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Abstract
Circulating tumor cells (CTCs) are rare tumor cells released from primary,
metastatic, or recurrent tumors in the peripheral blood of cancer patients. CTCs
isolation from peripheral blood and their molecular characterization represent
a new marker in cancer screening, a diagnostic tool called “liquid biopsy” (LB).
Compared to traditional tissue biopsy that is invasive and does not reveal tumor
heterogeneity, LB is noninvasive and reflects in “real-time” tumor dynamism
and drug sensitivity. In the frame of LB, a new paradigm based on single-cell
and label-free analysis based on morphological analysis is emerging. Here, we
review the latest research developments in this emerging vision of LB. In par-
ticular, we survey and discuss recent improvements in microfluidics, imaging
label-free diagnosis and cell classification by artificial intelligence and how to
combine them to realize an intelligent platform based on lab-on-chip technol-
ogy. This prospect appears to open up promising and intriguing new scenarios
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for cancer management through single-cell analysis that will revolutionize the
future of early cancer diagnosis and therapeutic choice with disruptive impact
on the society.

KEYWORDS
cancer, CTCs detection, digital holography artificial intelligence, label-free, liquid biopsy,
microfluidics, Quantitative Phase-Contrast Imaging

1 INTRODUCTION

liquid biopsy (LB) is a test done on a sample of blood to
search for cancer cells or cancer-derived free molecules
(DNA, RNA, exosomes, etc) that are circulating in the
blood, and can be used to identify cancer at an early stage,
to guide the patient treatment, to evaluate the treatment
efficacy, or to validate whether cancer has relapsed. More-
over, because multiple samples of blood may be taken over
time, LB can also help clinicians to understand what kind
of molecular changes are taking place in a tumor.1-3 Cir-
culating tumor cells (CTCs) are vital cells exfoliated from
primary tumor andmetastatic sites and entering the blood-
stream, whose detection and characterization via LB has
been deeply investigated for the development of novel pro-
tocols in management of cancer patients.4,5
In the last 10 years, scientific publications on CTCs trip-

licated, reaching more than 23.000 items by the end of
2019,6 and pointing out to a growing interest in the clini-
cal potential of their identification.7 CTCs clinical trials are
currently employed in breast, prostate, lung, and colorec-
tal cancers.8-11 The challenge is the possibility to extend the
clinical valence of CTCs analysis to other types of cancers.
The workflow for CTCs analysis usually comprises the

following steps: (a) blood collection, storage, and trans-
port; (b) CTCs enrichment; (c) isolation of single cells;
and (d) molecular characterization. All the steps of such
workflow represent a delicate phase because of two main
CTCs characteristics: they are fragile and low in number
(1-10 cells per 10 mL).
Enrichment is the increase of concentration of CTCs

for their subsequent detection, and it is obtained by intro-
ducing a marker specific to distinguish the CTCs from
the other blood cells. Most of the research efforts have
been made in the enrichment step thanks to the combi-
nation of highly engineered microfluidic devices and dis-
covery of selective CTCsmarkers. Current technologies are
based on positive selection by identification of cell surface-
specific markers of CTCs. The most famous marker is
the surface epithelial cell adhesion molecule (EpCAM),
or by the exclusion of leucocytes, via negative selection of
immune cells that carry CD45 protein. The main limita-
tions of the current techniques are (a) the a priori knowl-

edge of the exact protein composition on the CTCs sur-
faces, (b) the lack of universal markers able to identify all
heterogeneous CTCs in the bloodstream, and (c) the lack
of validated, standardized approaches in pre-analytical,
analytical, and post-analytical phases of CTCs detection.12
Thus, the development of innovative, comprehensive, and
standardized methods for CTCs isolation and detection is
urgent.
Many emerging technologies in the recent years aim

at surpassing the abovementioned limitations. The
most promising approaches regard the label-free imag-
ing methods combined with artificial intelligence (AI)
algorithms.13-16 Indeed, several scientific papers based
on the sole label-free techniques, such as quantitative
phase imaging (QPI), were able to distinguish between
tumor cell and correspondent nontransformed cell line,
thus restricting the results to a special class. In particular,
the QPI method is based on detecting all-optical and
morphological differences among populations.
The ability to compare and classify a large amount of

data fromdifferent populationsmakesAI a suitable tool for
capturing low number of CTCs among a wide range of cell
populations found in blood, without the requirement for a
specific biological marker and exploiting label-free param-
eters. AI can extend the range of diagnostic problems one
can tackle in automatic way and is designed to make the
diagnostic response objective, that is, not dependent on the
level of experience or specific skills of the pathologist. At
this scope, AI is hungry for informative data and, in the
context of cell type discrimination, high-throughput QPI is
themost appropriate candidate to satisfy this need. Indeed,
many valuable papers describe the possibility to classify
different cell types by combining QPI with AI in the field
of tumor cell identification.16-20 In this framework, one of
the main developing fields for the CTCs detection and iso-
lation regards microfluidic engineering and its ingenious
solutions able to perform both in marker-based and label-
free systems.21-27
The integration of label-free imaging, AI, and microflu-

idics is a subject of great interest in the scientific
community to solve open biomedical questions.21,28-31
In particular, the authors of the present review strongly
believe that such integration would represent a keystone
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F IGURE 1 Integration between label-free QPI, LoC flow engineering, and AI to generate a classification result from single-cell analysis
of blood streams. The core of the scheme is a microfluidic LoC system able to sort the lighter blood components (red blood cells [RBCs] and
platelet) and put in rotation CTCs and white blood cells (WBCs) to perform QPI measurement at different angles. All the retrieved phase-
contrast images are then processed by machine learning approaches to classify CTCs populations (eg, using convolutional neural network
[CNN] algorithms). When available, prior information from fluorescence channels can be exploited to generate a reliable diagnostic response

for the identification of CTCs (Figure 1). For these rea-
sons, the driving idea of the present review is to span
between present and possible future technologies in the
field of CTCs identification. We first shortly discuss the
enrichment protocols, marker-based CTCs detection, and
their current clinical application. Noteworthy, innova-
tive research strategies will be presented, which aim at
surpassing the limits of present technologies, specifi-
cally focusing on the new perspectives envisaged from

label-free QPI for detection on the unique fingerprint
based on single-cell morphology, lab-on-chip (LoC) tech-
nology, and AI. The work is organized in the following
five sections: (a) CTCs clinical application; (b) marker-
based approaches for CTCs identification; (c) label-free
microfluidic techniques for CTCs isolation; (d) label-free
and quantitative imaging in microfluidics for single cell
study, and (e) deep learning-assisted imaging for cell
identification.
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F IGURE 2 Illustration of the current applications of CTCs technologies. CTCs exit the primary tumor and enter the bloodstream. CTCs
are separated and enriched by blood elements such as WBC, RBC, and platelets, through various CTC identification technologies. The most
relevant markers for identifying CTCs are listed in the box on the left. The guidelines for the application of isolated and detected CTC in clinical
practice are described in the box on the right

