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ABSTRACT
Understanding and controlling the vibration of piezoelectric components induced by
oscillating external stimuli is essential to develop smart sensing and energy harvest-
ing devices that convert mechanical energy into electricity. Piezoelectric polymers
based on Poly(vinylidenefluoride) (PVDF) thin films are amongst the most widely
studied materials for flexible sensors and harvesters. Despite the large amount of
research on these materials, their electromechanical response under acoustic sound
stimuli has not yet been studied in detail. In this work, a thorough investigation
on the mechanical vibrations and electrical response of PVDF circular plates of
different diameters in response to multiple sound wave frequencies (100Hz-10kHz)
has been carried out to gain further understanding of the resonance behaviour and
acousto-electric conversion mechanisms of vibrating PVDF thin films. The work is
based on experimental data generated using an integrated piezo-acoustic laser vi-
brometry system and on a theoretical framework based on the continuum theory of
thin plates. The developed model enables the prediction of the resonance frequencies
in dependence of the plates’ diameter, and suggests that the electrical voltage gen-
erated during vibrations is not solely originating from the piezoelectric properties
of the films, but might be affected by additional factors, including the triboelectric
effect. The results of this study are expected to have a strong impact on the inves-
tigation of piezoelectric vibrating plates and on the development of different types
of transducers and energy harvesting devices.
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1. Introduction

Piezoelectric materials feature the reciprocal conversion of mechanical and electrical
energy and are widely used as sensors, actuators, energy harvesting systems (Caliò
et al. (2014); Toprak and Tigli (2014); Yadav et al. (2021)) and acoustic transducers,
which convert acoustic waves into electrical signals via the direct piezoelectric effect
(Jain et al. (2014); Liu et al. (2018)). The development of acoustic devices has started
decades ago and significant improvements have been made ever since. Proctor (1982)
proposed an improved piezoelectric acoustic emission transducer, while Gualtieri et al.
(1994), and Safari and Akdogan (2008) have investigated several piezoelectric mate-
rials for acoustic-wave transducers. Studies on piezoelectric acoustic sensors have in-
creased over the recent years (Ali and Prasad (2020)), providing smart solutions for
various novel applications, including acoustic energy harvesting (Pillai and Deenaday-
alan (2014)), wireless communication (Drafts (2001)), wildlife monitoring (Baratchi
et al. (2013)), surveillance (Kim et al. (2008)) and biomedical devices (Ahamed et al.
(2018)). Harvesting of sound wave energy can be efficiently implemented in various
places where acoustic energy abounds, such as factories, construction sites, roads,
railways, airports and concert venues, and it can be safely harnessed to generate volt-
age (Pillai and Deenadayalan (2014); Choi et al. (2019)). Piezoacoustic systems with
improved acoustic-electrical conversion are also being developed to improve the perfor-
mance of miniaturized devices in communication technologies (Benech and Duchamp
(2016); Hashimoto (2011); Roes et al. (2013)). In addition, the use of acoustic detec-
tors is increasing in the ecology sector, with the purpose of monitoring wildlife activity
that most often require highly sensitive piezoelectric devices to detect low sound lev-
els (Baratchi et al. (2013); Mankin et al. (2011)). Other important applications of
acoustic sensors are realized in surveillance, for the detection of undesired intrusions
in protected places (Kim et al. (2008)). Acoustic-electric conversion is also suited in
different types of acoustic biosensors (Fu et al. (2017)) and biomedical devices, such as
cardiac pacemakers, implantable pressure sensors (Basaeri et al. (2016)) and artificial
hearing aids for cochlea implants (Inaoka et al. (2011); Lee et al. (2014)).

In most acoustic and energy harvesting applications, the piezoelectric devices oper-
ate in resonance conditions, where maximum vibrations and large energy conversion
are obtained (Erturk and Inman (2011); Kim et al. (2011); Liu et al. (2018)). The
resonance frequencies can be tuned by modifying the mechanical properties of the vi-
brating components, as well as their geometry and mechanical and electrical boundary
conditions. The identification and prediction of the resonance frequencies is crucial to
validate the suitability of the devices for specific applications and to optimize their
performance (Toprak and Tigli (2014); Caliò et al. (2014)). The use of piezoelec-
tric polymers is particularly convenient in different applications where high flexibil-
ity, chemical stability and long-term reliability are required (Shin et al. (2018)). Due
to their large compliance, piezoelectric polymers provide high sensitivity to external
mechanical stimuli. Such structures have been extensively analyzed using numerical
approaches for both static and dynamic regimes by Chanda and Sahoo (2021); Vieira
and Araújo (2021); Cinefra et al. (2015a).

