to provide excellent accuracies, higher than 90% in tests, with a slight
but non-neglectable advantage of the DL approach. Moreover, we
carry out a feature engineering study, and we point out how the fea-
tures extracted from the quantitative phase-contrast distribution are
among the most informative available.

II. DATASET

We employed a DH setup in transmission microscopy mode to
acquire sequences of model cell lines flowing inside a microfluidic cir-
cuit. The holographic flow cytometer is implemented as a Michaelson
interferometer, as sketched in Fig. 1 and described in detail in Sec. VI.
Acquired holograms were processed in order to obtain the sample
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complex amplitude in sharp focus for each cell. This process involves
hologram demodulation, backpropagation and automatic refocusing,
phase extraction and compensation of optical aberrations, phase
unwrapping, and denoising. Details on the hologram processing pipe-
line are provided in Sec. VI. The phase-contrast images obtained in
this way were the input of the ML and DL classifiers. In the end, for
the analysis, a total of 2951 QPMs was considered, composed of 2550
A2780 model cancer cells and 401 THP-1 monocytes. The dataset was
relatively small, and the populations were not balanced. One of the
objectives of the analysis is to assess whether it is possible to classify
data with poor datasets and to assess if deep learning methods are
more suitable for this task than machine learning ones. The dataset is
split between a training set (97.3%) and a test set (2.7%) through a
holdout partition.

III. MACHINE LEARNING APPROACH
A. Feature analysis

In the framework of a ML approach, all the QPMs available were
numerically processed to extract features useful for the classification
task. Alongside with the morphological features (area, herein
expressed in pixels, eccentricity, perimeter, expressed in pixels) and
texture-based features (homogeneity, energy, kurtosis, skewness, and
entropy), which are commonly considered for classification, a new
group of features was added, which are available thanks to the quanti-
tative nature of the DHM readout. In particular, we measured the
maximum, minimum, mean value, and standard deviation of the val-
ues measured over the QPMs.

The morphological features were extracted starting from a binar-
ized version of the QPMs. The texture features were extracted starting
from the gray level co-occurrence matrix (GLCM), which expresses
how combinations of discretized values (gray levels) of neighboring

pixels are distributed along one of the image directions. Finally, the
quantitative parameters associated with the sample optical thickness
were directly measured over QPMs. It is worth pointing out again that
these features are intrinsically linked to the holographic imaging para-
digm, as they are measurements made over the samples of physical
quantities that are not accessible using conventional imaging
approaches, which would only provide qualitative information. In
total, 12 features were considered for the classification. A first investi-
gation was carried out to understand if the considered data tended to
naturally cluster into the two species or not. To do that, both a PCA
and a T-SNE20 analysis were performed to reduce the dimensionality
of the feature space and to visually inspect the data. Figure 2 reports
the results of this analysis and, clearly, the cells under investigation do
not tend to naturally cluster. This preliminary test suggests that the
classification problem tackled here is not trivial.

Consequently, an analysis over the extracted features was per-
formed to understand their level of significance, following the
approach proposed by Valentino et al.21 First, the Kendall correlation
coefficient was evaluated over all the features. The choice of using
Kendall correlation was due to the non-normal distribution of the data
and their low numerosity. Figure 3 shows the absolute value of the
evaluated correlation coefficient. Some considerations are now in
order. Observing the matrix, it can be seen that morphological and
texture features do show some correlation with statistical relevance
(p-value < 0.05). Conversely, the QPI features (highlighted by the red
square) show a low value of intracorrelation and, in particular, a very
low value of correlation with the other features; both these observa-
tions are of statistical relevance (p-value< 0.05). From a mere classifi-
cation standpoint, this means that useful information is being carried
out by the QPI features and that all of them are, in principle, worth
further analysis. Considering only the values of correlation coefficients