2 CTCs CLINICAL APPLICATION

CTCs, as LB, have various clinical applications aimed to
improve the outcome of cancer patients. Particularly, CTCs
enumerations can be used for early cancer detection, for
cancer screening, for prognosis, and therapy monitoring
and CTCs molecular characterization can identify prog-
nosticmarkers or therapeutic targets in precisionmedicine
(Figure 2).
CTCs numbers increase or decrease in relation to

tumor burden. Usually, low CTCs count allows identifi-
cation of patients at early cancer stage, whereas higher
CTCs numbers correspond to advanced cancer stages and
metastasis.2,32-33 Allard et al report thatCTCs are extremely
rare in the blood of asymptomatic subjects, thus suggesting
CTCs count as a screening test to identify populations with
higher risk to develop cancer.34 CTCcounts complemented
with proteins or genes profiling of detected cells could also
aid to identify cancer primary site.35
CTCs evaluation is noninvasive and repeatable many

times during therapy. These facts make CTCs count a
powerful assessment method of cancer development in
real time. A decrease in CTCs count after chemother-

apy/surgery indicates a cancer remission and/or early
prediction of treatment efficacy. In contrast, an increase
in CTCs count indicates disease progression and/or
revalidation of therapy.7 Several clinical trials with CTC-
based treatment decisions are completed or ongoing,
demonstrating the clinical utility of CTCs detection.36 For
example, in patients with metastatic breast cancer, it is
confirmed the utility of the cutoff of≥5 CTCs/7.5 mL blood
for risk stratification, with significantly longer overall
survival in the group of patients with <5 CTCs/7.5 mL
blood.37 Emerging evidence highlights that CTCs count
is a relevant biomarker to identify patients likely to
benefit from immune checkpoint inhibition therapy.
In melanoma-treated patients, changes in CTC counts
precede standard clinical assessment and are highly
predictive of long-term clinical outcomes.38 In nonsmall
cell lung carcinoma (NSCLC)-treated patients, elevated
CTCs count correlates with highly glycolytic tumors that
can potentially metastasize at distant sites.39
CTCs molecular analysis (DNA mutations or gene

expression profiling) can complement the assessment of
CTCs count during therapy to provide additional valuable
information. DNAmutations analysis can visualize cancer
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driver gene mutations that confer either sensitivity or
resistance to therapies, allowing the identification of
druggable molecular targets that guide the clinicians to
revalidate ongoing treatment and to optimize personal-
ized targeted therapy in many cases. As examples, B-Raf
proto-oncogene mutation status in CTCs collected from
patients with metastatic melanoma is a pivotal index
in selecting targeted therapy such as vemurafenib and
dabrafenib,40 whereas epidermal growth factor receptor
(EGFR) mutation status in CTCs collected from patients
with metastatic lung cancer acts as a predictive param-
eter for treatment response to EGFR tyrosine kinase
inhibitors.41 Furthermore, the identification of specific
markers at primary diagnosis can be used as a prognostic
biomarker for predicting therapy resistance. ERCC exci-
sion repair 1 mutation in CTCs may predict the insurgence
of resistance in ovarian cancer following platinum treat-
ment and may help to define a new therapy in the context
of precision medicine.42 Estrogen receptor 1 methyla-
tion in CTCs at diagnosis from patients with metastatic
breast cancer is associated with a lack of response to
everolimus/exemestane treatment.43 Several studies have
revealed genetic heterogeneity between individual CTCs in
different loci that are drug targets (eg, EGFR inhibitors) or
associated with drug resistance (eg, phosphatidylinositol-
4,5-bisphosphate 3-kinase catalytic subunit alpha
[PIK3CA] and Kirsten rat sarcoma [KRAS]).44 Although
the clinical relevance is unknown, this variation has
important clinical implications for therapeutic decision-
making when resistance occurs and suggests the impor-
tance of analyzing CTCs at single-cell level for accurate
tumor profiling and even to allow treatment personalized.
For instance, the heterogeneity in the single CTC related
to PIK3CAmutations predicts resistance to human epider-
mal growth factor receptor 2 (HER2)-targeted therapies
in patients with metastatic breast cancer,45,46 whereas
the heterogeneity in the KRAS mutation profile explains
the variability of the interpatient response to anti-EGFR
therapies in colorectal tumors being KRAS one of the
genes involved in the EGFR signaling pathway.47,48
Monitoring CTC-specific protein/transcripts expression

is also under investigation to guide clinical therapeutic
selection. In the GeparQuatro study, it was demonstrated
that themeasurement of HER2 protein expression in CTCs
from patients with metastatic breast cancer has important
implications in stratifying patients to anti-HER2 therapy.49
The measurement of programmed death-ligand 1 (PDL-1)
protein expression in CTCs from patients with breast and
NSCLC cancers allows real-time monitoring of immune
activation in treated tumors and have implications regard-
ing the use of monoclonal antibodies anti-PDL-1. In
prostate cancer, CTCs detection based on mRNA levels
measure was evaluated as biomarker of drug response50

and has shown superior sensitivity compared to current
imaging methods such as positron emission tomography
in assessing disease recurrence.51 The study of CTCs and
evolving CTC technologies is offering also additional mod-
els to accelerate oncologic drug development. Recent stud-
ies showed the immense potential of CTC-derived three-
dimensional (3D) organoid cultures as preclinical models
to test drug sensitivity for personalized medicine.52 For
example, Zhang et al proposed CTC-derived organoid for
screening specific drugs, thereby settling the problem of
drug resistance and invalid treatment to predict therapeu-
tic responses to anaplastic lymphoma kinase inhibitors
(ceritinib and crizotinib) in patients with lung cancer.53
To date, the potential clinical value of CTCs has been

established, but still some limitations should be addressed
before CTC-based LB becomes a routine test in clini-
cal practice. First, a standardization of CTC-detection
methods is necessary. For example, melanoma cells are
very heterogeneous in the expression of tumor markers
and difference in CTCs detection rate between different
methodologies is an obstacle for applying CTCs counts in
clinical setting.54 In the future, it is necessary to explore
the development of a large panel that includes markers
that identify CTCs from different solid tumors coupled
with more efficient CTCs capture systems to circum-
vent the loss of specificity and increase sensitivity. The
development of more sensitive methods is also required,
especially for detecting very low CTCs levels in the blood
of patients with early-stage cancers or in asymptomatic
individuals for cancer screening. At present, CTCs analysis
in early-stage cancers is complemented with the charac-
terization of LB components as exosomes and ctDNA. In
these contexts, exosomes analysis has shown to be more
useful than CTCs analysis for patients monitoring and
assessing the risk of progression and metastasis55 and
ctDNA levels are used to assess tumor burden.56 This
LB combined approach is very expensive, requires man-
agement of diverse technological platforms, and takes a
long time.