Piezoelectric polymers are typically used in thin film geometries, with
poly(vinylidene fluoride) (PVDF) and its copolymer polyvinyledene difluo-
ride–trifluoroethylene P(VDF-TrFE), being the most widely used materials (Eisen-
menger and Haardt (1982); M. Ericka et al. (2005); Chen et al. (2017)). It worth to
mention the work performed by Kong et al. (2021) who analyzed the fracture damage
and friction mechanical properties of silicon dioxide/polyvinylidene composites.
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Despite the intensive research carried out on PVDF-based materials over the last
few decades, their response to acoustic waves and the resonance patterns have not been
fully characterized. Previous studies have focused on the vibration of stretched PVDF
ribbons fully clamped at their extremes (Mahidhar et al. (2013)), PVDF rectangular
membranes fully clamped along the border (Sanz-Robinson et al. (2016); Wang et al.
(2015)), PVDF trapezoidal slits fully constrained along the entire perimeter (Shintaku
et al. (2010)), and circular membranes made up of PVDF and PVDF-TrFE nanofibers
(Lang et al. (2016); Viola et al. (2020)). The present study reports a thorough exper-
imental investigation of the mechanical and electrical response of PVDF piezoelectric
thin films to acoustic stimuli, with particular focus on the dependence of the resonance
frequency on the size of circular plates. A theoretical framework that describes the ex-
perimental results with high accuracy has been developed, founding the basis for the
mathematical description of similar phenomena in other piezoelectric systems. The
results provide useful insights into the development of energy harvesting and piezoa-
coustic systems. Moreover, they will support our ongoing research activities focused on
the engineering of novel biocompatible materials for cochlear replacement, and can be
regarded as a solid ground for the optimization of more sophisticated acoustic sensing
systems currently under development.

2. Experimental details

Commercial poled films of PVDF (110µm thickness) were purchased from Precision
Acoustics Ltd (UK). The films were clamped between two plates containing holes
with different diameter (10, 16, 20, 30 mm), fabricated with a 3D printing machine
(Makerbot V2, US), using poly(lactic acid) filaments (see blue clamps in Figure 1a).
The purpose of the different-sized holes was to study the effects of geometry on the
resonance frequency of the vibrating films. To acquire the electrical voltage generated
during vibration, conductive copper stripes were placed on the area surrounding each
hole. The vibrations of these films induced by acoustic sound were experimentally
studied using a Doppler vibrometer device, equipped with a laser pointer (MSA-050
Microsystem Analyzer, by Polytech, Germany) and a mouth simulator capable of
generating acoustic waves of different intensity (80-120 dB) in the range 0.1-20kHz
frequency (Type 4227-A, Brüel & Kjaer, Denmark). To measure the voltage output,
voltage buffers were used due to the high impedance of the tested devices, which were
connected to a data acquisition device (DAQ) (Powerlab 16, ADInstruments), to syn-
chronize the acoustic signal generated by the mouth simulator with the displacement
and voltage signals. The plates were sandwiched between two purposely-made clamps,
which allowed holding the films at a distance of approximately 6 cm above the mouth
simulator (see Figure 1b). The laser pointer was focused on the centre of each circular
films, whose displacement was measured via the Doppler effect.

Acoustic sine waves with a linearly decreasing frequency from 10 kHz to 100Hz
(as shown in Fig. 2) were generated by the mouth simulator (see Fig.1b) over a time
period of two minutes (rate change of approximately 82.5 Hz/s), during which the
displacement and the voltage output signals were simultaneously recorded. The tests
were carried out using waves with a sound pressure level (SPL) of 84 dB (as measured
by a probe placed closed to the bottom side of the films), which presented variations
of approximately ±15 dB during the frequency sweep. Thus, the exciting force (see
Figure 2) is an approximately regular wave at 84 dB (≈ 0.317 Pa) with a variable
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Figure 1. Schematics of the samples tested (a) and of the laser vibrometer device (b).

frequency according to the function:

ω = 2π(−82.454t+ 10030), for 0 s < t < 120 s (1)

Figure 2. Time-variation of the sound wave frequency during the experimental and numerical tests.