FIG. 1. Sketch of experimental arrangement. MO1—focusing microscope objective; P—pinhole; L— collimating lens; HWP—half-wave plate; PBS—polarizing beam splitter;
MO—microscope objective; MC—microfluidic chip; Ms—mirrors; I—iris diaphragm; BS—beam splitter; CMOS—camera; SD—shearing device. The image in front of the MO
provides a zoom into the MC with cells flowing inside the channel. Inserts in front of the CMOS illustrate replicas arising from the SD. The highlighted image portions (area1
and area 2) represent overlapping areas detected by the CMOS, which provide correct holographic signature.
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with statistical relevance (p-value < 0.05), a threshold R¼ 0.9 was set
to discriminate between correlated and uncorrelated features. The fea-
tures that had a correlation coefficient greater than the threshold were
only the kurtosis and the skewness. As a consequence, the kurtosis fea-
ture was discarded since it was judged not enough informative in the
ensemble. Subsequently, we used the Relief Algorithm22 to quantita-
tively understand which were the most informative features among
the ones under examination. Figure 4 reports the result of this ranking
where the red arrows point out that, as expected, some of the QPIs
features are among the most informative. Finally, according to the
pipeline presented in Refs. 21 and 23, we again performed PCA and
T-SNE over the data to assess whether an improvement was made

over the clustering of the data via the feature selection process. As it
can be appreciated from Fig. 5, no improvement is obtained in terms
of clustering, coherent with the observation that all the features are
more or less significant except for the discarded redundant one.

B. ML classification results

The ML classification task between the monocytes and the model
CTCs was conducted via the Classification Learner App released by
MathWorks. In this analysis, different conventional models are trained
and evaluated for the classification. The training is performed over the
training set discussed above with a cross validation made via a 10-class
k-folding. Table I reports the validation and test accuracy for the

FIG. 2. PCA and T-SNE carried out over the data before feature selection to assess the complexity of the classification task by observing the natural data clustering.

FIG. 3. Absolute value of Kendall correlation coefficient among the inspected fea-
tures. The red square marks out the QPI features.

FIG. 4. Results of Relief analysis performed over the features to assess their signif-
icance. The red arrows point out some of the QPI features, which are among the
most informative.
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considered classifiers in different scenarios. In particular, we intended
to investigate the relevance of the different group of features for the
classification; therefore, we selectively excluded a certain class of fea-
tures among the three available (morphological, texture, QPIs) while
considering the other two and repeated the training/test procedure to
compare the results. First, all the features were used for the classifica-
tion task. Then, the sole morphological features were excluded; after-
ward, the texture features were excluded and the morphological
reintegrated, and finally, all the features were included except for the
QPIs. As expected, the best validation accuracy is obtained when all
the features are employed, coherent with the results of the feature
ranking procedure. However, removing the QPIs features results in a
consistent drop in both the validation and test accuracy, confirming
that these features are the most discriminative, which justifies in full
the use of a QPI method for coping with this classification issue. In
general, the values of accuracy are very high with a significative
decrease in the test accuracy, symptom that some overfitting over an
insufficient dataset might be present for a machine learning classifi-
cation task. Figure 6 reports the validation and test confusion matrix

relative to the Cubic SVM classifier, which in general, shows the best
performance (Table I), for the case in which all the features are
employed for the classification, which we already assessed to be the
best case. As indicated by the test confusion matrix, there is a high
number of monocytes incorrectly classified as OC cells (17.5%); con-
versely, just 2.5% of the model CTCs is incorrectly classified as
monocytes and, therefore, not identified. However, it is worth point-
ing out that given the high rarity of CTCs in the bloodstream com-
pared to monocytes, such a high percentage of misclassification
might lead to a complete loss of the CTCs. Accordingly, given the rel-
evance of the false negatives as compared to false positives in a
cancer-diagnostic application such as the one of interest, in the evalu-
ation of different classification approaches, the priority was set in
finding a classificator providing the minimum amount of false nega-
tive results rather than of false positives. Concluding, the non-
optimal classification results obtained via ML are coherent with the
almost absent natural clustering of the data, symptom that a ML
approach might not be the most effective to handle the problem
complexity.

FIG. 5. Results of PCA and T-SNE analysis after the feature selection process.

TABLE I. Validation and test accuracy percentage evaluated for different classifiers considering different feature groups.