3 MARKER-BASED APPROACHES
FOR CTCs IDENTIFICATION

Today, most of the commonly used approaches for CTCs
detection, enumeration, and isolation are based on the
recognition of a known, specific CTCs marker, such as a
surface antigen, DNAmutation, gene expression profile, or
even certain functional property that discriminates CTCs
from the rest of the circulating blood cells (Figure 2).
The most widely used and the only currently Food

and Drug Administration-approved diagnostic protocol
for CTC detection regards the CellSearch system, which
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bases the CTCs identification and enumeration on the
EpCAM expression.57,58 However, because invading can-
cer cells gradually lose epithelial and gain mesenchymal
properties, many CTCs actually have low EpCAM levels.
Most likely, a spectrum of heterogenic CTCs types may
be recognized, with those that completely acquire mes-
enchymal phenotype associated with later stages of the
disease.59 This is why many methods today complement
EpCAM staining with additional markers. Systems that
allow custom multi-marker selection are available, such
as Accucte/CyteFinder (RareCyte).60 Furthermore, it has
been observed that better performance in CTCs isolation
is obtained when native antigen is preserved, which led
to development of DNA or RNA aptamers that bind and
detach on-demand, allowing to maintain antigen confor-
mation and avoid the collateral effects of antibody bind-
ing on CTCs quality.61 These immune-based methods still
most often require preselection step to concentrate the
CTCs, either by density gradient or via diversemicrofluidic
approaches, with more sophisticated techniques emerg-
ing daily, such as dielectrophoretic array, which discrimi-
nates CTCs based on a combination of properties includ-
ing cell size, shape, and polarization.62 Moreover, com-
bining immunostaining with nanotechnology platforms is
gainingmomentum.63-66 Interestingly, flow cytometers are
available today, which combine marker-based phenotyp-
ing with fluorescence microscopy, providing both func-
tional andmorphologic information.67 However, up to date
these systems have rarely been used in the context of CTCs
analysis and do not yet allow CTCs isolation.
Despite the recent progress in next-generation sequenc-

ing (NGS), genomic analyses of CTCs remain a challenge.
The drawback of such approach is that the information on
the original mutation from the primary tumor needs to be
known.68 Moreover, there is no universal CTC detection
method to highly concentrate CTCs pure fraction carry-
ing selected driver mutations. For now, the ctDNA sam-
ple from the same patients is providing a useful alterna-
tive. However, such sample still remains diluted by the
admix with normal circulating free DNA and thus, CTCs,
as seed ofmetastasis, remain the “gold standard” for blood-
based detection of cancer, provided that their isolation is
optimized in the near future. The low amount of DNA
from CTCs renders challenging the accurate detection of
DNA properties using NGS approach and the use of a
methodwith higher sensitivity, such as droplet digital PCR
(ddPCR), has shown to facilitate driver mutations detec-
tion and quantification.69 Nonetheless, for now, the accu-
racy of CTCs detection by NGS DNA screening is still low,
if we consider that low specificity of both NGS and ddPCR
approaches results in false positive signals by noncancer-
ous cells capture. This limitationmay be overcome by ana-
lyzing the expression of genes specifically expressed in

cancer, but not in blood cells. Indeed, in ovarian cancer
patients, CTCs have been detected by focusing on specific
gene expression patterns via qRT-PCR Taqman assays.70
Moreover, CTCs have also been detected by focusing on
their copy number variant changes,71 or by analyzing
the whole genome sequence,72 both through use of NGS
approaches that do not require previous knowledge of the
primary tumor. However, because even after significant
sample concentration, white blood cells (WBCs) contam-
ination increases the cost/benefit ratio of this technique,
CTCs detection strategies based on NGS still require iso-
lation of single CTCs.73-75 Interestingly, studies on ctDNA
have recently implied that methylation pattern analyses
might be more informative than mutation screening, at
least in the context of early disease detection,76-78 suggest-
ing that in the future, CTCs epigenomemight be a promis-
ing parameter to account for.
Intriguing strategies for CTCs isolation are emerging

that aim to discriminate them from surrounding blood
cells by exploiting differences in functional properties.
For example, it has been reported that CTCs may be
distinguished by analyzing the mitotic index, as they are
supposed to maintain capability of division.79 Moreover,
because invading cells are typically capable of digesting
extracellular matrix, which is not a property of blood cell
types, it has been proposed to isolate CTCs based on their
capacity to uptake Cell AdhesionMatrix protein.80,81 Simi-
larly, Dhar and colleagues have been able to isolate prostate
cancer CTCs by focusing on theirmatrixmetalloproteinase
(MMP) activity.82 It is important to note that MMP activity
has been observed also in cancer patient-derived leuko-
cytes, meaning this functional assay requires further
optimization. Interestingly, the latter study has coupled
the MMP functional assay with a microfluidic platform
and amicrodroplet system, which allows efficient trapping
of CTCs while maintaining their physiological proper-
ties. Microdroplet compartmentalization has also been
used by Del Ben and colleagues, who showed that CTCs
distinction from blood cell types may be achieved based
on their substantially different metabolic properties.83
In particular, it has long been known that cancer cells
are characterized by an increased glycolytic metabolism,
which results in high lactate secretion and acidification
of the surrounding environment. By exploiting this prop-
erty, CTCs from several solid cancer models have been
successfully distinguished from surrounding blood cells.83
Similarly, a mass spectrometry approach combined with
microfluidics platformhas recently been used to efficiently
discriminate colorectal cancer patients from those with
gastric cancer, based on their CTCs metabolomic profile.84
Even though the knowledge on CTCs biology is increas-

