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Real-space obstruction in quantum spin Hall insulators
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The recently introduced classification of two-dimensional insulators in terms of topological crystalline in-
variants has been applied so far to “obstructed” atomic insulators characterized by a mismatch between the
centers of the electronic Wannier functions and the ionic positions. We extend this notion to quantum spin Hall
insulators in which the ground state cannot be described in terms of time-reversal symmetric localized Wannier
functions. A system equivalent to graphene in all its relevant electronic and topological properties except for a
real-space obstruction is identified and studied via symmetry analysis as well as with density functional theory.
The low-energy model comprises a local spin-orbit coupling and a nonlocal symmetry breaking potential, which
turn out to be the essential ingredients for an obstructed quantum spin Hall insulator. An experimental fingerprint
of the obstruction is then measured in a large-gap triangular quantum spin Hall material.
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I. INTRODUCTION

Insulating phases of matter are categorized based on topo-
logical properties of their band structures [1–5]. In trivial
insulators the valence bands are adiabatically connected to
an atomic limit and exponentially localized Wannier functions
must exist [6,7]. Hence, in the absence of a Wannier represen-
tation, the corresponding phase is topologically nontrivial as,
for instance, the case of quantum spin Hall insulators (QSHIs)
in the presence of time-reversal symmetry [8–12]. The bulk-
boundary correspondence guarantees that QSHIs possess
gapless anomalous boundary modes, whose spin-momentum
locking and topological robustness are particularly attractive
for spintronics applications [5,13]. A subset of all possible
nontrivial phases can be identified by means of the topological
quantum chemistry (TQC) approach. This relies on symmetry
indicators, that reveal the existence or lack of elementary band
representations [14–18].

Recently, a further real-space classification has been put
forward for trivial insulators. Depending on the spatial lo-
calization of the Wannier centers for the valence bands
with respect to the underlying ions’ lattice positions, one
distinguishes between conventional and “obstructed” atomic
insulators [14,15,17–21]. In the latter ones, at least one of the
Wannier functions is displaced away from the lattice-site posi-
tions, leading to interesting effects in open boundary condition
geometries, such as metallic interface states or higher-order
topological phases in 2D [22–30]. Provided that, in a specific
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case, symmetry indicators do exist, obstructed atomic insula-
tors can then be unambiguously determined with TQC, at odds
with the identification of nontrivial Z2 phases where TQC can
predict false negatives [15,17].

Extending the concept of real-space obstruction to QSHIs
would constitute an intriguing step. This is conceptually
possible since symmetry-protected topological phases lack
a Wannier representation only when using Wannier func-
tion basis sets that preserve the protecting internal and/or
point-group symmetries. A description of a QSHI break-
ing the requirement that Wannier functions must come in
Kramers’ degenerate pairs is therefore completely allowed.
This has been in fact successfully achieved by Soluyanov and
Vanderbilt in Ref. [11]. Note that the symmetry character of
the electronic band cannot diagnose the charge centers of such
Wannier functions. The Kramers’ degeneracy of the electronic
bands cannot be removed while preserving the time-reversal
symmetry of the full many-body ground state. Therefore, the
construction of physical elementary band representations at
the basis of TQC always reduces to Wannier Kramers’ pairs.

The localized Wannier functions for a QSHI insulator orig-
inally introduced for the Kane-Mele model in Ref. [11] are
centered on the two inequivalent sublattices of the honeycomb
net. As we show here, a graphene-like band structure can
be also realized by chiral orbitals on a triangular lattice. It
turns out that the local degrees of freedom play the role of
the sublattice isospin of the Kane-Mele model for single pz

or s orbitals. We find that, despite the existence of a formal
mapping between these two realizations of Dirac fermions
at the valley momenta, the triangular QSHI can be topolog-
ically distinct from graphene. The difference is precisely the
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real-space obstruction as the Wannier functions of the valence
bands are localized away from the triangular atomic positions.
The Wannier centers form, in turn, a honeycomb motif as
they are placed in the void spaces between the atoms, as we
show by applying the Soluyanov-Vanderbilt construction to
our triangular QSHI.

As we elaborate below, there is an additional physical prop-
erty distinguishing the two models. This regards the locality
of the SOC term that is of second-nearest-neighbor nature in
graphene but local in the triangular multiorbital QSHI. This
has a profound impact not only on the size of the gap in
material realizations of our model but also on the real-space
obstruction.

In this paper we hence discuss a mapping between the
valence states of a honeycomb and triangular lattice and
show how this relies on the fact that a certain wave function
symmetry may be represented by basis sets being localized
on different Wyckoff positions. Such mapping is, however,
a momentum-dependent concept and by determining the as-
sociated absence or presence of a real-space obstruction, we
elevate its significance to the entire Brillouin zone (BZ). We
develop this idea for hexagonal and trigonal space groups,
for which we show the equivalence of the Dirac fermions at
the valley momenta K/K′. By embedding them in a simple
tight-binding model in the whole BZ, we unveil the real-
space obstruction that emerges in the triangular case only.
Further, we give full support to our theoretical findings by
means of scanning tunneling microscopy (STM) and angle-
resolved photoelectron spectroscopy (ARPES) measurements
on a recently synthesized material [31,32]. In the final part,
we elaborate on the local orbital angular momentum (OAM)
polarization, a decisive difference between the Kane-Mele
model and the triangular QSHI besides the real-space obstruc-
tion, which also propagates into the edge states.

II. EQUIVALENT BLOCH WAVE FUNCTION
REPRESENTATIONS

The honeycomb and the triangular lattices share the same
wallpaper group p6m. The former is bipartite with orbitals
located at the Wyckoff positions 2b = {A = (1/3, 2/3), B =
(2/3, 1/3)} [33], while the site of the triangular lattice is
positioned at 1a = (0, 0) [34]. Here, we will be focusing on
the following comparison: The 2b basis site of the honeycomb
with A and B sublattices [orange and green open circles in
Fig. 1(a)] on the one hand and, on the other hand, the tri-
angular lattice with its single site (filled black circle) in the
unit cell. The former has one orbital with magnetic quantum
number mhc = 0 per site while the latter is equipped with
two chiral orbitals with mt = ±m on each atom. The different
dimension of the orbital (flavor) subspaces ensures the same
number of degrees of freedom between the two situations.

As we are going to elaborate in this paper, these two lattices
possess different electronic band structures but their Bloch
eigenstates become indistinguishable at two special points
in the BZ: the valley momenta K = (1/3, 1/3) and K′ =
(−1/3,−1/3). Moreover, the charge density profile from the
eigenvectors at K and K′ prescinds from the basis. In fact,
regardless of having single orbitals at the 2b positions or two
chiral flavors located at the 1a site, the valley charge arranges

FIG. 1. (a) Wyckoff positions in the hexagonal unit cell giving
rise to the triangular and honeycomb lattices. The former is made of
the filled black circle at 1a, while the latter by the orange “A” and
green “B” open circles at 2b. A different Bloch phase exp(ik · R)
(purple, yellow, and cyan colors) calculated at k=K or K′ is assigned
to each unit cell (diamond shapes). The filled-black circle in the
center corresponds to R = (0, 0) and represents the atom assigned
to the purple unit cell). (b) Interference between orbital and Bloch
phases. The blue arrow shows how the phase of the chiral orbitals
sitting at the R positions of the triangular lattice winds going around
the A/B points. In red we denote instead the contribution from the
Bloch phases along the same path. For this specific example, we have
chosen an orbital with m mod 3 = 1 at K.

spatially to form a honeycomb connectivity on the 2b Wyckoff
positions A and B. Such a pattern does not come as a surprise
in the case of the honeycomb lattice where the atoms are
indeed occupying the positions where the charge accumu-
lates. On the contrary, it is less obvious to see how chiral
orbitals on a triangular lattice can form an electronic motif
centered on the voids, i.e., on the orange and green open
circles in the two triangles of Fig. 1(b). This may be suggestive
of a real-space obstruction in the triangular lattice, which we
will more formally elaborate on in the next sections.

The similarity of the aforementioned basis sets at the valley
momenta can be understood by means of a simple interference
argument. Let us consider a Bloch wave function at a given
momentum k,

�k(r) = 〈r|�k〉 =
∑

R

eik·R〈r|mR〉, (1)

where |mR〉 is an orbital with magnetic quantum number m
located in the unit cell corresponding to Bravais point R. To
prove the equivalence of different choices of the basis set
for Eq. (1) at the valley momenta, we must show that the
corresponding Bloch wave functions have identical characters
under the symmetry classes of the corresponding little group.
Focusing on the C3 rotation, the character � of the Bloch
wave function of Eq. (1) arising from an orbital m at Wyckoff
position x is given by

�(C3, m, x, k) = ϕ(C3, x, k)χm(C3). (2)

ϕ(C3, x, k) and χm(C3) denote, respectively, the characters
of the Bloch phase and of the orbital m under a C3 rota-
tion. As the triangular Wyckoff position 1a is located at the
origin (black-filled dot), its Bloch phase remains invariant.
Therefore, the character � of the full Bloch wave func-
tion is given only by the orbital part χm(C3) = ei 2π

3 m = ωm.
For the honeycomb positions, instead, a C3 rotation around
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1a translates A and B into the corresponding ones in neigh-
boring unit cells, as illustrated in Fig. 1(a). This results in a
Bloch phase difference at A and B of

ϕ(C3, A, k = {K/K′}) = ω∓2 = ω±1, (3)

ϕ(C3, B, k = {K/K′}) = ω∓1. (4)

This phase difference is reflected in the opposite sequences of
colors under the effect of C3 rotations depending on the valley
momenta, as shown in Fig. 1(a).