All features No morphological No texture No QPI

Classificator Validation Test Validation Test Validation Test Validation Test

Fine tree 93.3 85.0 93.9 83.8 90.8 81.2 89.3 75.0
Medium tree 93.8 81.2 93.7 80.0 92.2 73.8 90.3 67.5
Coarse tree 92.2 72.5 92.2 72.5 90.1 63.7 90.8 62.5
Linear discriminant 93.3 77.5 92.4 75.0 92.5 76.2 90.5 67.5
Quadratic Discriminant 94.7 88.8 93.2 78.8 93.5 82.5 90.5 76.2
Linear SVM 93.9 80.0 93.8 80.0 92.6 78.8 91.4 66.2
Quadratic SVM 96.7 88.8 96.6 87.5 94.8 87.5 92.3 72.5
Cubic SVM 96.8 90.0 96.1 87.5 95.3 85.0 93.3 80.0
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IV. DEEP LEARNING APPROACH
A. Networks’ architecture

To perform the DL classification task, we have chosen to resort
to convolutional neural networks (CNNs) pre-trained on ImageNet,25

since the dataset was relatively small. Pre-training has made the classi-
fication task easier to perform. The performance of the networks was
compared for five different net architectures: MobileNet V2,24

MobileNet V3 small, MobileNet V3 large,26 and ResNet-18.27 Some
CNNs may suffer from low diagnostic performance due to vanishing-
gradient and divergent-gradient problems, which obstruct information
transmission from shallow layers to deep layers of the network.
ResNet solves this problem by identifying shortcut connections, skip-
ping certain layers while providing great generalization performance
with a relatively small number of parameters. Indeed, ResNet has been
successfully used for many medical image classification tasks.28

The architecture of the original ResNet-18 is shown in Fig. 7(b).
There are a total of 18 layers in the network (17 convolutional layers, a
fully connected (FC) layer, and an additional SoftMax layer to perform
the classification task). The convolutional layers use 3� 3 filters, and
the network is designed in such a way that if the output feature map is
the same size, then the layers have the same number of filters.

The basic block of MobileNet is the inverted residual bottleneck.
The MobileNet V2 inverted residual bottleneck block, shown in
Fig. 7(a), consists of a 1� 1 point-wise convolution expanding the
input to a higher dimensional space, followed by a 3� 3 depth-wise
convolution. Finally, a second point-wise convolution reduces to a
smaller dimension and residually connects to the input layer. The out-
puts of all stages passes through a ReLu6 activation function.

The MobileNet V3 inverted residual bottleneck is similar to V2
with the addition of the squeeze-and-excite block,29 which executes aver-
age pooling to a vector composed of two FC layers and multiplies the
produced vector with the original matrix. Furthermore, in MobileNet
V3, the ReLu6 activation is replaced with the hard-swish activation func-
tion. MobileNet V3 small and MobileNet V3 large differ by the amount
of inverted residual blocks (11 in small vs 15 in large) and of number of
channels in each block. Our input to the net are the QPMs without any
further processing, and the last FC layer uses a SoftMax activation func-
tion to produce the classification score prediction y 2 ½0; 1�.

B. Implementation details

The training process was performed over the training set with a
fivefold cross validation. For each fold, the network was trained for 10

FIG. 7. Figures showing the (a) details of the MobileNet V2 architecture and (b) ResNet-18 architecture used.

FIG. 6. Validation and test confusion matrices relative to the Cubic SVM classifier when all the features are employed.
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epochs with a batch size of 16, using the ADAM optimizer,30 the
Cross Entropy (CE) loss, and a learning rate of k ¼ 10�4.

C. DL classification results

Table II reports the validation and test accuracy over all folds for
each network architecture. In general, the values of accuracy are high,
specifically in comparison to the conventional ML approach. The net-
works have similar results, but we can see a slight improvement in the
accuracy when using ResNet-18 and MobileNet V2 as compared to
other networks. Figure 8 reports the validation and test confusion
matrix relative to MobileNet-V2 classifier. In both validation and test
confusion matrices, there is an elevated number of monocytes incor-
rectly classified as OC cells (5% and 7.5%, respectively), while there
were no model OC cells unidentified. This agrees with the fact that the
population of the cells were not balanced.