ing, as well as the specificity and sensitivity of meth-
ods discriminating CTCs based on their molecular and
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functional properties, currently most of these approaches
require a prior information about the specific antigen or
nucleic acid markers expressed by primary tumors. More-
over, it is not uncommon that such strategies offer CTCs
identification and enumeration, but not their simultane-
ous isolation. Thus, althoughmarker-based CTCs discrim-
ination shows prognostic and therapy response predictive
potential, collection of material for thorough functional
characterization of CTCs, which is crucial for providing
insight in metastatic disease, is most often not allowed. In
this context, the direction of developing CTCs discrimina-
tion methods based on functional enrichment is showing
promise. Particularly intriguing are microfluidic platforms
coupled to biomimetic materials, such as those exploiting
the property of CTCs to adhere to certain surfaces.85 For
example, one of such systems, mimicking the endothelial
cell walls, has been built from an E-selectin layer, which
promotes CTCs rolling, and an antibody-coated surface
that allows CTCs adhesion and capture.66,86,87 Further-
more, label-free approaches are being developed, such as
those focusing on morphological discrimination of CTCs,
which we tackle further on in this review.

4 LABEL-FREEMICROFLUIDIC
TECHNIQUES FOR CTC ISOLATION

The word “microfluidics” identifies the science and tech-
nology of manipulating liquids in channels with at least
one dimension in the order of micrometers. Microfluidic
devices have several advantageous features, such as88,89
(a) a precise control of the flow rates due to laminar flow
conditions; (b) the possibility of handling small suspended
particles; and (c) the need for very small amounts of
samples. For these reasons, the microfluidic technology is
extensively used in a variety of fields including medicine,
biology, biotechnology, and engineering. Some of the
most relevant applications of microfluidic devices are
the synthesis, functionalization, and analysis of particles
suspended in carrier liquids.
Label-free microfluidic techniques are based on specific

physical features of CTCs that allow distinguishing them
from the other particles present in blood.22-27 For example,
CTCs are often larger90 and softer91 thanWBCs. Label-free
microfluidic techniques can be divided into passive and
active: the former do not need the application of an exter-
nal force, whereas the latter do.
The main classes of passive methods for CTCs separa-

tion aremechanical filtration and hydrodynamicmethods.
Mechanical filtration is a size-based technique. The main
advantages of such technique are simplicity and accu-
racy of fabrication of the devices and high throughput.23
Mechanical microfilters can be based on membranes

(sieves), pillars, weirs, and cross-flow.92 Schematics of the
working principle of these four categories of microfilters
are reported in Figure 3, in which it is shown that the com-
mon feature of these devices is the entrapment or the devi-
ation of particles having a size over a certain threshold
from the rest of the suspension.
Microsieves are structures consisting of micropores dis-

tributed on a two-dimensional layer. Such devices are
able to process large amounts of sample in a small time
(>10 mL/h), thus having high throughput. However, high
flow rates and pressuresmay damage CTCs captured in the
pores. For this reason, membranes based on double layers
of pores have been designed that minimize the stress felt
by the cells93-94 (see Figure 3A).
Micropillar filters are based on the principle of Deter-

ministic Lateral Displacement, namely, that if micropillars
are adequately distributed along a channel where whole
blood flows, cells above a critical size (like CTCs) progres-
sively detach from other cells (see Figure 3B). The main
advantages of micropillar filters are constructive simplic-
ity and the possibility of reaching high capture efficiencies.
These can be achieved by repeated pillar structures and by
gradually narrowing pillar spacing.95 On the other hand,
dense pillar structures are prone to gas bubble entrapment,
which can significantly lower capture efficiency, and have
relatively low throughput due to the little cross-sectional
“accessible” area. In addition, clinical blood samples are
usually sticky and contain a lot of debris that can promote
clogging.
Weir filters consist of a microfluidic channel with a

cross-sectional reduction. Obviously, hydrodynamic resis-
tance increases as cells larger than the gap get trapped,
eventually causing device clogging. To delay such issue,
multiplexed weir filters have been recently developed.96-97
The main drawbacks of the abovementioned filtration

techniques are clogging and adsorption. Indeed, the accu-
mulation of cells on the filter as the process goes by makes
the driving pressure of the matrix fluid increase, which in
turn increases the probability that the captured cells get
damaged. Still, the prolonged contact between captured
CTCs and filter structure often causes irreversible adhe-
sion, which makes it harder to collect the CTCs. More-
over, all the abovementioned techniques are intrinsically
discontinuous.
In order to overcome these limitations, cross-flow filtra-

tion has been developed.98 In this system, normal blood
cells pass through the device in the direction of a primary
flow, whereas CTCs accumulate in a collection reservoir.
The disadvantages of this method are a moderate through-
put and the complexity of the operation procedure.
Another class of passive microfluidic techniques for

CTCs isolation is that of hydrodynamic-based methods.
Unlike mechanical filters, hydrodynamic-based devices
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F IGURE 3 Schematics of some designs of microfilters for CTC separation: (A) membrane filter (reprinted with permission93; Copyright
Springer 2011), (B) pillar filter (top view; reprinted with permission95; Copyright American Institute of Physics 2012), (C) weir filter (side view),
and (D) cross-flow filter (top view; reprinted with permission from92; Copyright Springer 2008)

are easy to integrate with other microfluidic units for fur-
ther manipulation of separated CTCs and downstream
analysis. Furthermore, devices based on inertial hydrody-
namic forces have high throughput (>10 mL/h).23
A hydrodynamic isolation method is the Dean Flow

Fractionation (DFF): when a fluid flows through a spi-
ral microchannel, Dean vortices form due to shear gra-
dients and wall-lift forces that make larger cells (ie,
CTCs) move to the inner wall, whereas smaller cells
move toward the outer wall. Therefore, CTCs and nor-
mal blood cells accumulate at the inner and outer walls
of the microchannel, respectively.99 DFF technique can be
improved by using microchannels with trapezoidal cross-
sections, which have a better isolation performance than
microchannels with rectangular cross-sections,100,101 and
using two DFF devices in series.102
When cell suspensions flow through channels with a

series of sudden expansions and contractions, they expe-
rience microfluidic vortices because of shear gradients in
expansion sections. Because cells over a critical size get
trapped in such vortices, CTCs can be separated from
normal blood cells.103,104 However, repeated expansions
and contractions may cause bubbles to be trapped in
microchannels. In addition, recycling wasted sample to
increase CTCs capture canmake vortex-based devices hard
to integrate with other microfluidic devices.
Very recently, a slit microchannel with low aspect ratio