By taking into account this additional “Bloch angular mo-
mentum” m̃x,k = ±1, we obtain the condition under which
both Bloch wave functions have the same C3 character,

0 = (mt − mhc − m̃x,k ) mod 3. (5)

This implies that any Bloch wave function of a chiral orbital
mt mod 3 �= 0 on the triangular lattice transforms identical
as one of mhc mod 3 = 0 orbitals located at the A/B honey-
comb sites.

Having established the equivalence on the level of the
Bloch wave function symmetry, we turn now to the honey-
comb connectivity in the triangular lattice. This results from
a wave function interference at the A/B sites, as shown in
Fig. 1(b): The chiral flavors mt on the triangular sites (filled-
black circles) contribute to the Bloch wave function with their
lattice and orbital phases. Evaluating the corresponding valley
state from Eq. (1) at points A and B in real space, one gets

〈r = {A, B}|�k={K,K′}〉 ∝
∑

R

eik·R〈r|mR〉 (6)

∝
2∑

n=0

[ωm̃r,k · ωmt ]n (7)

= 3δ(m̃r,k+mt )mod3,0, (8)

where m̃r,k reflects the winding of the Bloch phase around the
considered honeycomb site at a given valley momentum. In
Eq. (7) we have restricted ourselves to the shell of first nearest-
neighbors but the argument remains valid if farther shells are
included. Indeed, these come in groups of triangular triplets
and exploits their C3 symmetric arrangement, as shown in
Fig. 1(b) for the first-nearest neighbors.

As a result, what dictates the constructive or destructive
interference for a Bloch wave function on the triangular lattice
at the A/B sites is the total angular momentum M = m̃r,k +
mt . Thus, the charge density is finite when total invariance
under C3 symmetry can be achieved, i.e., at the A or B position
where the total M either vanishes or is a multiple of 3,

|�k={K,K′}(r = {A, B})|2
{
> 0, if M mod 3 = 0
= 0, if M mod 3 �= 0.

(9)

At the valley momenta, a pair of chiral orbitals ±m at the 1a
triangular sites can hence contribute to the electronic charge
density at the 2b positions A/B. Depending on the com-
bination of local angular momentum and lattice phase, the
interference in A or B can indeed be constructive, as illus-
trated in Fig. 1(b). This results in an electronic honeycomb
connectivity on the 2b Wyckoff positions. Specifically, for
a pair of chiral orbitals p± = (px ± ipy)/

√
2 with m = ±1

localized at the 1a site, Eq. (9) gives that p+(p−) localizes at
A(B) and B(A) for the valley momenta K and K′, respectively.

III. VALLEY HAMILTONIAN

In Sec. I, we have established the conditions leading
to a charge profile spatially displaced with respect to the
atomic positions. Here, we derive the time-reversal symmetric
Hamiltonian for a chiral doublet at the valley momenta, where
this interference phenomenon is active. Based on a group-
theory analysis, we describe the consequences of spin-orbit
coupling and in-plane inversion symmetry breaking (ISB),
which corresponds to considering the A and B positions in
Fig. 1 inequivalent. Finally, we establish a formal mapping at
K and K′ between the triangular chiral wave functions and the
basis describing graphene-like systems within the Kane-Mele
model.

In the freestanding triangular lattice, the little group of
the K/K′ points is given by D3h [36]. This comprises
one threefold vertical rotation axis, three twofold horizontal
rotation axes, three vertical reflection planes, and the hori-
zontal reflection plane. As shown in the character Table I,
its two two-dimensional representations promote symmetry-
protected twofold-degenerate states, and these give rise to
Dirac points.

Upon introducing SOC, the little group of K/K′ is the dou-
ble group DD

3h of D3h, which contains only two-dimensional

spinor representations. Assuming local atomic SOC 	̂L · 	̂S act-
ing on any basis function pair of D3h (Table I), the valley
Hamiltonian is given by

ĤSOC = λSOC
	̂L · 	̂S = λSOCL̂z ⊗ Ŝz, (10)

with 	̂L and 	̂S denoting the orbital and spin angular momentum
operator, respectively. The twofold-degenerate valence and
conduction eigenstates of Eq. (10) are

Ev: |�v〉 = ∣∣ jz = ∓|m| ± 1
2

〉
, (11)

Ec: |�c〉 = ∣∣ jz = ±|m| ± 1
2

〉
. (12)

As positive and negative m quantum numbers contribute to
both valence and conduction eigenstates, the pairs of degener-
ate eigenvalues localize on both A/B sublattices resulting in a
honeycomb-type charge pattern.

Of central importance to our analysis, is the symmetry
reduction induced by a breaking of the in-plane inversion
(A and B inequivalent). The absence of the three vertical
reflection planes results in the little group C3h [37] and the
above-mentioned twofold representations split up into pairs
of chiral one-dimensional representations (see C3h in Table I).
Hence, in each spin sector, the low-energy Hamiltonian of
ISB-split Dirac states can be parametrized by the z component
of the orbital angular momentum operator L̂z,

Ĥ ISB(K/K′) = ±λISBL̂z. (13)

The ± sign in Eq. (13) is a consequence of K and K′ being
time-reversal partners and λISB denotes the strength of the
ISB. Equations (9) and (13) imply that for a given band the
charge localization on A and B is valley independent.
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TABLE I. Character table of the two-dimensional representations of point group D3h and the corresponding complex-conjugate paired
one-dimensional representation of its subgroup C3h [35]. ω is given by exp(i2π/3). The symmetry operations are threefold rotations around
the vertical axis (C3), twofold rotations around the horizontal axis (C′

2), horizontal (σh) and vertical σv reflections and improper rotations around
the vertical axis (S).

Two-dimensional representations of D3h

Representation I 2C3 3C′
2 σh 2S3 3σv Orbital basis

E ′ 2 −1 0 2 −1 0 (px, py ), (dx2−y2 , dxy ), ( fxz2 , fyz2 )
E ′′ 2 −1 0 −2 1 0 (dxz, dyz ), ( fxyz, fz(x2−y2) )

Chiral one-dimensional representations of C3h

Representation I C1
3 C2

3 σh S1
3 S5

3 Orbital basis

E ′ 1 ω ω∗ 1 ω ω∗ p+1, d−2, f+1

1 ω∗ ω 1 ω∗ ω p−1, d+2, f−1

E ′′ 1 ω ω∗ −1 −ω −ω∗ d+1, f−2

1 ω∗ ω −1 −ω∗ −ω d−1, f+2

The combined action of ISB and SOC determines the val-
ley eigenspectrum,

Ĥ triang(K/K′) = ĤSOC + Ĥ ISB(K/K′)

= L̂z ⊗ (λSOCŜz ± λISBŜ0), (14)

where S0 is the 2×2 identity matrix. The relative strength of
λISB and λSOC dictates the gap and, in turn also the pattern of
charge localization. In the large λISB limit, the charge density
from the two valence eigenstates localizes on only one of
the two void positions (A or B) of the triangular lattice (as
stated above, independently on the valley). In contrast, in the
λSOC-dominated case, those two eigenstates contribute to the
charge localization at both void positions A and B. Moreover,
according to Eq. (9), each eigenstate contributes just to one
void (either A or B).

This competition is in close analogy to the Kane-Mele
model for graphene upon replacing the concept of voids with
the sublattice degree of freedom. There, a large Semenoff
mass favors a staggered charge density profile driving the
system towards a topologically trivial phase. Not being adia-
batically connected to this atomic limit, the nontrivial ground
state necessarily inherits instead contributions from both sub-
lattices [2,38].

To put this equivalence on formal grounds, we derive in
Appendix A a valley-dependent unitary transformation map-
ping the chiral basis on the triangular lattice used in Eq. (14)
(e.g., {p+, p−}) onto the sublattice subspace of the honey-
comb {A,B}. This reads

ÛK =
(

1 0
0 1

)
⊗ Ŝ0, ÛK′ =

(
0 1
1 0

)
⊗ Ŝ0, (15)

and transforms the Hamiltonian in Eq. (14) onto

ĤKM(K/K′) = Û †
K/K′Ĥ triang(K/K′)ÛK/K′

= ±λSOCτz ⊗ Ŝz + λISBτz ⊗ Ŝ0, (16)

where 	τ denote Pauli matrices representing the sublattice
degree of freedom. To give specific examples, a {p+, p−}
basis can be mapped onto a {sA, sB}-like honeycomb basis
located on the sublattices A and B. A pz-like graphene basis
would be instead obtained starting from a triangular d± =

(dxz ± idyz )/
√

2 basis (odd under reflections with respect to
the horizontal plane, see Appendix A).