V. CONCLUSIONS

In this work, the problem of discrimination between cancer and
blood cells in the case of unbalanced datasets was discussed. This is a
crucial issue for LB, a new diagnostic tool that recently arose as a pow-
erful alternative to tissue biopsy. We proposed a system implementing
a holographic flow cytometer aided by AI for the analysis of recon-
structed data as paradigm to perform LB. In particular, we studied the
problem of discerning between A2780 OC cells and monocytes,
i.e., blood cells of comparable sizes that are difficult to separate by
existing microfluidic sorting devices. First, we carried out an investiga-
tion on the available features. Studying the capability to cluster the two
populations, we found a non-negligible overlap between them in the

features’ space, i.e., the problem of discrimination is not trivial and,
therefore, learning approaches must be used. We compared two dis-
crimination approaches, one based on conventional ML and one on
DL. Although both methods provided good values of accuracy for clas-
sification, greater than 90%, the DL method demonstrated superior
results. It is worth pointing out that conventional ML strongly benefits
from the holographic features added to the conventional morphologi-
cal and textural parameters. We discussed the role played by the
unique features that we could extract by the phase-contrast map. The
improvement of the DLmethod over the ML method, although appar-
ently marginal in terms of percentage accuracy increase, is particularly
important, given the rarity of CTCs in the bloodstream and the diag-
nostic relevance of a correct classification. In other words, in the
framework of LB, it is pivotal to minimize the rate of false negatives in
the presence of rare events to be detected (i.e., the occurrence of a
CTC). In this sense, we judge the improvement brought by DL as
non-negligible. Considering both the ML and DL classification results,
the higher rate of monocytes incorrectly classified as OC cells might be
explained by the unbalanced dataset. However, given the aforemen-
tioned need to maximize in deployment, the number of CTCs cor-
rectly classified, training the classifiers with an elevated number of OC
cells makes the procedure robust in terms of capability of recognizing
them in a real LB scenario, where a false negative result should be
avoided since it might concur to a late diagnosis. Results have shown
that AI-aided holographic flow cytometry is a promising solution for
LB of OC. Future works will go in the direction of increasing the com-
plexity of the sample, e.g., we will benchmark the system in the case of
spiked blood samples and, finally, in the case of patient-derived LB.

VI. METHODS
A. Experimental setup description

The experimental setup is a lateral-shearing digital holographic
microscope based on the Michelson geometry. Figure 1 shows a sim-
plified sketch of the laboratory setup, where the linearly polarized laser
beam (sapphire SF, k ¼ 488 nm; spectral linewidth< 1.5MHz ¼>
coherence length �100 m) is spatially filtered by a microscope objec-
tive MO1 (Newport 20�/0.40) and a pinhole P (diameter 10l m) and
collimated by a positive lens L (focal distance 125mm). A half-wave

TABLE II. Results summary of the validation and test accuracy over all folds.

Network architecture Validation accuracy Test accuracy

MobileNet V2 95.2 93.2
MobileNet V3 Small 79.2 79.7
MobileNet V3 Large 88.6 87.9
ResNet-18 94.0 94.0

FIG. 8. Validation and test confusion matrices relative to MobileNet-V2 classifier.
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plate (HWP) and a polarizing beam splitter (PBS) allow fine light-
power adjustments. The beam is further reflected by mirrors (M), and
it subsequently illuminates the sample inside the microfluidic chip
(MC, Straight 4-channel Mini-Luer Chip (P/N 10000091); channel
dimensions¼ 200 lm wide� 200lm deep� 58.5mm; lid
thickness¼ 140lm). An automatic syringe-pump system (CETONI
Syringe Pump neMESYS 290N) has been implemented to achieve a
laminar flow. Here, a glass syringe containing the sample is connected
by the plastic inlet tubing to the MC, followed by the plastic outlet
tube and the waste glass. The flow rate during measurements is set in
the range of 5� 20 nl/s.