has been used for sheathless, high-throughput separa-
tion of CTCs from WBCs in a viscoelastic fluid (namely,
a 0.2% hyaluronic acid solution). Here, due to the com-
petition between inertial and elastic forces in the car-

rier fluid, smaller particles (WBCs) are focused on the
midplane of the microchannel and larger ones (Michi-
gan Cancer Foundation-7 (MCF-7) CTCs) on two symmet-
ric planes between the center and the walls. This device
achieves both high-throughput and separation efficiency
and purity.105
Another separation device based on hydrodynamic

interactions that has been recently proposed is a microflu-
idic channel with a T-shaped bifurcation. Indeed, when
inertia is irrelevant, all cells can be focused on the
centerline of the inlet channel, then, as they approach
the bifurcation, they undergo a different deformation
depending on their softness and are consequently devi-
ated to one outlet or the other depending on the extent of
deformation.106
Active label-free microfluidic methods for CTCs cap-

ture include electrophoresis and acoustophoresis. When
cells are exposed to a nonuniform electric field, they
are subdued to an electrokinetic force whose magnitude
depends on their size and dielectric properties. This
principle underlies dielectrophoresis (DEP). As CTCs
have both different size and dielectric properties with
respect to normal blood cells, DEP can efficiently isolate
CTCs from blood. In their earlier configuration, DEP
devices had electrodes directly in contact with the flowing
suspension, which led to issues like bubble formation
due to electrolysis and electrode fouling.107,108 In order to
avoid these problems, contactless DEP devices have been
developed.109 However, the magnitude of voltage needed
to generate a sufficient DEP force in these devices should
be of order 102 V because of the insulation barrier between



MICCIO et al. 9 of 19

the electrodes and the suspension and this may cause
device instability. In addition, DEP methods require quite
complicated sample preparation procedures to resuspend
cells in an isotonic medium with low conductivity.
Acoustophoresis has many advantages, being contact-

free, simple, fast, biocompatible, and easy to integrate with
other microfluidic technologies.110 When cells are exposed
to an acoustic standing wave in a microchannel, they are
pushed toward the acoustic pressure nodes. Because cells
experience different magnitude of the acoustic radiation
force depending on their size, density, and compressibil-
ity, acoustophoresis can be used to manipulate blood cell
subpopulations, yet it is difficult to isolate rare CTCs from
clinical samples because of the lack of difference in acous-
tic properties among blood cells. In order to overcome this
limitation, devices that integrate acoustophoresis and DEP
have been developed.111
Even ifmany of the abovementioned label-freemicroflu-

idic technologies for isolating CTCs have good perfor-
mance, each principle has inherent drawbacks, thus mul-
tiple complementary isolation principles are often com-
bined, yielding multi-step devices.112 These can be divided
into a pre-enrichment step, which allows continuous CTCs
enrichment, and an isolation step, where the cells are
separated from the rest of the sample. In some cases,
marker-based and label-free approaches can be combined,
like, for example, in DEP-Array already mentioned in Sec-
tion 2, which unites DEP and marker analysis. Of course,
although some multi-step isolation devices achieve high
performance, their fabrication process is typically more
complicated than that of devices based on a single work-
ing principle.

5 LABEL-FREE AND QUANTITATIVE
IMAGING INMICROFLUIDICS FOR
SINGLE-CELLMORPHOLOGY

To date, the most of the approaches to image transpar-
ent biological samples rely on the functional use of mark-
ers/fluorescent dyes to label the cell portions of interest.
However, labeling the samples is invasive and can poten-
tially alter both their inner structures and their natural
behavior and life cycle in the case of live cells. Further-
more, as in case of CTCs enrichment, another important
issue is the perfect a-priori knowledge of the cell surface
protein constituents. Thus, marker-free approaches allow-
ing single cell analysis are highly demanded in the biomed-
ical imaging field. Above all, nondisruptive approaches are
pursued to make the analyzed cells available for further
downstream analyses in clinical applications.
In recent years, QPI techniques are developed as

label-free imaging modalities in cancer cell analy-

sis. QPI methods can be based on interferometric or
no-interferometric recording setups and supply the
quantitative phase-contrast map (PCM) of the sam-
ple. Biological matter has low contrast in bright-field
microscopy because it mainly affects the phase of the light
beam passing through. Specifically, each pixel of a PCM
represents the integral information of Refractive Index
(RI) in the cell thickness. In other word, QPI techniques
measure the optical path delay of the light passing across
the cell detecting morphological features of the inner
cell structure. The challenge is that QPI methods will be
able to measure differences in the morphological traits of
cancer cells. Among QPI approaches, digital holography
(DH) microscopy is emerging as one of the marker-free
imaging modality that is expanding in biomedical applica-
tion field. DH gives access to the complex field diffracted
from samples illuminated by coherent light. Compared to
the most of the sensors that collect the sole pattern of light
intensity, holographic imaging allows retrieving a richer
source of information, namely, the PCM. DH has been
extensively applied in medicine and diagnostics to study
cell mechanics, life cycle, and interactions with other cells
and the extracellular matrix, to perform cell counting, 3D
tracking, and sorting.113-118 Besides morphological evalua-
tions, quantitative PCMs supply information on the whole
cell inner structure at single cell level, thus allowing the
identification of all-optical fingerprints directly connected
with biophysical parameters as the hemoglobin content
in red blood cells (RBCs)119,120 or the physical changes
connected with biological processes as differentiation.121
The possibility to characterize cancer cells from the
phase-contrast point-of-view throughout DH microscopy
has also been investigated in vitro by searching for cancer
biomarkers able to discern between tumor and healthy
samples.122,123 One of the main advantages of DH imaging
is the numerical refocusing that makes such technology
particularly suited for imaging inside 3D volumes. Great
effort has been spent in the integration of DH imaging
with compact LoC and microfluidic devices to expand
the potentialities of such imaging modality. The most
valuable opportunity is the label-free analysis of flowing
samples.124-130 Tsia and co-workers greatly improved in the
last years the integration of quantitative phase methods
in flow-cytometry for single-cell biophysical phenotyping
with high throughput (>10 000 cells/s).131,132 A proof of
principle on the use of DH to discriminate between CTCs
and the other components of a blood stream has been
provided by Vanapalli and coworkers.133,17 Thanks to DH
flexible refocusing, samples placed in different positions
along the optical axis could be imaged with one single
capture. Thus, fast and high-throughput screening of a
liquid volume was allowed.133,17 Although promising, this
approach did not fully exploit the precious content of
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information of the holographic pattern. In principle, the
PCM would allow to define a new set of metrics useful
for classification and detection of rare cells. However, the
physical thickness of the sample and its RI distribution are
coupled in the PCM, which can lead to nonaccurate inter-
pretation of the morphological parameters of samples hav-
ing complex inner structures. Instead of using one single
PCM that provides pseudo-3D information deriving from
an integral imaging process, a high-resolution 3D repre-
sentation of the inner distribution of the cell’s RI is obtain-
able by adopting a tomographic approach. Tomographic
phase microscopy (TPM) combines multiple PCMs to map
the 3D RI of cells.134,135 These are probed along a number
of controlled directions, and the corresponding PCMs are
collected. Various algorithms have been proposed to com-
bine them in order to calculate the so-called tomogram.136
The first implementations of TPM were based on optical
projection schemes, where the optical diffraction effect
was neglected. Diffraction-based models for tomogra-
phy were proposed later on and applied to biological
samples.137 Differently, white-light diffraction tomography
(WDT) uses the optical sectioning effect across the focus
plane of incoherent light to create tomograms not affected
by speckle noise.138 In order to access to different points of
view, a relative motion between the sample and the light
source has to be provided. Beam deflection splits light
into a number of probe beams that illuminate, serially or
in parallel, the object while this is kept static.134-136,139-141
Mechanical scanning of the employed optics (eg, using
galvanometer mirrors or digital micromirror devices) is
the conceptually simplest way to achieve this goal, but it
trades off recording time.142 The most important param-
eters in TPM are the maximum width of illumination
angles and the angular sampling step. The former sets the
axial resolution of the tomogram; the latter determines
the sensitivity in the estimation of RI spatial changes.
Above all, the accuracy in estimating the RI distribution is
determined by the uncertainty in the knowledge of the set
of illumination angles. When the sample is put in rotation,
knowing this set of angles with low uncertainty can be
troublesome, and performing in-flow tomography at the
single cell level is still a challenging goal. Recently, “in-
flow cyto-tomography” has been demonstrated, exploiting
the concepts of flow-induced rolling and angles estima-
tion, thus achieving full 3D label-free characterization in
continuous flow of RBCs, diatom algae, and human breast
adenocarcinoma MCF-7 cells.143,144 In particular, different
algorithms were proposed to retrieve the set of angles
in the presence of prior information, namely, a guess on
the object shape or its inner symmetry properties.143-144
Exploiting particular symmetries of the object in the
observation plane (eg, circular or elliptical) allows infer-
ring information about its rotation, thus making easier