The local atomic SOC term of the triangular basis is hence
transformed into a nonlocal Kane-Mele-type SOC interaction,
while the valley-dependent triangular ISB term turns into a lo-
cal staggered potential/Semenoff mass [2,38]. It is interesting
to note, that the strength of the Kane-Mele SOC interaction
in Eq. (16), which in graphene-type systems originates from
intrinsically weak second-neighbor processes, is here as large
as the local atomic SOC [31,39].

We have therefore proven the existence of a transformation
between the honeycomb and the triangular basis sets. For the
latter, we will now show that not only does the interference
mechanism displace the charge centers away from the atomic
positions when focusing on the valley momenta, but we can
even define localized obstructed Wannier functions for the
whole BZ. While the existence of such Wannier functions
does not come as a surprise when the ISB term is large and the
system is a trivial insulator [30], the possibility of constructing
them in the SOC-dominated nontrivial limit is by no means
obvious.

IV. OBSTRUCTED QSH INSULATOR

We start from the simplest tight-binding description of
a p-shell on the triangular lattice possessing only nearest-
neighbor hopping. In addition to the Dirac point at K/K′,
the Hamiltonian for {p+, p−} orbitals displays twofold-
degenerate eigenvalues also at the � point, making the band
structure inevitably metallic [40], as shown by the green bands
in Fig. 2(a). This is therefore different from typical graphene-
like systems (two sublattices and one orbital per site only),
in which the Dirac cone lives in an otherwise already gapped
band structure. This situation is not changed qualitatively by
the pz (m = 0) orbital, shown by red solid lines in Fig. 2,
which introduces additional crossings between the in-plane
and out-of plane degrees of freedom. However, an insulating
ν = 0 ground state can be stabilized in the presence of local
SOC (see dashed bands in Fig. 2) as this couples the two
subspaces, gapping out all low-energy degeneracies.

The band crossing marked by the dashed-vertical line ap-
proximately halfway between � and K, which has turned into
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FIG. 2. Band structure of the {p±, pz} model on the freestanding
(a) triangular lattice and in the absence of a mirror symmetry with
respect to the horizontal plane (b). The color code of the solid lines
denotes the orbital character for the model without SOC while the
bands with SOC are plotted with thick-dashed lines. The thin-dashed
vertical lines indicate the position of the p±-pz degeneracy (in the
absence of SOC and mirror symmetry breaking) and the inset to
(a) shows the path in the BZ. The insulating phase with SOC for
the freestanding case, see thick-dashed line in (a), is topologically
trivial (ν = 0) whereas, the concomitant presence of SOC and of the
mirror symmetry breaking, thick-dashed lines in (b), turns it into a
QSHI (ν = 1).

an avoided crossing after having switched on SOC [black-
dashed lines in Fig. 2(a)] is strongly sensitive to the breaking
of the horizontal mirror reflection symmetry. This is apparent
by looking at Fig. 2(b). By breaking this symmetry, hop-
pings between the {p+, p−} and the pz orbitals are no longer
symmetry forbidden and, as a consequence, a band structure
with Dirac cones living in a global gap can be obtained (see
Appendix B for more details on the microscopic Hamilto-
nian). This hybridization is reminiscent of Rashba systems, in
which the broken mirror symmetry allows for the overlap of
the radial in-plane and the pz wave functions by promoting in-
plane OAM polarization (see vertical-dashed lines in Fig. 2),
the OAM texture in the full Brillouin zone (BZ) is shown in
Fig. 8. Distinguishing the in-plane orbital for their tangential
and radial alignment clarifies also why one crossing in the
conduction bands remains [along �K, Fig. 2(b)] as it is due
to the tangential in-plane component [41,42].

Having defined a tight-binding model in the full BZ, we
focus in the following on the two aspects demonstrating
that the ν = 1 phase of our model can be seen as a real-
space obstructed QSHI: (i) the non representability in terms
of time-reversal symmetric Wannier functions and (ii) the
displacement of the centers of a pair of Kramers-violating
Wannier functions away from the lattice positions. To this
aim, we introduce trial Wannier basis sets |τi〉 and calculate
the overlap matrix with the occupied Bloch bands [11],

Si j (k) = 〈τi|P̂ (k)|τ j〉 , (17)

FIG. 3. det[S(k)] along the diagonal of the BZ for a trial ba-
sis of | j, jz〉 = {|1/2, ±1/2〉 orbitals on the triangular site (a) and
|spA

z , +〉 , |spB
z , −〉 orbitals on the interstitial sites (b). The dashed-

vertical lines indicate the position of the crossing of the p± and the
pz band in the absence of SOC and mirror symmetry breaking.

where P̂ is the projector onto the occupied states

P̂ (k) =
N∑
n

|�nk〉 〈�nk| . (18)

Hence, the absence of vanishing overlap eigenvalues of S(k)
in the full BZ indicates the representability of the valence
bands in terms of the Wannier trial basis.

To illustrate point (i), we construct trial functions for
the valence band of the ν = 0 phase, in which all low-
energy metallic band crossings are gapped by the local SOC
[see Fig. 2(a)]. First, we choose a time-reversal symmet-
ric pair of total angular momentum eigenfunctions | j, jz〉 =
|1/2,±1/2〉. As shown by the black-solid curve in Fig. 3(a),
det[S(k)] is finite everywhere, indicating the absence of
vanishing overlap eigenvalues. For a sufficiently strong in-
plane/out-of plane hybridization, i.e., in the presence of a
vertical reflection symmetry breaking, the model features a
large gap at the momenta marked by the vertical dashed lines
in Fig. 2(b), and is stabilized in a nontrivial ν = 1 phase.
We have confirmed this also through an explicit calculation
of the Wilson loop eigenvalues, following Refs. [43,44]. In
this topological phase, the ground state cannot be represented
using Wannier Kramers’ pairs. The overlap indeed vanishes
at points in the BZ [see dashed red line in Fig. 3(a)]. This
happens right at the above-mentioned momenta between �

and K at which the gap is opened by mirror symmetry
breaking (dashed-vertical lines). As shown by Soluyanov and
Vanderbilt in Ref. [11] for the Kane-Mele model, a lo-
calization can instead be achieved upon introducing two
time-reversal symmetry-violating Wannier functions

|τi〉 = {|A,↑x〉 , |B,↓x〉}, (19)

which are localized on the two honeycomb Wyckoff positions
with an in-plane spin-alignment in the x direction.

A representability of the valence bands of our triangular
model in this nonatom-centered Wannier basis would indicate
a real-space obstruction (ii). To account for the presence of
even and odd band character under reflections with respect to
an horizontal plane (see Fig. 2) we choose a spz hybrid orbital
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on the A and B sites

|A/B〉 = 1√
2

(|s〉 + |pz〉). (20)

As shown in Fig 3(b), this trial basis results in finite overlap
eigenvalues for the ν = 1 phase and overlaps for the ν = 0
phase, which instead vanish at points in the BZ (see also
Fig. 9). This is at odds with the case of symmetry-preserving
trial wave functions, as shown in Fig. 3(a). Again, these deci-
sive differences in det[S(k)] can be seen at the momenta of the
lifted p±-pz degeneracy, indicating its importance for the real-
space obstruction: If mirror symmetry breaking dominates
over SOC, the valence bands share the same in-plane OAM
polarization and their local orbital angular momentum vector
covers the whole unit sphere in the full BZ (see Appendix F
and Fig. 8). Hence, a trial basis on the triangular positions with
nonvanishing overlap eigenvalues cannot exist for the ν=1
phase. Correspondingly to the real-space obstructed ν = 0
atomic insulators, we expect effects at the interfaces of two
Z2-nontrivial phases with different bulk polarization, such as
filling anomaly driven fractionally filled corner states [30,45–
47]. We comment on this further when concluding this paper.

Further it should be noted that the topological invariant
cannot be obtained from symmetry indicators [15] in the
absence of horizontal mirror reflection symmetry: despite the
different Z2 invariant, both phases have identical irreducible
band representations at the high symmetry points as the gap
SOC vs mirror symmetry-breaking gap reopening occurs at
the non-high-symmetry momenta marked by the vertical-
dashed lines. Hence, the valence band representation of the
ν = 1 phase is identical to the elementary band representation
of the ν = 0 phase in this layer group (see also Appendix G.)

V. EXPERIMENTAL CONFIRMATION
OF ORBITAL CHARACTER

In the following, we will elaborate on the consequences
of the obstruction of our model in terms of wave function
symmetry and real-space localization. This will allow us to
prove the existence of obstructed QSHIs based on experiments
on a recently discovered triangular Dirac system [31,32].