3. Theoretical formulation

The vibrations of piezoelectric plates have been extensively studied in the literature
(Carrera et al. (2008); Paul and Natarajan (1994); Zhao et al. (2020); Liu et al. (2011);
Zhou (2021)). Several researchers gave proof that analytical and numerical techniques
can be used in treating the problem of piezoelectric plates (Cinefra et al. (2015b);
Tocci Monaco et al. (2021a,b)). Among all, Hosseini-Hashemi et al. (2010); Hosseini
Hashemi et al. (2010) proposed a 3-D solutions for circular/annular plates integrated
with piezoelectric layers, and Zhang et al. (2006) presented a 3-D vibration analysis
of multilayered piezoelectric composite plates.

In this study, the theory of isotropic plates is initially considered to solve the me-
chanical vibration problem. The piezoelectric effect due to the deformation is given as
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a consequence of the coupling at the constitutive level rather than from the solution
of the system of equations. This can be shown by displaying the constitutive equa-
tions of piezoelectric materials where the coupling between elastic and electric effects
is clearly visible (Tiersten (2013)). The resultant equilibrium equations are simply a
consequence of such coupling; therefore, the elastic problem is firstly solved and the
piezoelectric effect is computed afterwards (Duan et al. (2005); Mo et al. (2014)). For
the development of the equation of motions of PVDF plates, the simplified method
already presented by Mo et al. (2014) has been considered and summarized below for
the present specific problem.

A circular PVDF plate is taken clamped at the outer edge. The plate of radius R
and thickness hp are described in cylindrical coordinates (r, θ, z).

3.1. Equation of motion

In the experimental tests, only the vibrations of the central point of the plate have
been monitored; hence, the present problem is studied in axis-symmetric conditions.
Moreover, due to the small thickness-to-width ratios considered in the present case,
the classical thin plate theory has been applied. In this context, the displacement field
of the plate in cylindrical coordinates can be represented by:

ur(r, z, t) = u(r, t)− z
∂w

∂r
uz(r, z, t) = w(r, t)

(2)

Where ur and uz are the in-plane and out-of-plane displacements of the plate, and u, w
are the kinematic parameters, which identify in-plane and out-of-plane motion. For the
present Kirchhoff theory, the rotation is modelled as the derivative of the transverse
motion leading to no shear deformation, which is a suitable assumption, due to the
small thickness-to-radius ratio (lower than 1/50) of the films studied. The term r is
the radial coordinate and t indicates time, so that the strains with the von-Kármán
nonlinear terms take the form:

εr =
∂u

∂r
+

1

2

(
∂w

∂r

)2

− z
∂2w

∂r2
= ε(0)r + zε(1)r

εθ =
ur
r

=
u

r
− z

r

∂w

∂r
= ε

(0)
θ + zε

(1)
θ

(3)

The other deformations are identically zero due to the Kirchhoff’s assumptions and
axis-symmetric conditions.

If one initially neglects the piezoelectric properties, as mentioned above, the plate
can be treated as isotropic. The constitutive equations for isotropic circular plates can
be written as: {

σr
σθ

}
=

1

S31(1− ν2p)

[
1 νp
νp 1

]{
εr
εθ

}
(4)

where S31 = 1/Ep, which represents the in-plane elastic compliance and Ep the elastic
modulus of the plate. Since the piezoelectric coupling is initially neglected, the strain
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energy of the plate is given by:

U = π

∫ R

0

∫ h/2

−h/2
(σrεr + σθεθ)r dz dr

= π

∫ R

0

∫ h/2

−h/2

1

S31(1− ν2p)
(ε2r + ε2θ + 2νpεrεθ)r dz dr

= π

∫ R

0

∫ h/2

−h/2

1

S31(1− ν2p)
((ε(0)r + zε(1)r )2 + (ε

(0)
θ + zε

(1)
θ )2 + 2νp(ε

(0)
r + zε(1)r )(ε

(0)
θ + zε

(1)
θ ))r dz dr

= πDs

∫ R

0

(
(ε(0)r )2 + (ε

(0)
θ )2 + 2νpε

(0)
r ε

(0)
θ

)
r dr + πDb

∫ R

0

(
(ε(1)r )2 + (ε

(1)
θ )2 + 2νpε

(1)
r ε

(1)
θ

)
r dr

= Us + Ub

(5)

where the stretching stiffness is Ds = hp(S31(1 − ν2p))
−1 and the bending stiffness is

Db = h3p/(12(1 − ν2p)). From Eq. (5), the stretching Us and bending Ub contributions
to the total strain energy can be clearly identified.