The sample flowing inside the MC is subsequently imaged by a
microscope objective (MO; Nikon, 20�/0.50, Plan Fluor) directly into
the plane of the camera’s chip (CMOS; UI-3370CP-M-GL,
2048� 2048, 5:5 lm square pixels). Here, the shearing-device (SD),
providing the lateral shear,31 consists of a beam splitter (BS) and two
mirrors M4 and M5; thus, two duplicate images of the studied sample
are created. The first image arises from the optical path BSM4BS and
the second arises following the path BSM5BS. These two replicas are
directed toward the camera with slightly different inclination angles
and lateral displacements due to the different tilts of the mirrors M2
and M3. Consequently, a portion of the observed field (Fig. 1; area1)
serves as a signal beam, while the sample-free area in the replica (Fig. 1;
area2) serves as a reference beam. If the coherence conditions of the

interfering waves are satisfied, the interference fringes arise, thus
enabling single-shot off-axis holographic recordings and subsequent
numerical reconstructions. In the present experimental configuration,
the lateral shift among both replicated images is comparable to the
dimensions of the used CMOS chip, so only one of the replicas is
observed in a snapshot image. However, in principle, it is feasible to
exploit both replicas to enhance the quality of the retrieved complex
amplitude of the studied object, as was proposed elsewhere.32 The Iris
diaphragm (I), inserted between the MO and CMOS, reduces the
amount of unwanted back-reflections and stray light. The lateral mag-
nification of the imaging system, measured by a positive USAF 1951
amplitude line target, was established as 55, and the expected theoreti-
cal lateral resolution in the object space can be approximated as
0:82k=NA � 0:8lm.

B. Hologram processing

Imaging tests were carried out using monocyte cells (THP-1) and
OC cells (A2780). The samples were prepared as described in Ref. 33.
Cell suspensions were allowed to flow inside the channel, and holo-
graphic video sequences were acquired separately for each cell type.
Once the acquisition was accomplished, the holograms were numeri-
cally processed to obtain the QPMs. The processing is made via a pipe-
line extensively described,18 and here reassumed and sketched in Fig. 9.
First, the holograms were apodized and, subsequently, the valuable

FIG. 9. Outline of the reconstruction pipeline: (a) acquired hologram (b), Fourier spectrum of the holograms with the three orders visible (c), in-focus amplitude of the complex
field obtained after the refocusing procedure, and (d) and (e) QPMs of an OC cell and a monocyte.
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diffraction order was extracted from the spectrum [Figs. 9(a) and 9(b)].
The retrieved complex amplitude was numerically refocused making
use of the angular spectrum approach34 employing the Tamura coeffi-
cient as metric18 [Fig. 9(c)]. The aberrations introduced by the optical
system were corrected using a reference hologram, e. g., a cell-free holo-
gram, which was processed with the same steps as the object hologram
up to the refocusing stage and then subtracted in phase from the object
hologram, obtaining the wrapped 2p-modulo phase map. For every
cell flowing into the field of view, a variable number of frames was con-
sidered, from one to four depending on the availability. A square area
of size 384 pixels was selected, centered around the centroid of the cell
in the considered frame. Afterward, the phase maps were unwrapped
using the PUMA algorithm,35 denoised36 to attenuate the speckle cor-
related noise and binary masked to isolate the cell profile over the back-
ground. The images obtained in this way were the input of the ML and
DL classifiers [Figs. 9(d) and 9(e)]. A total of 2951 QPMs, composed of
2550 A2780 cancer cells and 401 THP-1 monocytes, was considered
for the analysis. The dataset was relatively small, and the populations
were not balanced. One of the objectives of the analysis is to assess
whether it is possible to classify data with poor datasets and to assess if
DL methods are more suitable for this task than ML ones. The dataset
is split between a training set (97.3%) and a test set (2.7%) through a
holdout partition.

ACKNOWLEDGMENTS

This work was supported by the bilateral Italy–Israel project:
Deep-learning classification of dynamically flowing circulating
tumor cells imaged by quantitative phase microscopy-Deep-Class-
CTCs, granted by the Italian Ministero per gli Affari Esteri e la
Cooperazione Internazionale (MAECI).

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Ethics Approval

Ethics approval is not required.