Without loss of generality, we consider hereinafter a small
ISB term [see Eq. (14)], which lifts the degeneracy of the
SOC gapped Dirac bands by promoting out-of-plane orbital
angular momentum as shown for the ν = 1 phase in Fig. 4.
As a consequence of SOC, orbital and spin degrees of freedom
are mixed, therefore the valence doublet is formed by a p+
and a p− state (see inset). This localizes at opposite A/B
positions [see Eq. (9)] resulting in a honeycomb-like electron
charge-density profile displaced from the 1a Wyckoff to the
A/B positions. This is further confirmed by the sublattice-
projected DOS in the right panel of Fig. 4. A similar band
structure has been realized in indenene [31], a p-electron
triangular monolayer of indium atoms grown on a SiC sub-
strate [Figs. 5(a) and 5(b)]. This represents therefore the
ideal system to experimentally confirm our theoretical analy-
sis. Angle-resolved photoelectron spectroscopy (ARPES) and
ab initio electronic structure of indenene, within the frame-
work of GW many-body perturbation theory, are shown in
Fig. 5(c) (for details see Appendices H, I, J and Ref. [31]).

FIG. 4. Band structure and sublattice projected DOS of the tri-
angular and Kane-Mele model in the nontrivial phase. The solid
lines/filled curve correspond to the triangular lattice, whereas the
dashed lines to the Kane-Mele model. The blue-red color code
denotes the OAM character (inset to the band structure), while
the green-orange one encodes the A/B localization. The dashed
box indicates the region shown in the inset to the sublattice
projected DOS.

One immediately recognizes the presence of all fundamental
ingredients we have introduced in Secs. I to III: A sizable hy-
bridization gap opened between the radial in-plane and the pz

band and four eigenvalues at the valley. The energy dispersion
of the Dirac fermions is attributed to the interplay between the
strong local SOC of the indium atoms (λSOC = 0.43 eV) and
the ISB, induced by the specific (T4) arrangement of the car-
bon atoms in the surface layer of SiC [see Fig. 5(b)]. Further,
the presence of the latter opens a pz-p± hybridization gap of
approximately 1 eV leaving only the Dirac bands around the
Fermi level. It should be noted that the crucial ingredient to
obtain the QSHI phase is the breaking of the mirror symmetry
with respect to the horizontal plane, while the ISB, induced by
the C atoms in the substrate, is only responsible for the small
splitting of the Dirac valley eigenvalues [31].

We address the orbital character of the bands by per-
forming orbital-symmetry selective scanning tunneling spec-
troscopy (STS), i.e., by varying the tip-to-sample distance
[48]. A measurement at large distances—main panel of
Fig. 5(d)—probes mainly the out-of-plane contribution of
the indium states. Here, striking signature of the absence of
low-energy pz states is drawn from the sudden drop of the
dI/dV signal aligning with the pz-p±-hybridization maxima
of our GW calculations [horizontal-dashed lines in panel
(c)]. Small tip-to-sample distances instead reveal also a fi-
nite local DOS (LDOS) inside the pz-p±-hybridization gap,
a clear signature of the in-plane Dirac feature contributing
to these energies [inset to panel (d)] [31]. The correspond-
ing lattice-site resolved (A, B, and T1) LDOS-mapping [see
Fig. 5(e)] shows dominant differential conductance at T1 for
>0.23 V where the steep out-of-plane onset appears in panel
(d). This is excellent agreement with our theoretical modeling
predicting a strong pz component at the same energy

195143-6



REAL-SPACE OBSTRUCTION IN QUANTUM SPIN HALL … PHYSICAL REVIEW B 106, 195143 (2022)

(a)

1 1.4 1.8
k||(Å-1)

out-of-plane

in-plane

Bias Voltage (V)

0

-0.5

0.5

1.5

1

dI/dV (nA/V)
0 0.4

Bias Voltage (V)
4.0- 2.0- 2.00-0.6

0.3

0.4

E-
E

(e
V)

F

(d)
0.2

dI/dV (nA/V)

0

0 2

VBO

(c)

(e)

VBO

2.2

-2

0

-1

1

(b)

K M
A B

Γ Γ

T1A
B

dI/d V
(A,B, T1 )

___________
d IdV

all
FIG. 5. Side (a) and top view (b) on the unit cell: Gray and cyan

spheres represent indium and silicon atoms, respectively. Carbon
atoms are denoted in red and the pink spheres correspond to the
hydrogen atoms used for passivation [49]; just for the clarity of the il-
lustration, we show here the topmost SiC layer only. (c) Comparison
of ARPES measurements of indenene and G0W0 band structure along
the �-K-M-� path. (d) STS measurements stabilized at tip-sample
distance z0 and z1 = z0-7.8 Å (inset). At z0 STS is less sensitive
to in-plane states effectively probing only pz-like indenene states.
High n-type doping of the substrate shifts the valence band onset
(VBO) to approximately –300 mV aligning with our ARPES data.
(e) Renormalized dI/dV signal recorded at the A (orange), B
(green), and T1 (black) site of the indenene unit cell.

[see again horizontal-dashed line between panel (c) and
(d)]. On the contrary, probing only the Dirac states between
–0.72 V and 0.23 V, the charge maximum localizes at either
site A or B, displaced away from the lattice position. Given
our theoretical understanding of the interference mechanism,
this displacement, together with the large pz-pr hybridization
gap, hints at the existence of a real-space obstruction. In
particular, the charge maximum alternates between A and B
following the ν = 1 energy sequence of Fig. 4 and thus puts
forward indenene as an obstructed QSHI. The correspondence
between the 2b Wyckoff positions of the two-dimensional
indium layer and the C atoms underneath might lead to the
impression that the real-space obstruction has its origin in the
atomic structure of SiC. It is instead important to notice that
this is not the case, as the off-atom centering of the Wannier
functions that we construct is present independently on the
internal structure of substrate.

VI. EDGE STATES OF OBSTRUCTED QSH INSULATORS

It has been shown that in trivial insulators the real-space
obstruction can be accompanied by the presence of in-gap sur-
face modes [19–21]. Hence, it is relevant to inspect the edge

FIG. 6. (a) Conventional unit cell (gray) and edge geometry.
(b) 2D BZ and backfolding of high-symmetry momenta to 1D slab
BZ. Edge localization (c) and OAM polarization (d) in the slab
model.

modes of the obstructed QSHI, which are guaranteed to exist
by the bulk-boundary correspondence. We will then compare
them to those of its nonobstructed analog, represented in the
present case by the Kane-Mele model.

However, before addressing a slab geometry, we first com-
pare the two models at the level of the bulk properties. This
can be done by inspecting the band structure of the two
models, which we show in the left panel of Fig. 4 for the
nontrivial phase. Close to the valley momenta, the dispersion
of the obstructed and nonobstructed QSHI show no qualitative
difference. This is true as long as nonlinear contributions for
the multiorbital triangular lattice are negligible. At higher
energies, the interplay of SOC and in-plane and out-of-plane
polarization flattens the bands. Although not directly con-
nected with the real-space obstructed nature, it is interesting to
note that this promotes van Hove singularities, which at these
energies are absent in the single-orbital Kane-Mele model (see
right panel of Fig. 4).

We now turn to the helical edge modes of the triangular
QSHI and highlight how they signal the existence of the real-
space obstruction. This manifests itself in a striking way in
ribbon geometries, considering the termination in which A
and B are located on opposite edges, see Fig. 6(a). Here, we
therefore focus on the “flat” edge on the top and bottom sides
of the sketch and do not further discuss the other “zigzag”-
like edge, shown on the left and right sides. The color and
the point size in Fig. 6(c) indicates the spatial localization of
the states on the top and bottom edges. The fact that the edge
states from opposite terminations are not degenerate indicates
how they inherit also a strong A/B localization character,
which is different due to the presence of ISB. This character is
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particularly pronounced close to the valley momenta (see also
Fig. 4), where we know from Eq. (9) that the p± Bloch states
localize at the A/B voids. Hence, we identify an observable
signature of the obstructed nature of this QSHI.

Further, differently from the Kane-Mele model where the
pure pz (m = 0) character forbids a finite OAM, the ob-
structed QSHI on the triangular lattice features edge states that
are OAM polarized, see Fig. 6(d). By moving away from the
valley momenta towards �, the pz degree of freedom in the
edge states becomes more and more dominant. As a result of
the 	L · 	S coupling, 〈Ly〉 as well as 〈Sy〉 become finite, rotating
the OAM and the spin into the yz plane. Finally, due to the
strong nonlinearity away from the valley momenta, the dis-
persion of the edge states as well as their crossing at � deviate
strongly from the case of the chiral-symmetric Kane-Mele
model.

VII. CONCLUSIONS

In this paper, we have established that the triangular and
the honeycomb lattice can be seen as coequal partners on the
level of their Dirac fermions. Extending this concept to the full
BZ, we find that the triangular lattice can host graphene-like
valence bands arising from time-reversal symmetry-breaking
Wannier functions on the honeycomb Wyckoff positions, i.e.,
at the voids of the triangular lattice. This generalizes the
notion of real-space obstruction recently developed for trivial
insulators and hence also its physical consequences to quan-
tum spin Hall systems. Further, it allows for a connection
with the higher-order topological classification, distinguishing
between systems with the same nontrivial Z2 invariant.

One decisive difference that emerges from our analysis, is
that a QSHI phase on the triangular lattice requires, in contrast
to Kane-Mele-type systems, a sufficiently strong potential,
which breaks the horizontal mirror reflection. In combination
with the full-atomic SOC, this promotes a local OAM wind-
ing on the triangular site, which prohibits the existence of
a nonobstructed Wannier representation. Our experiments on
indenene, the only triangular QSHI realized so far, support our
theoretical prediction and make this topological monolayer
a potential candidate for future experiments on obstructed
QSHIs.