The strain energy due to stretching can be written in terms of the displacements
as:

Us = πDs

∫ R

0

[(
∂u

∂r

)2

+

(
∂w

∂r

)2
(
∂u

∂r
+

1

4

(
∂w

∂r

)2
)

+
u

r

(
u

r
+ 2νp

(
∂u

∂r
+

1

2

(
∂w

∂r

)2
))

r dr

(6)

It is assumed that the mode of vibration of the plate follows the one of the quasi-static
deformation under uniform pressure; thus, the displacements field can be expressed as
Mo et al. (2014):

w = w0

(
1−

( r

R

)2)2

, u = r(R− r)(c1 + c2r) (7)

where w0 is the lumped maximum plate deflection at the plate center (r = 0) and c1
and c2 are two coefficients that take the form (due to equilibrium condition, Mo et al.
(2014))

c1 =
1

126

w2
0 (179− 89νp)

R3
, c2 = − 1

42

w2
0 (79− 13νp)

R4
(8)

so that u becomes:

u =
w2
0

126

r

R2

(
1− r

R

)(
179− 89νp − 3(79− 13νp)

r

R

)
(9)

The bending strain energy takes the form:

Ub = πDb

∫ R

0

[(
∂2w

∂r2

)2

+
1

r2

(
∂w

∂r

)2

+
2νp
r

∂w

∂r

∂2w

∂r2

]
r dr (10)
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The total strain energy is given by the sum of the two energy contributions U =
Us + Ub, which leads to the following expression:

U =
πhpw

2
0

39690R2S31(1− ν2p)

[
w2
0

(
−2791ν2p + 4250νp + 7505

)
+ 35280h2p

]
(11)

Eq. (11) reports both linear and nonlinear terms. In particular, for a fixed material
(e.g. S31 and νp unchanged) the linear part of the strain energy changes with the cubic
of the plate thickness, whereas its nonlinear part changes linearly.

Since a sinusoidal time-history p(r, t) = p0e
iωt is considered, the potential energy

VE (equal to the external work WE with negative sign) for such loads can be written
as:

VE = −WE = −2π

∫ R

0
p(r, t)wr dr = −1

3
πp0w0R

2 (12)

The kinetic energy takes the form:

K = ρπ

∫ R

0

[
hpu̇

2 + hpẇ
2 +

h3p
12

(
∂ẇ

∂r

)2
]
rdr (13)

Note that the kinetic energy includes bulk and rotary inertia terms. The former be-
comes larger than the latter when considering thin plates. However, both components
are considered here to include the effect of rotary inertia in the following computations.
By performing the integrations, the kinetic energy becomes:

K =
πρhp
2

[(
62963ν2p − 89314νp + 50651

)
ẇ4
0

6667920
+

(
R2

5
+

h2p
9

)
ẇ2
0

]
(14)

According to the Hamilton’s principle, the dynamic equilibrium verifies the condi-
tion:∫ t2

t1

(
δU + δVE − δK

)
dt =

∫ t2

t1

[(
∂U

∂w0
+

∂VE

∂w0

)
δw0 −

∂K

∂ẇ0
δẇ0

]
dt = 0 (15)

where t1 and t2 indicate two generic time instants. The derivative terms in Eq.(15)
take the form:

∂U

∂w0
=

2πhp
19845R2S31(1− ν2p)

((
−2791ν2p + 4250νp + 7505

)
w3
0 + 17640h2pw0

)
(16)

∂VE

∂w0
= −πp0R

2

3
(17)