Author Contributions

Francesca Borrelli: Software (lead); Visualization (lead); Writing –
original draft (lead). Vittorio Bianco: Conceptualization (lead);
Formal analysis (equal); Methodology (equal); Supervision (equal);
Writing – review & editing (lead). Natan T. Shaked:
Conceptualization (equal); Funding acquisition (lead); Methodology
(equal); Project administration (equal); Software (supporting);
Supervision (equal); Writing – review & editing (supporting). Pietro
Ferraro: Conceptualization (lead); Funding acquisition (lead);
Methodology (equal); Project administration (equal); Supervision
(lead); Writing – review & editing (supporting). Jaromir Behal:
Investigation (equal); Methodology (lead); Visualization (supporting);
Writing – original draft (supporting). Anat Cohen: Methodology
(equal); Software (lead); Visualization (supporting); Writing – original
draft (equal). Lisa Miccio: Methodology (equal); Validation (equal);
Writing – review & editing (equal). Pasquale Memmolo: Formal anal-
ysis (supporting); Methodology (equal); Software (equal). Ivana

Kurelac: Resources (supporting); Writing – review & editing (equal).
Amedeo Capozzoli:Validation (supporting); Writing – review & editing
(supporting). Claudio Curcio: Visualization (supporting); Writing –
review & editing (supporting). Angelo Liseno: Formal analysis (support-
ing); Validation (supporting).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1L. Miccio, F. Cimmino, I. Kurelac, M. M. Villone, V. Bianco, P. Memmolo, F.
Merola, M. Mugnano, M. Capasso, A. Iolascon, P. L. Maffettone, and P.
Ferraro, VIEW 1, 20200034 (2020).

2E. P. Kaldjian, A. B. Ramirez, Y. Sun, D. E. Campton, J. L. Werbin, P.
Varshavskaya, S. Quarre, T. George, A. Madan, C. A. Blau, and R. Seubert,
Cytometry, Part A 93, 1220 (2018).

3A. S. Zamay, G. S. Zamay, O. S. Kolovskaya, T. N. Zamay, and M. V.
Berezovski, “Aptamer-based methods for detection of circulating tumor cells
and their potential for personalized diagnostics,” in Isolation and Molecular
Characterization of Circulating Tumor Cells, edited by M. J. M. Magbanua and
J. W. Park (Springer International Publishing, Cham, 2017), pp. 67–81.

4S. Maheswaran, L. V. Sequist, S. Nagrath, L. Ulkus, B. Brannigan, C. V.
Collura, E. Inserra, S. Diederichs, A. J. Iafrate, D. W. Bell, S. Digumarthy, A.
Muzikansky, D. Irimia, J. Settleman, R. G. Tompkins, T. J. Lynch, M. Toner,
and D. A. Haber, New Engl. J. Med. 359, 366 (2008).

5J. A. Denis, A. Patroni, E. Guillerm, D. P�epin, N. Benali-Furet, J. Wechsler, G.
Manceau, M. Bernard, F. Coulet, A. K. Larsen, M. Karoui, and J.-M. Lacorte,
Mol. Oncol. 10, 1221 (2016).

6E. Obermayr, E. Maritschnegg, C. Agreiter, N. Pecha, P. Speiser, S. Helmy-
Bader, S. Danzinger, M. Krainer, C. Singer, and R. Zeillinger, Oncotarget 9,
812 (2018).

7J. G. Lohr, V. A. Adalsteinsson, K. Cibulskis, A. D. Choudhury, M. Rosenberg,
P. Cruz-Gordillo, J. M. Francis, C.-Z. Zhang, A. K. Shalek, R. Satija, J. J.
Trombetta, D. Lu, N. Tallapragada, N. Tahirova, S. Kim, B. Blumenstiel, C.
Sougnez, A. Lowe, B. Wong, D. Auclair, E. M. Van Allen, M. Nakabayashi, R.
T. Lis, G.-S. M. Lee, T. Li, M. S. Chabot, A. Ly, M.-E. Taplin, T. E. Clancy, M.
Loda, A. Regev, M. Meyerson, W. C. Hahn, P. W. Kantoff, T. R. Golub, G.
Getz, J. S. Boehm, and J. C. Love, Nat. Biotechnol. 32, 479 (2014).

8R. Palmirotta, D. Lovero, P. Cafforio, C. Felici, F. Mannavola, E. Pellè, D.
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