Since QSHIs lack a Wannier representation, the widely
used high-throughput-suited symmetry indicator schemes
cannot be applied for the detection of real-space ob-
structed nontrivial phases. Upon releasing the constraint of
internal symmetry-preserving Wannier functions, Soluyanov-
Vanderbilt-like representations can be constructed to deter-
mine the real-space localization. Hence we expect that a
sizable number of already known nontrivial Z2-indicated sys-
tems may belong to this new class of topological materials. As
witnessed by our triangular model, the false negatives of TQC
appear to be a potential pool of candidates.

Concerning future investigations, it must be noted that the
real-space obstruction of a QSHI can be probed at lattice
defects of heterostructures in which the obstructed QSHI in
question is completely surrounded by a nonobstructed one.
The helical edge states of the two QSHIs gap each other
out. In the L-shaped corner regions [50] a quantized corner
charge (possibly accompanied by in-gap corner modes) is then

expected to appear. Obstructed QSHIs can be also used as
basic building blocks of three-dimensional topological crys-
talline phases. Consider for instance a three-dimensional bulk
crystal with a Cnz rotation symmetry where the order of the
rotational symmetry n = 2, 4, 6. The three-dimensional BZ of
this system can be viewed as a collection of two-dimensional
cuts parametrized by the momentum kz parallel to the rotation
axis. Assuming that QSHIs are realized at the time-reversal in-
variant cuts kz = 0, π , the bulk crystal must represent a weak
three-dimensional topological insulator. Let us further con-
sider that out of the two kz = 0, π cuts, one is an obstructed
QSHI. When subject to translational symmetry-breaking per-
turbations that double the stacking period, the system will be
transformed in a topological crystalline insulator with anoma-
lous surface Dirac cones connected by helical hinge modes
[51]. Additionally, the system might also realize an hybrid
weak topological insulator [52] with rotational symmetry-
protected Dirac cones on its so-called dark surfaces.

Besides the intriguing consequence of real-space ob-
struction, the realization of a certain Bloch wave function
symmetry on different crystal lattices constitutes a concep-
tual and practical difference in the microscopic origin of the
relevant hopping processes. Specifically, the second-nearest-
neighbor Kane-Mele SOC and the local staggered potential
(Semenoff mass) in the honeycomb correspond to the
local SOC of Eq. (10) and the nearest-neighbor ISB terms
of Eq. (13) in the triangular lattice, respectively. This means
that the resulting graphene-like Dirac fermions are gapped
by an atomic 	L · 	S-type SOC interaction, which is in general
much stronger than its nonlocal equivalent [31,39]. As a con-
sequence, the valley Hamiltonians in the two basis sets have
an identical structure, but can happen to live in completely dif-
ferent parameter regimes because of different physical origins
of the associated interactions.

From a general perspective, realizing a specific wave func-
tion symmetry with different basis sets in a periodic geometry
will not only stimulate the search for topological materials but
may also pave the way to new approaches for the investigation
and realization of physical phenomena in a different context,
e.g., cold atoms in optical lattices, photonic crystals, or acous-
tic lattices. This could help to overcome technical challenges
in terms of realizability and may also give access to new
parameter and phase regimes. Further, the k-dependent basis
mapping introduced here will have nontrivial implications for
interacting particles. In that case, the transformation would
indeed involve also two-body terms and may hence lead to the
appearance of interaction terms that differ substantially from
those considered in standard cases.
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APPENDIX A: VALLEY-DEPENDENT
BASIS TRANSFORMATION

Here we demonstrate the equivalence of a pair of chiral
orbitals on the triangular lattice and a bipartite basis on the
honeycomb lattice by deriving a complete basis transforma-
tion at the valley momenta. Its existence can be proven by
projecting the Bloch wave function onto Coulomb Sturmians
[55], a full basis in the R3, which are given by

χτ (x) = Rnl (r)Y m
l (θ, φ), (A1)

and defined by a set of atomic-like quantum numbers τ =
[n, l, m] centered around r0 with the distance vector r = x −
r0. For the sake of simplicity, we will neglect in the following
the the radial part Rnl and consider only the spherical harmon-
ics Y m

l . First, we express the initial orbital at r0 in Coulomb
Sturmians |wRn〉 = ∑

τ cτ |χτ 〉. The transformed orbital |wn′ 〉
centered at site r′

0 is given by the projection of the Bloch wave
function onto the Coulomb Sturmian basis |χτ ′ 〉 in the home
unit cell,

|wn′ 〉 =
∑
τ ′

|χτ ′ 〉〈χτ ′ |�〉 (A2)

=
∑

R,τ,τ ′
cτ eik·R|χτ ′ 〉〈χτ ′ |χτ (R)〉 (A3)

∝
∑

R,τ,τ ′
eik·Rcτ |Yτ ′ 〉〈Yτ ′ |Yτ (R)〉. (A4)

The spherical harmonics are parametrized by Y m
l =

Pm
l (θ )eimφ with the Legendre polynomial Pm

l and the spherical
coordinates (θ, φ). When transforming from position 1a to
one of the the A/B sites, all neighbors of the same order come
in triangular triplets t , the complex phase transforms as

1

3

∑
R∈t,

eik·R〈Yτ ′ |Yτ (R)〉 (A5)

k=K/K′
∝ 1

3

3∑
n

ei 2π
3 n(m̃K/K′−m′+m) (A6)

= δ(m′−m)mod(3),m̃K/K′ , (A7)

where the Bloch lattice phase enters at K/K′ with m̃K/K′ =
{±1,∓1} at {A,B}. Akin to the Bloch localization in Eq. (9),
this relates m and −m,

A:

{
k = K, if (m′ − m) mod 3 = −1
k = K′, if (m′ − m) mod 3 = +1 ,

B:

{
k = K, if (m′ − m) mod 3 = +1
k = K′, if (m′ − m) mod 3 = −1 .

A further constraint arises from the symmetry of the Legendre
polynomials requiring that Pl

m and Pl ′
m′ are both even or odd

with respect to horizontal reflection

∣∣〈Pl ′
m′

∣∣Pl
m(R)

〉∣∣{> 0, if (l − m + l ′ − m′) mod 2 = 0
= 0, if (l − m + l ′ − m′) mod 2 = 1 .

This shows, indeed, that the valley Bloch function of a
chiral triangular doublet | ± m〉 with m mod 3 �= 0 can be
mapped onto a bipartite honeycomb basis whose magnetic
quantum numbers are constrained to m′ mod 3 = 0. For ex-
ample a {p+, p−} basis can be mapped onto a {sA, sB}-like
honeycomb basis located on the sublattice sites A and B. Con-
sequently, a triangular {d+, d−} basis (odd under reflections
at the horizontal reflection plane) transforms into a pz-like
graphene basis. The concrete basis transformation involves
the elaborate evaluation of the overlap of Coulomb Sturmians,
so-called Shibuya-Wulfman integrals [56].

APPENDIX B: TIGHT-BINDING MODEL

We consider a p shell {px, py, pz} on a triangular lattice
spanned by the vectors a1 = (1, 0) and a2 = (−0.5,

√
3/2).

Their overlap integrals can be obtained by following the ap-
proach of Slater and Koster [57],

〈pi|H |pi〉 = n2
i V σ + (

1 − n2
i

)
V π , (B1)

〈pi|H |p j〉 = −nin j (V
π − V σ ). (B2)

With i = x, y, z and i �= j, the coefficients ni incorporate the
in-plane orientation [nx = cos(φ) sin(θ ), ny = sin(φ) sin(θ )
and nz = cos(θ )] with the azimuthal angle φ and polar an-
gle θ . The general hopping Hamiltonian reads in momentum
space,

Ĥ (k) =
∑

i j

c†
i (k)ti j (k)c j (k), (B3)

with the elements ti j = t∗
ji,

txx(k) = 2V σ cos(k1) + V σ + 3V π

2
( cos(k2) + cos(k1 + k2)),

(B4)

tyy(k) = 2V π cos(k1) + 3V σ + V π

2
( cos(k2) + cos(k1 + k2)),

(B5)

tzz(k) = Ez + 2V π
pz

( cos(k1) + cos(k2) + cos(k1 + k2)),
(B6)

txy(k) = −
√

3

2
(V π − V σ )( − cos(k2) + cos(k1 + k2)),

(B7)

txz(k) = iλMIR[2 sin(k1) − sin(k2) + sin(k1 + k2)], (B8)

tyz(k) =
√

3iλMIR[sin(k2) + sin(k1 + k2)]. (B9)

The integrals V σ ,V π , and V π
pz

denote hoppings within the
in-plane subspace and the pz subspace, respectively. λMIR

describes the strength of the mirror symmetry breaking, which
couples the in-plane and pz orbitals. The values can be found
in Table II.
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TABLE II. Tight binding parameters in units of t .