estimating the set of rotation angles. Besides, the assump-
tion of uniform rotation along the field of view helps
relaxing the angle recovery problem. However, in more
general cases uniform rotation cannot be ensured, and the
samples do not have such particular symmetries. Hence, a
general and blind method able to include irregular object
morphologies and nonuniform rotations is very desirable
and still an open issue. In Figure 4, three different TPM
approaches in bioimaging are showed. Figure 4A displays
the results of WDT for imaging live unlabeled cells. This
approach extends diffraction tomography to white-light
illumination; authors use a conventional phase-contrast
microscope equippedwith amodule for quantitative phase
images retrieving.138 Figure 4B shows the results obtained
by structured illumination (SI) microscopy developed
with a setup using broadband illumination. The system
measures angle-dependent sample diffraction through
a common-path, off-axis interferometer.141 Finally, Fig-
ure 4C shows the results obtained by DH tomography of
flowing samples exploiting the rotation induced by the
microfluidic channels the samples are immersed in.143,144

6 DEEP LEARNING-ASSISTED
IMAGING FOR CELL IDENTIFICATION

In recent years,many efforts have been spent in developing
cell classification frameworks based on hybrid solutions
that combine microscopy to AI architectures. This new
paradigm can be traced back to several concurring factors.
The advancements in computational microscopy and
illumination engineering unlocked the use of imag-
ing tools providing full-field label-free imaging with
large space–bandwidth product.113,114,123,133,134,138,141,143,145
Accurate control of microfluidic streams promoted the
spread of LoC-based high-throughput imaging flow
cytometers.130,133,143,146 Imaging devices are becoming
increasingly accessible to unskilled operators, being
low-cost, user-friendly, and field portable.124,126,146 The
growing point of care diagnostics market is expected to
provide large volumes of data in the form of single-cell
analysis or statistical aggregates. Although the human
capability of delivering large volumes of clinically relevant
data exponentially increased over the last decade, the
capacity of effectively analyzing such data did not, being
naturally limited by the skills of the pathologists called
to judge based on their own experience. Thus, biology
research, diagnostics, and medicine naturally started rely-
ing on AI-based cellular image analysis.147-186 AI largely
extends the variety of tasks that image analysis can accom-
plish. Object tracking, segmentation, and high-accuracy
classification of cells and their phenotypes are good
examples in this sense. One main distinction can be made



MICCIO et al. 11 of 19

F IGURE 4 Tomographic imaging of single cells by three different recording arrangements. (A) human colon adenocarcinoma cells (HT29)
imaged by white-light diffraction tomography [Reprinted with permission Ref. 140 Copyright Springer Nature], (B) 3D RI reconstruction of
HT-29 cells via SI microscopy [Reprinted with permission from [ref 143] © The Optical Society.)] (C) tomographic phase microscopy by DH of
rolling cells while they are flowing along a microfluidic channel: RBCs (Inspired from Ref. 145 - http://creativecommons.org/licenses/by/4.0/)
and human breast adenocarcinoma MCF-7 cells (Inspired from Ref. 146 - Reproduced by permission of The Royal Society of Chemistry)

between “classical” machine learning and “deep learn-
ing.” The former typically exploits features engineering
to learn from descriptors of each element of the dataset.
Expert users define a set of image-based features that are
supposed to be distinctive enough to allow separating dif-
ferent populations in a proper feature subspace.17,18,147-150
The analysis of the Pearson autocorrelation matrix is of
help to reduce redundant dimensions.150 Although this
approach requires a limited number of samples for each
class, its performance strictly depends on the choice of
a representative set of descriptors. The latter refers to
neural networks, that is, architectures that can operate
directly on the input image (rather than its descriptors)
and can learn, from a wide dataset, its most appropriate
representation with several levels of abstraction.151-154
Deep learning approaches to image segmentation and
classification have been demonstrated to be robust with a
huge generalization power.15,19,20,28,29,154-168 Cell segmenta-
tion in microfluidic streams is obtainable using pretrained
networks (eg, Mask R-CNN and Faster R-CNN).151,152,167
Transfer learning is generally applied to classifiers pre-
trained using one of the large existing datasets, and
retraining only their last few layers with a smaller dataset