∂K

∂ẇ0
= πρhp

[(
62963ν2p − 89314νp + 50651

)
ẇ3
0

3333960
+

(
R2

5
+

h2p
9

)
ẇ0

]
(18)
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Integration by parts with respect to time allows the equation of motion to be ob-
tained. The final form of the nonlinear dynamic equilibrium equation reads:

0 =
2hp

19845R2S31(1− ν2p)

[(
−2791ν2p + 4250νp + 7505

)
w3
0 + 17640h2pw0

]
− R2

3
p0 + ρhp

[(
62963ν2p − 89314νp + 50651

)
3333960

ẅ3
0 +

(
R2

5
+

h2p
9

)
ẅ0

] (19)

From the equation above, the following compact form can be easily obtained:

m3ẅ
3
0 +m1ẅ0 + k1w0 + k3w

3
0 = f1 (20)

where

m3 = ρhp

(
62963ν2p − 89314νp + 50651

)
3333960

, m1 =
ρhpR

2

9

(
9

5
+

h2p
R2

)
(21)

k3 =
2hp

19845R2S31(1− ν2p)

(
−2791ν2p + 4250νp + 7505

)
, k1 =

16h3p
9R2S31(1− ν2p)

(22)

f1 =
R2

3
p0 (23)

where subscripts 1 and 3 indicate linear and nonlinear terms, respectively. Equation
(20) is the equivalent single-degree of freedom equation of motion of the present PVDF
circular plate for nonlinear forced vibrations. It is remarked that both stiffness and
mass include a nonlinear term.

The linear mass m1 is quadratic with the plate radius, whereas the nonlinear com-
ponent m3 is constant. On the other hand, both linear k1 and nonlinear k3 stiffnesses
are quadratic with the radius. Thus, by computing the ratio between nonlinear and
linear quantities for mass and stiffness, the following relationships can be obtained:

m3

m1
=

62963ν2p − 89314νp + 50651

74088(9R2 − 5h2p)
,

k3
k1

=
−2791ν2p + 4250νp + 7505

17640
(24)

Thus, in large plates, it is expected to have a smaller nonlinear behaviour due to
the mass. On the contrary, the nonlinear effect due to stiffness is constant for each
geometry. The damping factor has been chosen according to the experimental evidence
as an average value of ζ ≈ 2%; hence, equation (20) becomes:

m3ẅ
3
0 +m1ẅ0 + c1ẇ0 + k1w0 + k3w

3
0 = f1 (25)

where c1 = ζcc for cc = 2
√
k1m1. The linear natural frequency of the PVDF plate can
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be simply obtained by:

ω =

√
k1
m1

=
4hp
R2

(
ρS31(1− ν2p)

(
9

5
+

h2p
R2

))− 1

2

(26)

whereas the critical damping takes the form:

cc =
8h2p
9

√
ρ

S31(1− ν2p)

(
9

5
+

h2p
R2

)
(27)

3.2. Voltage output

The radial and circumferential stresses σr, σθ for an isotropic plate with axis-symmetric
displacement field are given by:

σr =
1

S31(1− ν2p)

(
∂u

∂r
+

1

2

(
∂w

∂r

)2

+ νp
u

r

)

σθ =
1

S31(1− ν2p)

(
νp

(
∂u

∂r
+

1

2

(
∂w

∂r

)2
)

+
u

r

) (28)

By considering that the plate is polarized only along the thickness (E1 = E2 = 0),
the constitutive equations of the piezoelectric plate can be written as:

εr = S31(σr − νpσθ)− d31E3

εθ = S31(σθ − νpσr)− d31E3

D3 = −d31(σr + σθ) + ϵ33E3

(29)

where ϵ33 = ϵrϵ0 is the permittivity of the piezo-electric layer and ϵ0 is the vacuum
permittivity, whereas ϵr is the relative permittivity.