Ez V σ V π V π
pz

λSOC λMIR λISB(ν = 0) λISB(ν = 1)

–1.5 2 –0.25 –1 1 1 0.75 0.25

Atomic SOC

We consider in our model full p-shell atomic spin-orbit
coupling, which is given in the {px, py, pz}-basis by

ĤSOC = λSOCL̂ ⊗ Ŝ (B10)

= λSOC

2

⎛
⎝ 0 −iσz iσy

iσz 0 −iσx

−iσy iσx 0

⎞
⎠. (B11)

Its matrix elements can be obtained by explicitly calculating
the components of the OAM and spin operator.

APPENDIX C: ISB ON THE TRIANGULAR LATTICE

Here we derive the lattice formulation of the ISB term
given in Eq. (13) as an effective interaction induced by virtual
ISB orbitals, i.e., from a substrate, followed by a consideration
based on symmetry arguments, only.

In the recently synthesized system of indenene on
SiC(0001), the carbon atom of the surface SiC layer located
at one of the A/B points reduces the symmetry of the full
lattice to C3ν [31]. To incorporate the hybridization between
the triangular lattice and the ISB breaking substrate states
in our model, we introduce a virtual s-type orbital at site
A = (1/3, 2/3). This allows us to obtain by down-folding an
effective ISB interaction acting on the in-plane orbitals. The
Hamiltonian of the {px, py, s} subspace reads

Ĥ ps =
(

Ĥ pxy V̂ pxys

V̂ spxy Ĥ s

)
. (C1)

With the 2×2 Hamiltonian of the in-plane subspace H pxy , the
one-dimensional Hamiltonian of the s subspace Ĥ s = Esc†

s cs,
which is given with respect to the Dirac point of the in-plane
states, and the hybridization between the two subspaces V̂ pxys.
The tight-binding elements for an s-p overlap 〈s|H |pi〉 =
niV σ

sp are given by

tsx(k) =
√

3

2
V ISB(

e
i
3 (k1−k2 ) − e

i
3 (−2k1−k2 )), (C2)

tsy(k) =V ISB

[
−1

2

(
e

i
3 (k1−k2 ) − e

i
3 (−2k1−k2 )

) + e
i
3 (k1+2k2 )

]
,

(C3)

where we substitute directly V σ
sp = V ISB. By following the

lines of [58], an effective low-energy model for the in-plane
Dirac states can obtained via down-folding,

Ĥe f f ≈ Ĥ pxy − V̂ pxys · (Ĥ s)−1 · V̂ spxy︸ ︷︷ ︸
Ĥdf

. (C4)

The correction to the in-plane Hamiltonian reads

t df
xx (k) =3V 2

ISB

2Es
[1 − cos(k1)], (C5)

t df
yy (k) = V 2

ISB

2Es
[3 + cos(k1) − 2 cos(k2) − 2 cos (k1 + k2)],

(C6)

t df
xy (k) =

√
3V 2

ISB

2Es
[i{sin(k1) + sin(k2) − sin (k1 + k2)}

+ cos(k2) − cos (k1 + k2)]. (C7)

As Ĥ pxy vanishes at K/K′, the effective Hamiltonian simplifies
to the down-folded ISB interaction,

Ĥe f f (K/K ′) = −9

4

V 2
ISB

Es
(τ0 ∓ τy). (C8)

This gives rise to a rigid band energy shift and promotes
orbital angular momentum by τ0 and L̂z = τy, respectively. As
the even terms modify only quantitatively the elements of the
full p-basis Hamiltonian [Eq. (B3)], we incorporate the ISB
interaction by the effective Hamiltonian given in Eq. (C11)

with λISB = − 9
4

V 2
ISB
Es

.
A complementary approach for deriving Eq. (C10) is to

decompose the first-neighbor interaction of the pxy orbitals
into a second order hopping processes via the nearest A and
B voids as illustrated in Fig. 7. ISB differentiates the A/B
sites and renders the paths inequivalent resulting in different
hopping strengths for trajectories through A or B. Further,
the px-py hopping process via the A/B sites involves either
an overlap of wave functions with same or different parity,
which can be defined by the directed angle spanned by the two
unit vectors d̂1 and d̂2 describing the trajectory. By defining
the difference between the hopping strengths through A/B
as 1

3
√

3
λISB, i.e., considering only the hoppings through the

FIG. 7. Sketch of the ISB px-py interaction on the triangular lat-
tice activated by a staggered potential peaking at the A/B voids of the
triangular lattice. First-neighbor hoppings can be decomposed into
inequivalent second order processes via the A/B points as indicated
by the gray arrows d̂1 and d̂2.
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dominating void site, the interaction can be written as

Ĥ ISB = λISB

3
√

3

∑
〈i j〉

νi j (c
†
py,i

σ0cpx, j + h.c.). (C9)

As a result, an electron traveling from site i to near-
est neighbor j experiences a left-right asymmetry, which is
reversed when moving from j to i. In Eq. (C10) this is
described by the orientation of the Dzyaloshinskii-Moriya
vector νi j = (2/

√
3)(d̂1 × d̂2)z = ±1 where d̂1 and d̂2 are

unit vectors pointing from i to A(B) and from A(B) to j. This
parametrization is reminiscent of that for the second-nearest
neighbor SOC term in the Kane-Mele model, which depends
on whether the other sublattice appears on the right or on the
left of the hopping process [1,59]. However, being not a SOC
term but rather involving the orbital degrees of freedom only,
this term for the triangular lattice is spin independent, at odds
with the Kane-Mele SOC. A term with a k dependence similar
to that Eq. (C11) but involving second-neighbor processes has
been discussed in [60].

Equation (C9) is transformed in the spherical harmon-
ics basis by applying the basis transformation {px, py} →
{p+, p−},

Ĥ ISB = −i

3
√

3
λISB

∑
〈i j〉

νi j

∑
m∈{±|m|}

mc†
i,mσ0c j,m, (C10)

and reads in momentum space

Ĥ ISB(k) = 2

3
√

3
λISB[sin(k1) + sin(k2)

− sin (k1 + k2)]L̂z ⊗ Ŝ0. (C11)

APPENDIX D: SUBLATTICE CHARACTER
IN THE TRIANGULAR LATTICE

We calculate the interference of the Bloch wave func-
tion |�k〉 = ∑

m ck,meik·R|m〉 at the honeycomb sites (r =
{A,B}). By invoking Eq. (6) and considering only contri-
butions from the |p±〉 = | ± 1〉, the momentum-dependent
projection weight X (r) is given by

X (r) = |〈r|�k〉|2 (D1)

=
∣∣∣∣∣

∑
m∈{−1,1}

1

3

3∑
n=1

ck,meik·R〈r|mRn〉
∣∣∣∣∣
2

(D2)

=
∣∣∣∣∣

∑
m∈{−1,1}

1

3

3∑
n=1

ck,mei(k·R+ 2π
3 nm)

∣∣∣∣∣
2

. (D3)

APPENDIX E: CONSTRUCTION
OF THE OVERLAP MATRIX

Here we follow the recipe of Ref. [11]. The calculation is
straightforward if the trial orbitals and the cell-periodic Bloch
wave functions are spanned by the same basis set. For our
model, this is the case for the triangular p shell J1/2-trial
basis. The projection onto trial orbitals on the honeycomb
sites requires however a momentum-dependent basis transfor-
mation as the Bloch and the trial basis have different Wyckoff
positions, which results in a Bloch phase difference.

FIG. 8. Local orbital angular momentum polarization of the two
valence bands in the ν = 0 and ν = 1 phases. To lift the degen-
eracy of the valence bands at the valley momenta, a small values
of λISB = 0.1 has been chosen and in the ν = 0 the compensating
in-plane OAM is visualized by setting λMIR = 0.01 (otherwise the
in-plane OAM vanishes). The dashed lines indicate the first BZ.

In analogy to Eq. (A2), we define the overlap of the Bloch
wave function of the triangular p model (m = {−1, 0, 1}) with
the honeycomb trial basis |τ j〉 at position x j as

〈�nk|τ j〉 =
∑
R j

eik·(x j−R j )
∑

m

c∗
m 〈m|τ j〉 . (E1)

Without loss of generality, we consider only the contribution
of the three nearest-neighbor sites R j to the Bloch wave func-
tion, which are for the A[B] site R j = {(0, 0), (0, 1), (1, 1)}
[R j = {(0, 0), (1, 0), (1, 1)}]. Further, also the parity with re-
spect to z �→ −z has to be considered: The triangular m = ±1
in-plane orbitals map onto s orbitals on the honeycomb site,
while a pz (m = 0) orbital on the triangular Wyckoff position
is mapped onto a pz orbital on the honeycomb sites.

APPENDIX F: LOCAL OAM WINDING PROMOTED
REAL-SPACE OBSTRUCTION

Based on the wave function symmetry of the valence
bands, we will argue in the following, that a nonobstructed
Wannier basis cannot exist in the QSHI phase. We assume that
the bands are energetically sufficiently isolated, to allow for a
single band description. As illustrated in Fig. 2, in the absence
of SOC, the valence band is pz type at �, has a p± degeneracy
at K and has radial (with respect to the nearest � point) in-
plane character at the three M points (|pr〉 ∝ α |px〉 + β |py〉).
This results in a metallic band crossing of the two lowest
bands which gives rise to a nodal line (see red-green band
crossing in Fig. 2). In the presence of horizontal mirror
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FIG. 9. Logarithmic plot of det[S(k)] of the vertical-reflection
symmetric model λISB = 0 for a time-reversal symmetric J = 1/2
and time-reversal asymmetric A/B trial basis sets. The dashed lines
indicate the first BZ.

symmetry breaking the nodal ring gaps-out as the radial in-
plane and the pz band hybridize by forming tangential angular
momentum states of the form |mtan〉 = 1/

√
2(|pz〉 ± i |pr〉).