well matching the specific cell classification issue. The use
of ImageNet169,170 for biological image analysis is a good
example in this regard.167,171 Segmentation can involve
the automatic separation of each cell (foreground) from
the background, or the identification of different parts
within a cell (eg, cell nucleus vs cytoplasm).154-158,160,163,172
Learning paradigms can be applied to marker-based or
label-free imaging modalities. Staining samples with flu-
orescent markers/labels help enhance the image contrast.
Marker-based approaches are highly specific, because the
choice of the label allows selecting the part of the cell or
the specific protein expressing fluorescence. Thus, AI can
learn the proper segmentation and discrimination rules
from the labeled dataset. Deep learning has been applied
to nucleus detection in breast cancer, brain tumor, and
pancreatic Neuroendocrine Tumor,158,160,163,172,173 lung
and skin cancer cell identification,155,156,161,174 and mitosis
detection in Hematoxylin and Eosin-stained breast cancer
images.162,164 AggNet first introduced data aggregation
to learn image annotations from no experts to refine the
training process.164 Recently, an auto-encoder feed by
fluorescent images of blood samples enriched for CTCs
has been proved to be 96% accurate in their identification

http://creativecommons.org/licenses/by/4.0/
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in blood streams.28 However, labeling the sample to obtain
a contrast agent makes the dataset strictly dependent
on the preparation protocol and the specific dye/marker
employed. This poses a question on the consistency
between the images used for training the network and
the test dataset to be classified, so that in theory each
experiment would require its own specific training stage.
Label-free QPI approaches coupled to AI schemes are
rapidly emerging because the sole contrast agent that QPI
exploits is the intrinsic cell RI contrast. In the absence of
markers/dies, this is independent from the preparation
protocol, which makes label-free approaches appealing
candidates to feed neural networks with the required large
amount of highly uniform data. Although this advantage
is obtained at the cost of chemical specificity, the use of
AI for detection, segmentation, and classification can be
thought as a complementary tool to infer specific prop-
erties of the cell lines under analysis. QPI was initially
coupled to wavelet decomposition to extract features for
identifying stem cells and cyanobacteria.175,176 Since this
breakthrough, many works proposed QPI and AI to detect
malaria-infected RBCs,177 breast cancer cells,178 human
melanoma cells,13,150 lymphocytes from tomographic
images,179 macrophages,180 and malignant lymphoma and
CTCs in bulk flow using inline DH microscopy.17,18 Deep
learning architectures have been coupled to QPI as well to
segment glioblastoma-astrocytoma U373 cells and HeLa
cells through the popular U-Net architecture,154 detect the
nucleus in breast cancer cells,166 and to detect CTCs from
QPI.19 Besides segmentation and classification of specific
cell lines, many works addressed the problem of charac-
terizing cells’ full phenotype, including developmental
processes with the consequent automated identification of
rare events. Epithelial–mesenchymal transitions in breast
cancer cells have been studied relying on QPI and features
engineering.148 Kinetic states classification in mammalian
cell lines has been carried out using machine learning to
identify rare events such as therapeutic resistance or tran-
sition events like cells differentiation.150 Photoinduced
necrosis of HeLa cells has been also studied relying on DH
microscopy and machine learning.149 Remarkably, smart
computational cytometers have been presented, which
use different coherent imaging schemes and deep learning
to screen and sort out rare cells automatically with high
throughput. Deep cytometry is a recently introduced con-
cept, where images from aQPI photonic time-stretching168
system create the input signals used, during the inference
stage, to discern between OT-II hybridoma T-lymphocytes
and SW-480 colon cancer epithelial cells with accuracy
higher than 95.5% and 105cells/s throughput. Relying on
this concept, and exploiting the very fast inference time,
image-activated automatic cell sorting has been demon-
strated, which is the holy grail of deep learning-assisted

flow cytometry.29 A deep learning-aided flow cytometer
with a cameraless design exploited light-sheet laser illumi-
nation and the readout of photomultiplier tubes to perform
image-activated sorting of pEGFP-GR plasmids translo-
cated and un-translocatedHEK-293T cells, which is impor-
tant because cytoplasmic mislocalization of tumor sup-
pressor proteins can be a marker of oncogenic mutations,
for example, in the case of retinoblastoma tumor.180 More-
over, image-activated sorting of SKNO-1 acute myeloid
leukemia cells from normal WBCs, as well as screening
of HEK-293, HeLa, and MCF-7 cancer cells in hetero-
geneous mixtures with 102cells/s throughput, has been
demonstrated.181 Besides, a field portable computational
cytometer has been recently presented that exploits mag-
netically modulated lensless speckle imaging to provide a
contrast agent, based on motility,182 to MCF-7 cells spiked
inwhole blood.20 Magnetic beads are attached to the tumor
cells and move them under the action of an alternate mag-
netic field (magnetic enrichment). The analysis ofmultiple
frames allows enhancing the signal of the oscillating ele-
ments inside whole blood and allows detecting potential
tumor cells candidates. A densely connected Pseudo-3D
Convolutional Neural Network further screens the candi-
dates and reduces the false positives. Thus, large volumes
can be analyzed with remarkably low limit of detection
(LOD = 10 cells∕mL in whole blood).20 Beside the above-
mentioned applications of AI for cells segmentation and
sorting based on the input images, a new concept is emerg-
ing, referred to as augmented microscopy.15,183-187 With this
term one refers to all the cases where deep learning is
used to improve the performance of existing microscopes
beyond their physical limitations.184 Cross-modality
image transformation based on Generative Adversarial
Networks allowed overcoming the diffraction limit and
converting low-resolutionwide field images into the corre-
sponding high-resolution counterparts.183 Super-resolving
wide-field fluorescence images, recovering phase-contrast
information from the sole intensity information, trans-
forming diffraction limited confocal microscopy images
into super-resolved stimulated emission depletion (STED)
images, diffraction-limited Total Internal Reflection Fluo-
rescence (TIRF) images into TIRF-SIM reconstructions,182
and holographic images into Red Green Blue (RGB)
bright-field images186 are few remarkable examples of this
exciting pathway that promises to unlock new possibilities
in the automated analysis of cells and tissues. Virtual
staining of cells and histopathology slides is a recent
breakthrough that allows converting images of unstained
specimens into the corresponding images that would have
been captured after applying a staining protocol to the
samples.186 Coupling cross-modality architectures to the
existing classification tools outlines a promising route
worth to be followed in the next future.
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7 PERSPECTIVES AND CONCLUSIONS