The strain energy density is defined by:

U0 =
1

2
εrσr +

1

2
εθσθ +

1

2
D3E3 (30)

By including the constitutive equation (29), the strain energy density becomes:

U0 =
1

2
εrσr +

1

2
εθσθ −

1

2
d31(σr + σθ)E3 +

1

2
ϵ33E

2
3 (31)

The strain energy is obtained by integrating strain energy density and including the
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Table 1. Piezo-electric mechanical properties of the PVDF layer used in the simulations

SI Present
Density ρ 1780 kg/m3 1.78 · 10−9 ton/mm3

Elastic modulus Ep 2.27 GPa 2270 MPa
Poisson’s ratio νp 0.225
Piezo strain constant d31 22 pC/N 22 · 10−6 µC/N
Relative dielectric constant ϵr 11
Vacuum permittivity ϵ0 8.85·10−12 F/m 8.85 nF/mm

strain and stress definitions and solutions given above as (Mo et al. (2014)):

U =

∫ R

0

∫ 2π

0

(∫ hp/2

−hp/2
U0dz

)
rdθdz

=
hpπ

39690R2S31

(
ν2p − 1

) [(2791ν2p − 4250νp − 7505)w4
0

+ 6615E3R
2 (νp + 1) (3R2E3ϵ33S31(νp − 1) + 4d31w

2
0)
]

(32)

The electric field is assumed to be E3 = V/hp, where V is the applied voltage. By
differentiating the strain energy with respect to the voltage, the expression of the
electric charge is obtained as:

Q =
dU

dV
=

πϵ33R
2

hp
V +

2

3

πd31
S31 (νp − 1)

w2
0 = CfreeV +Qgen (33)

The first term is due to the external applied voltage V and the second one represents
the charge generated by structural motion only (V = 0) Qgen. Finally, the voltage
generated and measured on the electrodes is obtained as:

Vgen =
Qgen

Cfree
=

2

3

hpd31
S31ϵ33R2(νp − 1)

w2
0 (34)

It is remarked that the derived voltage is valid for the open-circuit condition only,
and the voltage is measured only when a time-varying load p0 is applied as in the
present experimental tests.

4. Experimental data and numerical simulations

The properties of PVDF used in the simulations are listed in Table 1. The systems
of units used is the most convenient to have comparable numbers in the numerical
matrices. The SI units are reported for more clarity.

Three plate thicknesses are analyzed hp = 0.110, 0.052, 0.028 mm and with the four
different radii R considered (R = 5, 8, 10, 15 mm), the size to thickness ratios R/hp
range approximately between 50 and 600, which can all be studied using the classical
theory of thin plates. The choice for the radius of the model referenced is due to the
diameter of the most commonly used cell culture well plates (for in-vitro validation).
The diameter of those wells is 35.4 mm, 22.1 mm, 16.2 mm and 11.5 mm; therefore, the
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a) b)

Figure 3. a) Linear natural frequencies as a function of the plate radius R. b) Harmonic response functions

for each radius considering h = 0.110 mm.

device diameter that could best fit into these wells was chosen as 30 mm, 20 mm, 15
mm and 10 mm, accordingly. By considering the linear solution (Eq. (26)), a graphical
representation of the frequency as a function of the radius is reported in Figure 3a)
(recalling that f = ω/2π, where f is the frequency and ω is angular frequency). Sub-
sequently, the harmonic response functions that neglect nonlinear effects are depicted
in figure 3b) for the plate radii investigated in the experimental tests and thickness
h = 0.110 mm. The natural frequency of each structure is clearly identified by the lin-
ear harmonic response functions depicted and analogous functions can be represented
by changing plate thickness, however, those functions are not reported for the sake
of conciseness. A good match can be observed between analytical linear frequencies
obtained using the present simplified approach with respect to the experimental ones,
some discrepancies are noted which could be solved by considering nonlinear effects
on the current geometries.

For solving the nonlinear set of equations, the well-known first-order perturbation
method can be used for the case of free undamped vibrations (Wilson (2003)). This
solution can be found by neglecting the nonlinear mass terms (m3 = 0) and the
nonlinear vibration amplitudes can be described by the following equation, in which
A is the amplitude of motion of the central point of the plate and ω0 the natural
frequency of the system shown in Fig. 3b for h = 0.110 mm:

A =

√
4

3

k1
k3

(
ω2

ω2
0

− 1

)
(35)

which is depicted in figure 4a) for the present structures (note that the result is in-
dependent on the plate radius). Analogously, the problem of undamped non-linear
forced vibrations (induced by external oscillating stimuli) is also presented consid-
ering m3 = 0 (Wilson (2003)). This solution considers that the structure vibrates
as the applied load is in steady-state conditions, if the exciting force is harmonic.
The solution of this problem is governed by a third-order polynomial of the form
KA3 + (1− Ω2)A− 1 = 0, where:

K =
3

4

k3
k1

(
p0
k1

)2

, A =
k1
p0

ā, Ω =
ω

ω0
(36)
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a) b)

Figure 4. a)Nonlinear free vibrations. b) Nonlinear forced vibrations. By neglecting the nonlinear mass terms

m3, e.g. valid only for large plates. Radius R increases from right to left.

with ā being the initial assumed displacement for the first perturbation method used
in the solution. The result (presented for the plate with h = 0.110 mm) agrees with
the free vibration case as depicted in figure 4, where the amplitude plot presents a
stiffening behavior (k3 > 0). Figure 4b) shows four groups of curves in which the
plate radius increases from right to left, indicating that smaller plates have higher
frequencies. The nonlinear term k3 emerges for small plates and it is less relevant for
large plates, where the membrane contribution becomes smaller with respect to the
bending one, and the amplitude plot tends to become vertical (in other words linear).
The amplitude reported in the vertical axis in Figure 4 is the term A in eq. (35). This
plot recalls that in nonlinear vibrations, the natural frequency of the plates depends
on plate amplitude of motion, whereas in linear vibrations the natural frequency does
not depend on the amplitude.

In order to verify the nonlinear forced motion depicted in figure 4b), a numerical
frequency sweep is performed by following the frequency variation shown in figure 2.
Each frequency is kept constant for 2 seconds in order to let transient phenomena to
be stable, retrieving the maximum plate amplitude. The results for the four geometries
with h = 0.110 mm are represented in figure 5.

The solid lines represent the envelope of the experimental curves (obtained consid-
ering the displacement peaks in the experimental curves) shown in the supplementary
material, where the displacement of the centre of each plate and the voltage out-
put during the frequency sweep are shown in Figure 6, and the short-time Fourier
transforms of the signals in relevant intervals, shown in Figure 7. The dashed curves
represent the numerical data. It can be noted that the present numerical solution ac-
curately captures the first vibration frequency for large plates (R = 10, 15 mm; Fig.
5c,d), whereas larger errors are observed for small plates (R = 5, 8 mm; Fig. 5a,b).
Numerical and experimental results agree well in terms of resonance frequency, and in
some cases (R = 10, 15 mm; Fig. 5c,d) also in terms of amplitude. The experimental
resonance frequencies and those obtained from the linear and nonlinear numerical solu-
tions are listed in table 2 for the three plate thicknesses considered. It can be observed
that the relative errors obtained from the linear model are consistently larger than
those predicted including nonlinear effects. The maximum relative error is smaller for
thicker plates with h = 0.110 mm and increases for thinner plates h = 0.028 mm this
might be due to the difficulty in the experimental side in capturing those frequencies.
However, the model is able to provide rather accurate estimations of the resonance
frequencies of the vibrating plates for R = 10, 15 and for all thicknesses.
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a) b)

c) d)

Figure 5. Frequency sweep of the nonlinear system with m3 = 0 compared to the experimental results: a)
R = 5 mm, b) R = 8 mm, c) R = 10 mm, d) R = 15 mm.

Table 3 shows the comparison of the voltage output obtained from the peak-to-
peak values of the voltage signals at the resonance frequencies (after removing the
background noise) and the absolute value of the voltage obtained from the numerical
simulations. It can be noticed that the experimental values are much larger than the
calculated ones. This remarkable difference can be attributed to the contribution of
different factors that can affect the measured voltage. Most likely, the experimental
voltage values are not only originating from the piezoelectric effect, as considered in
the theory, but might reflect additional contributions, such as the triboelectric effect
due to the friction between the films and the electrodes, which are dominating the
electromechanical output. It is likely that during vibration, the films rub against the
electrodes producing an electrical voltage through a friction-induced electrification.
The extent of sliding is expected to increase with increasing the amplitude of the
vibrations. However, the measured voltage might also depend on the tightness of the
contact and the morphology of the surfaces in contact, which are both difficult to
control. The contribution of the triboelectric effect is here confirmed by a test carried
out on an unpoled extruded PVDF film (without macroscopic piezoelectric effect),
which shows a non-negligible voltage (about 3 mV, after removing the background
noise) output around the resonance frequency (see Fig. 8). The contribution of the
piezoelectric and triboelectric effect to the voltage output has been evaluated in several
types of generators and has been reported in various review papers (Xie et al. (2021);
Zhang et al. (2021); Thainiramit et al. (2020) among others). The comparison of these
contributions consistently indicates that the triboelectric effect usually determines a
larger voltage output, which can also be orders of magnitude higher than the values
only generated by the piezoelectric effect, as the present data suggest.