Upon considering SOC, a nontrivial gap is opened and the
valence states at the K/K′ read: |l, mz〉 = |±1,∓1/2〉 states.
If considering the whole BZ, the local orbital angular polar-
ization of the valence bands will cover the whole unit sphere
as shown in Fig. 8. For a trial projection basis located on the
triangular site, there must be momenta, where at least one trial
orbital is orthogonal to both valence states which prohibits a
nonobstructed Wannier construction.

The importance of the nodal line is further supported by
inspecting det[S(k)] in the whole BZ as shown in Fig. 9. The
overlap eigenvalues of the J1/2 trial basis are largest in the
trivial phase at the momenta of the SOC gapped nodal line
and at K/K′. In the nontrivial phase, the vanishing eigenvalues
occur along the nodal ring. In turn, the time-reversal symme-
try breaking trial basis on the honeycomb sites introduced in
Eqs. (19) and (20) has a finite overlap in the ν = 1 phase, but
vanishing overlap along the momenta of the nodal line in the
ν = 0 phase.

APPENDIX G: BAND REPRESENTATION ANALYSIS

The band representations of the model are shown in Fig. 10
without and with SOC for layer group p6mm. In the spinless
case, the horizontal reflection symmetry breaking opens a gap
between the first and the second band and the presence of the
vertical reflection symmetry protects the degeneracy of the
Dirac fermions at the valley momenta. For a filling of two
electrons, the Fermi level can be tuned to the Dirac point, the
system is a symmetry protected (Dirac) metal [15], as shown
in panel (a).

In the presence of SOC, the Dirac cone gaps. However, the
Z2-topological phase transition is driven by a gap reopening of
the pz-p± nodal line which results in the exchange of �4/�4

representations along the paths �M and �K. As the irre-
ducible representations remain invariant at the high-symmetry
momenta (�, K, M), this phase transition cannot be detected
by symmetry indicators, i.e., the band representation of the
valence band transforms identical as the the elementary band
representation of the ν = 0 phase.

APPENDIX H: GW METHODS

Our first-principles study started defining, via ionic re-
laxation, the equilibrium geometry of the system; this is
composed by an indenene layer and four substrate layers. A
big enough number of substrate SiC layers has been consid-
ered in order to correctly determine the screening properties
and the low-energy physics. Its importance becomes indeed
evident, especially for GW calculations, when the number of

(a) (b)

FIG. 10. Theoretical graph analysis of the band structures in layer group p6mm without (a) and with (b) SOC. Similarly to the color code
of Fig. 2, the green (red) color denotes schematically the dominating p±(pz ) orbital character. The dashed line illustrates the position of the
Fermi level for a filling of two electrons. The irreducible band representation notation follows Ref. [61].
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FIG. 11. GW scaling of the energy gap (Eg), Rashba splitting in
the conduction band (Rc) and Rashba splitting in the valence band
(Rv), as a function of the k points, in the energy range [100: 300]
meV. The dots correspond to the computed values and the solid lines
to the interpolation of the results.

layers is changed. When this number is increased, increasing
accordingly also the unit-cell height to preserve the same
amount of vacuum, the energy gap decreases, because of the
increased dielectric screening.

Also, when a fixed number of substrate layers is consid-
ered, rather increasing the amount of vacuum along z, it is
found an increasing of the energy gap value.

Both self-consistent (scf) and non-self-consistent (nscf)
DFT calculations are based on the projector augmented wave
(PAW) method and the generalized gradient approximation
(GGA) within the Perdew-Burke-Ernzerhof (PBE) scheme
[62], as implemented in the Vienna Ab initio Simulation Pack-
age (VASP) [63,64]. A plane-wave cutoff of 500 eV has been
used, together with a 15×15×1 k mesh.

SOC has been included self-consistently and, because of
the small value of the energy gap (∼50 meV, in DFT), the
width of the Gaussian smearing has been chosen equal to
0.001 eV; this allowed us to obtain a sharp transition from
the occupied states to the unoccupied ones.

Subsequent single-shot GW calculations show an almost
independent behavior with respect to the number of unoc-
cupied states starting from a reasonably high threshold; we
considered then 338 empty bands. For the same reasons, we
set the energy cut-off for the response function to 50 eV.

The number of imaginary time grid points has been chosen
equal to 100, also because this parameter does not influence
in a meaningful way the computation time.

While the value of the Rashba splitting in the valence and
conduction bands resulted to be always almost independent

TABLE III. Bias voltage UBias and tunneling current IT stabiliza-
tion parameters for STS shown in Fig. 5. In some STS measurements
the tip has been approached after the feedback loop was switched off.
Note that the tip sample distance is also affected by the tunneling
setpoint itself, i.e., UBias and IT. In the case of panel Fig. 5(d) this
yields an additional height difference of 5.4 Å, and thus a total height
difference between z0 and z1 of z1 = z0–7.8 Å.

Fig. UBias IT Tip approach

5(d) 2.0 V 250 pA 0 nm (z0)
5(d) (inset) –0.85 V 50 pA –0.24 nm (z1)
5(e) –0.9 V 50 pA –0.28 nm

from the meaningful parameters, at least for a not-too-drastic
change of them, the analysis of the energy gap required more
cautions.

We choose an optimal setup provided by a unit cell of
45 Å along the z direction and four layers of substrate.

The last check is given by the analysis of the low-energy
electronic structure as a function of k-points number. Only in
this case the value of the Rashba splittings exhibits a slight
dependence, while the energy gap exhibits a strong one (see
Fig. 11). The interpolated values are ideally obtained from an
infinitely dense k mesh, and they have been used to realize the
correct GW band structure plot (see Fig. 5), subsequently to
the wannierization procedure [65].

APPENDIX I: ARPES

ARPES measurements were acquired in our home-lab
setup equipped with a hemispherical analyzer (PHOIBOS
100), an unmonochromatized He-VUV lamp (UVS 300,
21.2 eV) light source, and a 6-axis manipulator capable of
LHe-cooling to 20 K. Differential pumping of the He-VUV-
lamp kept the base pressure below 1×10−10 mbar during the
ARPES measurements.

APPENDIX J: STM AND STS

STM and STS measurements were taken with a commer-
cial Omicron LT-STM operated at 4.7 K and a base pressure
lower than 5×10−11 mbar. Before and after each measurement
the chemically etched W tip was prepared on an Ag(111) sin-
gle crystal. Tunneling parameter of dI/dV curves and images
shown in Fig. 5 are summarized in Table III. The STS mea-
surement presented in Fig. 5(e) was recorded with a standard
lock-in technique (modulation voltage of Vrms = 10 mV and
modulation frequency of 971 Hz).

[1] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in
Graphene, Phys. Rev. Lett. 95, 226801 (2005).

[2] C. L. Kane and E. J. Mele, Z2 Topological Order and the
Quantum Spin Hall Effect, Phys. Rev. Lett. 95, 146802 (2005).

[3] L. Fu, C. L. Kane, and E. J. Mele, Topological Insulators in
Three Dimensions, Phys. Rev. Lett. 98, 106803 (2007).

[4] L. Fu and C. L. Kane, Topological insulators with inversion
symmetry, Phys. Rev. B 76, 045302 (2007).

[5] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[6] C. Brouder, G. Panati, M. Calandra, C. Mourougane,
and N. Marzari, Exponential Localization of Wannier
Functions in Insulators, Phys. Rev. Lett. 98, 046402
(2007).

[7] G. Panati, Triviality of Bloch and Bloch–Dirac bundles,
Ann. Henri Poincaré 8, 995 (2007).

195143-13

https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.146802
https://doi.org/10.1103/PhysRevLett.98.106803
https://doi.org/10.1103/PhysRevB.76.045302
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/PhysRevLett.98.046402
https://doi.org/10.1007/s00023-007-0326-8


PHILIPP ECK et al. PHYSICAL REVIEW B 106, 195143 (2022)

[8] L. Fu and C. L. Kane, Time reversal polarization and a Z2

adiabatic spin pump, Phys. Rev. B 74, 195312 (2006).
[9] R. Roy, Z2 Classification of quantum spin Hall systems: An ap-

proach using time-reversal invariance, Phys. Rev. B 79, 195321
(2009).

[10] T. A. Loring and M. B. Hastings, Disordered topological insu-
lators via C∗-algebras, Europhys. Lett. 92, 67004 (2010).

[11] A. A. Soluyanov and D. Vanderbilt, Wannier representation of
Z2 topological insulators, Phys. Rev. B 83, 035108 (2011).