Histological evaluation coupled to the analysis of genetic
alterations from tissue biopsies is the current standard
method for cancer risk stratification and therapeutic
choice. However, tissue biopsies have many limitations
given high invasive nature, subjective evaluation of an
individual pathologist, and high procedural costs in the
case of molecular pathology. LB that emerged in the last
years dealing with the identification of CTCs and circu-
lating free molecules (DNA, RNA, and exosomes) into
the peripheral blood is noninvasive, easily repeatable, and
potentially low-cost approach that represents an alterna-
tive for tumors that are not easy to submit to biopsy.
Nowadays, tissue biopsy is used as a reference for the val-
idation of LB, but this is a topic of discussion because
the genomic composition of CTCs and circulating free
molecules could be different from the biopsy tissue due
to intratumor heterogeneity. The prevalence of pheno-
typic plasticity within CTCs populations that mimics the
properties of primary tumors has fueled investigation of
single-cell high-throughput enrichment and sequencing
platforms over the past years. The resolution at the single-
cell levels analyzes in-depth CTCs heterogeneity, spread-
ing the light on cellular mechanisms that are selected
during the evolution of disease, or evolve under pressure
exerted by anticancer treatments.
A desirable outcome would be that blood, rather than

tissue, is the leading source of tumor information. Besides
the aforementioned reasons, LB is much less invasive than
tissue biopsy, easily repeatable, andmuchmore precise for
optimization of personalized therapy. A further step would
be the prevention screening, in the sense of early and non-
invasive detection of tumor onset before it progresses to
metastasis.
CTCs identification is the research fieldwhere new tech-

nologies can make a difference as compared to the state
of art. In this framework, several technologies have been
developed and applied to CTCs detection in the blood-
stream. Despite developments in isolation techniques, the
application of CTCs in clinical practice is slow, probably
due to the rarity and frailty of CTCs and to stress conditions
applied to isolate single cells. Unfortunately, the methods
to identify these biomarkers are still very expensive, requir-
ing specialized personnel to manage technological plat-
forms with complicated use systems that take a long time
and still present very high percentages of errors. Currently,
only the CellSearch system technology upgraded from the
experimental level to clinical utility status. CellSearch sup-
ports decision-making steps, but it reliably works for only
a few types of tumors. The development of a complete and
nondestructive unlabeled CTCs isolation methodology for
heterogeneous CTCs populations could have clinically sig-
nificant outcomes for optimizing precision medicine. A

further step would be to improve the sensitivity of CTCs
detection during early stage cancers when CTCs levels are
undetectable using current technologies.
In the recent years, there has been a great effort in

developing label-free technologies for CTCs detection. The
main advantages of such approaches are to avoid the a pri-
ori knowledge of the CTCs surface composition so that
label-free methods can potentially be adopted for all CTCs
populations. The most challenging developing fields are
microfluidics, marker-free imaging, and AI. We predict
their success probability will reach the maximum only
with their perfect integration (Figure 1).
From themorphological point-of-view, CTCs are similar

to someWBCs, which is why the sorting systems based on
the different dimensions of blood constituents fail in the
separation of CTCs from WBCs. In the near future, highly
engineered microfluidic systems will need to tackle two
important and sequential problems, that is, the efficient
separation of CTCs andWBCs from the smallest blood ele-
ments and the achievement of suitable throughput to allow
imaging of sorted CTCs andWBCs. In this regard, the inte-
gration of different label-free microfluidic devices based
on diverse techniques (ie, sorting, focusing, and rolling)
should allow to exploit the advantages provided by each
technique, even if at the cost of a slightly larger construc-
tive difficulty. With respect to the issue of throughput, the
possibility of multiplexing the devices will be a key point
to enhance throughput.
In the field of label-free imaging, the challenge is the

ability to record as much information as possible of the
flowing objects in order to distinguish between CTCs and
WBCs, and also among different populations of CTCs.
In the range of marker-free imaging methods, one of the
most complete approaches is the QPI that is able to quan-
titatively correlate the values of the image pixels in terms
of sample optical path length. The most complete source
of information is the TPM that operates on flowing cells
and supplies the distribution of nucleus and organelles
in the cell volume. Microfluidics combined with QPI may
be able to solve the important issue of the throughput
necessary to simultaneously analyze a great quantity of
sample in the time necessary at recording quantitative
information to allow subsequent fast classification by AI.
In this framework, the use of AI is dramatically expand-

ing the variety of classification tasks one can handle
in automatic and more objective way. Among the wide
literature existing on the topic, we believe two concepts
outstand. Deep cytometry couples QPI photonic time
stretching to AI, and generates decisions in real time,
thus enabling image-activated cell sorting.29,168 Besides,
AI-assisted magnetically modulated computational
cytometry can discern tumor cells inside whole blood with
extremely low limit of detection using a field portable
device.20 It is worth pointing out how AI is changing our
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imaging capabilities as well. Cross modality networks
allow transforming low-resolution images into their
high-resolution counterparts.183 Virtual staining can add
specificity to label-free QPI.186 These possibilities could
greatly reduce the sample treatment procedures and give
us a glimpse of one single microscope with switchable
imaging performance.
From the social and economic point of view, current

techniques are limited by high costs and low throughput
due to the rarity and fragility of CTCs, as largely explained
in the present review. A new technology that integrates
microfluidics, QPI, and AI on board of LoC represents in
our opinion themost promising platform for searching and
detecting CTCs with high efficiency and able to promise
at same time simple processing of complex cellular fluids,
high sensitivity, and high throughput. It is expected that
this approach will be a powerful technology playing an
important role in future medical analysis satisfying large-
scale and high-throughput requirements.
Development of such innovative instrumentations

for biomedical diagnosis, whose expected cost will be
extremely competitive in respect to the actual approaches
for LB, can really push toward a new generation of clinical
tools that will have a very huge market worldwide. More-
over, it is important to outline that label-freemodality does
not produce chemical waste, thus drastically reducing the
impact both on the management and usage of chemicals
(reagents) making diagnosis for cancer a totally green
issue.
In summary, there are a lot of efforts to improve in the

near future this integrated and intelligent LoC platform
because of many advantages and potentialities over tra-
ditional bench-top systems for CTCs identification. These
advantages include reduced size of operating system, flex-
ibility in design, less reagent consumption, high capture
efficiency, and cell purity.
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