13



Figure 6. Displacement amplitude-time and voltage-time signals during the frequency sweep for the plates
with h = 0.110 mm and R of a), c) R = 5 mm; b), d) R = 8 mm; e), g) R = 10 mm; f), h) R = 15 mm.
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Figure 7. Short-time Fourier transforms for plates with R of a) R = 5 mm, b) R = 8 mm, c) R = 10 mm, d)
R = 15 mm. Continuous lines refer to the right axis and the dashed ones to the left axis.

Figure 8. Voltage-frequency signal of an unpoled PVDF film of R = 15 mm collected under SPL level of 112

dB on average.
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Table 2. Linear and nonlinear natural frequencies [Hz] for the four radii considered (relative error in brackets).

radius R [mm] 5 8 10 15
h = 0.110 mm
experimental 2602 1021 605 285
linear 2386.52 932.23 596.63 265.17

(8.28%) (8.69%) (1.38%) (6.96%)
nonlinear 2386.55 933.00 602.07 285.57

(8.28%) (8.62%) (0.48%) (0.31%)
h = 0.052 mm
experimental 1170 645 304 270
linear 1128.17 440.69 282.04 125.35

(3.58%) (31.68%) (7.22%) (53.57%)
nonlinear 1128.58 447.15 304.05 281.81

(3.54%) (30.67%) (0.02%) (4.37%)
h = 0.028 mm
experimental 906 541 236 186
linear 607.48 237.30 151.87 67.50

(32.95%) (53.141%) (35.65%) (63.71%)
nonlinear 612.18 295.84 205.7524 143.112

(32.43%) (45.32%) (12.82%) (23.06%)

Table 3. Comparison of voltage output [mV] values obtained from the experiments at the resonance frequency
and from the simulations for the plates of different diameter.

radius R [mm] 5 8 10 15
h = 0.110 mm
experimental 4 12 22 128
numerical 0.0146 0.068 0.364 0.196
h = 0.052 mm
numerical 0.1103 0.0673 0.0844 0.3063
h = 0.028 mm
numerical 0.3006 0.1449 0.1122 0.1649

An additional possible contribution to the voltage output might come from the
flexoelectric effect, consisting of the generation of electric charges separation (polar-
ization) induced by a local strain gradient. In these particular vibrating conditions, the
films are under bending; therefore, there will be a strain gradient along the thickness
of the films that can contribute to the voltage output. It is possible that this effect
is amplified in resonance conditions. The verification of this hypothesis lies outside
the scope of the present work and will be considered in a separate and more detailed
study.

5. Conclusions

The present manuscript reports a detailed study on the vibrations of PVDF piezo-
electric thin films induced by acoustic sound with frequency in the range of 100 Hz-10
kHz based on experimental tests and a theoretical model. The measurements were
carried out on disks of different diameters using a laser vibrometer and have enabled
the identification of the resonance frequencies, which decrease with increasing the di-
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ameter of the disks, as expected. The theoretical model is based on the classical thin
plate theory and has been developed using Kirchoff’s assumptions in axis-symmetric
conditions to predict the vibration amplitudes and resonance frequencies of the disks.
The derived equation of motion includes a small damping and nonlinear effects re-
lated to mass and stiffness, and it has been solved using the first-order perturbation
method, providing accurate predictions of the resonance behaviour. The linear model
determines an error slightly higher than 10% in the prediction of the experimental
resonance frequencies, while the nonlinear model leads to lower errors. The estimation
of the voltage output originating from the piezoelectric properties of the films obtained
from the model is much lower than the experimental values, indicating that additional
effects are affecting the voltage measured. The discrepancy has been mainly attributed
to the electrification caused by the friction of the films against the electrodes occur-
ring during vibration and an eventual contribution of the flexoelectric effect possibly
enhanced in resonance conditions.
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