[12] A. A. Soluyanov and D. Vanderbilt, Smooth gauge for topolog-
ical insulators, Phys. Rev. B 85, 115415 (2012).

[13] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W.
Molenkamp, X.-L. Qi, and S.-C. Zhang, Quantum spin Hall
insulator state in HgTe quantum wells, Science 318, 766 (2007).

[14] H. C. Po, H. Watanabe, M. P. Zaletel, and A. Vishwanath,
Filling-enforced quantum band insulators in spin-orbit coupled
crystals, Sci. Adv. 2, e1501782 (2016).

[15] B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C.
Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum
chemistry, Nature 547, 298 (2017).

[16] J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and
R.-J. Slager, Topological Classification of Crystalline Insulators
through Band Structure Combinatorics, Phys. Rev. X 7, 041069
(2017).

[17] H. C. Po, A. Vishwanath, and H. Watanabe, Symmetry-
based indicators of band topology in the 230 space groups,
Nat. Commun. 8, 50 (2017).

[18] J. Cano, B. Bradlyn, Z. Wang, L. Elcoro, M. G. Vergniory, C.
Felser, M. I. Aroyo, and B. A. Bernevig, Building blocks of
topological quantum chemistry: Elementary band representa-
tions, Phys. Rev. B 97, 035139 (2018).

[19] Y. Xu, L. Elcoro, G. Li, Z.-D. Song, N. Regnault, Q. Yang, Y.
Sun, S. Parkin, C. Felser, and A. Bernevig, Three-dimensional
real space invariants, obstructed atomic insulators and a new
principle for active catalytic sites, arXiv:2111.02433.

[20] G. Li, Y. Xu, Z. Song, Q. Yang, Y. Zhang, J. Liu, U. Gupta,
V. Süß, Y. Sun, P. Sessi et al., Obstructed surface states as
the descriptor for predicting catalytic active sites in inorganic
crystalline materials, Adv. Mater. 34, 2201328 (2022).

[21] Y. Xu, L. Elcoro, Z.-D. Song, M. Vergniory, C. Felser, S.
Parkin, N. Regnault, J. Mañes, and A. Bernevig, Filling-
enforced obstructed atomic insulators, arXiv:2106.10276.

[22] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized
electric multipole insulators, Science 357, 61 (2017).

[23] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric
multipole moments, topological multipole moment pumping,
and chiral hinge states in crystalline insulators, Phys. Rev. B
96, 245115 (2017).

[24] J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W.
Brouwer, Reflection-Symmetric Second-Order Topological In-
sulators and Superconductors, Phys. Rev. Lett. 119, 246401
(2017).

[25] Z. Song, Z. Fang, and C. Fang, (d − 2)-Dimensional Edge
States of Rotation Symmetry Protected Topological States,
Phys. Rev. Lett. 119, 246402 (2017).

[26] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S.
Parkin, B. A. Bernevig, and T. Neupert, Higher-order topologi-
cal insulators, Sci. Adv. 4, eaat0346 (2018).

[27] F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A.
Murani, S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon,

I. Drozdov et al., Higher-order topology in bismuth, Nat. Phys.
14, 918 (2018).

[28] G. van Miert and C. Ortix, Higher-order topological insulators
protected by inversion and rotoinversion symmetries, Phys. Rev.
B 98, 081110(R) (2018).

[29] G. van Miert and C. Ortix, On the topological immunity
of corner states in two-dimensional crystalline insulators,
npj Quantum Mater. 5, 63 (2020).

[30] P. Eck, Y. Fang, D. Di Sante, G. Sangiovanni, and J. Cano,
Recipe for higher-order topology on the triangular lattice,
arXiv:2207.01359.

[31] M. Bauernfeind, J. Erhardt, P. Eck, P. K. Thakur, J. Gabel,
T.-L. Lee, J. Schäfer, S. Moser, D. Di Sante, R. Claessen, and
G. Sangiovanni, Design and realization of topological Dirac
fermions on a triangular lattice, Nat. Commun. 12, 5396 (2021).

[32] J. Erhardt, M. Bauernfeind, P. Eck, M. Kamp, J. Gabel, T.-L.
Lee, G. Sangiovanni, S. Moser, and R. Claessen, Indium epitaxy
on SiC(0001): A roadmap to large scale growth of the quantum
spin Hall insulator indenene, J. Phys. Chem. C 126, 16289
(2022).

[33] 2b is the notation for wallpaper groups [45]. For the corre-
sponding three-dimensional space group 191 these positions are
denoted by 2c = {A = (1/3, 2/3, 0), B = (2/3, 1/3, 0)}.

[34] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S.
Ivantchev, G. Madariaga, A. Kirov, and H. Wondratschek, Bil-
bao Crystallographic Server: I. Databases and crystallographic
computing programs, Z. Krist. 221, 15 (2006).

[35] M. I. Aroyo, A. Kirov, C. Capillas, J. M. Perez-Mato, and
H. Wondratschek, Bilbao Crystallographic Server. II. Repre-
sentations of crystallographic point groups and space groups,
Acta Cryst. A 62, 115 (2006).

[36] M. I. Aroyo, D. Orobengoa, G. de la Flor, E. S. Tasci, J. M.
Perez-Mato, and H. Wondratschek, Brillouin-zone Database
on the Bilbao Crystallographic Server, Acta Cryst. A 70, 126
(2014).

[37] D. Kochan, S. Irmer, and J. Fabian, Model spin-orbit coupling
Hamiltonians for graphene systems, Phys. Rev. B 95, 165415
(2017).

[38] G. W. Semenoff, Condensed-Matter Simulation of a Three-
Dimensional Anomaly, Phys. Rev. Lett. 53, 2449 (1984).

[39] F. Reis, G. Li, L. Dudy, M. Bauernfeind, S. Glass, W. Hanke,
R. Thomale, J. Schäfer, and R. Claessen, Bismuthene on a SiC
substrate: A candidate for a high-temperature quantum spin
Hall material, Science 357, 287 (2017).

[40] The band structure can be at most semi-metallic, in the special
case in which the eigenvalues at � are energetically aligned with
those at the valley momenta.

[41] L. Petersen and P. Hedegård, A simple tight-binding model of
spin–orbit splitting of sp-derived surface states, Surf. Sci. 459,
49 (2000).

[42] M. Ünzelmann, H. Bentmann, P. Eck, T. Kißlinger, B. Geldiyev,
J. Rieger, S. Moser, R. C. Vidal, K. Kißner, L. Hammer, M. A.
Schneider, T. Fauster, G. Sangiovanni, D. Di Sante, and F.
Reinert, Orbital-Driven Rashba Effect in a Binary Honeycomb
Monolayer AgTe, Phys. Rev. Lett. 124, 176401 (2020).

[43] A. A. Soluyanov and D. Vanderbilt, Computing topological
invariants without inversion symmetry, Phys. Rev. B 83, 235401
(2011).

[44] R. Yu, X. L. Qi, A. Bernevig, Z. Fang, and X. Dai, Equivalent
expression of Z2 topological invariant for band insulators using

195143-14

https://doi.org/10.1103/PhysRevB.74.195312
https://doi.org/10.1103/PhysRevB.79.195321
https://doi.org/10.1209/0295-5075/92/67004
https://doi.org/10.1103/PhysRevB.83.035108
https://doi.org/10.1103/PhysRevB.85.115415
https://doi.org/10.1126/science.1148047
https://doi.org/10.1126/sciadv.1501782
https://doi.org/10.1038/nature23268
https://doi.org/10.1103/PhysRevX.7.041069
https://doi.org/10.1038/s41467-017-00133-2
https://doi.org/10.1103/PhysRevB.97.035139
http://arxiv.org/abs/arXiv:2111.02433
https://doi.org/10.1002/adma.202201328
http://arxiv.org/abs/arXiv:2106.10276
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1103/PhysRevLett.119.246401
https://doi.org/10.1103/PhysRevLett.119.246402
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1038/s41567-018-0224-7
https://doi.org/10.1103/PhysRevB.98.081110
https://doi.org/10.1038/s41535-020-00265-7
http://arxiv.org/abs/arXiv:2207.01359
https://doi.org/10.1038/s41467-021-25627-y
https://doi.org/10.1021/acs.jpcc.2c05809
https://doi.org/10.1524/zkri.2006.221.1.15
https://doi.org/10.1107/S0108767305040286
https://doi.org/10.1107/S205327331303091X
https://doi.org/10.1103/PhysRevB.95.165415
https://doi.org/10.1103/PhysRevLett.53.2449
https://doi.org/10.1126/science.aai8142
https://doi.org/10.1016/S0039-6028(00)00441-6
https://doi.org/10.1103/PhysRevLett.124.176401
https://doi.org/10.1103/PhysRevB.83.235401


REAL-SPACE OBSTRUCTION IN QUANTUM SPIN HALL … PHYSICAL REVIEW B 106, 195143 (2022)

the non-Abelian Berry connection, Phys. Rev. B 84, 075119
(2011).

[45] W. A. Benalcazar, T. Li, and T. L. Hughes, Quantization of frac-
tional corner charge in Cn-symmetric higher-order topological
crystalline insulators, Phys. Rev. B 99, 245151 (2019).
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