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1.  INTRODUCTION

The climate over regions characterized by com-
plex topographical and land-ocean features exhibits
fine scale structure that can be captured only by
Regional Climate Models (RCMs) (Gao et al. 2006).
Therefore, high-resolution climate information pro-

vided by RCMs is required for the assessment of the
regional im pacts of climate variability and change.
This work focuses on the Iberian Peninsula (IP), as
an ex ample of a topographically complex region,
and characterizes the ability of a new set of RCM
simulations in reproducing the observed climate at
a regional scale.
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ABSTRACT: The ESCENA (2008 to 2012) project is a Spanish initiative, which applies the dynam-
ical downscaling technique to generate climate change scenarios based on an ensemble of
Regional Climate Models (RCMs) consisting of PROMES, WRF, MM5 or REMO over Peninsular
Spain and the Balearic and Canary Islands using a high resolution of 25 km. We describe the mean
fields and interannual variability for temperature and precipitation in an ensemble of simulations
forced by the high resolution ERA-Interim reanalysis (1990 to 2007) and compare them to the
Spain02 observed data set. Maximum surface air temperature shows seasonal cold biases up
to –2.5K in all models and it is clearly underestimated during the coldest seasons, but less so dur-
ing summertime (JJA). Generally, there is a better agreement between observed and simulated
minimum surface air temperature, which is slightly overestimated (up to +2K) especially during
wintertime (DJF). Regarding precipitation, all models except PROMES tend to show low dry
biases during all seasons, especially for autumn on the Mediterranean coast of the Iberian Penin-
sula. With respect to the interannual variability, the PROMES simulations overestimate the stan-
dard deviation of maximum surface air temperature, while the remaining models tend to slightly
underestimate it, and most models tend to underestimate the standard deviation of precipitation.
The results highlight the ability of these RCMs to reproduce the mean fields and the interannual
variability in a very complex terrain such as the Iberian Peninsula, showing a great diversity of cli-
matic behavior. The evaluation of the ensemble results indicates a great improvement in the tem-
poral correlation and the representation of the spatial patterns of  temperature and precipitation
for all seasons with respect to the individual models. 
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The IP presents a large climate heterogeneity be -
cause of its position with respect to the North Atlantic
circulation and its complex orography. The region
exhibits a wide range of precipitation and tempera-
ture regimes. This heterogeneity necessitates the use
of RCMs to simulate the regional climate details
under present, past or future climate change condi-
tions. Thus, the IP is an ideal test area for studying
the accuracy of RCMs (see e.g. Jacob et al. 2007,
Gómez-Navarro et al. 2010). There is also a great
deal of RCM sensitivity experiments over the area.
For instance, Fernández et al. (2007) showed the sen-
sitivity of the climatology (mean temperature and
precipitation) to the changes in the model physics.
More recent studies have shown the influence of
land-surface model choice on the reproduction of
observed climate (Jerez et al. 2010). Most of the pre-
vious studies considered a single RCM. The relative
performance of RCMs over the region has been com-
pared only recently (e.g. Herrera et al. 2010).

The climate simulated by an RCM suffers from
uncertainties arising from a variety of sources such as
internal variability, different model formulations, and
imperfections in the boundary conditions. Such
uncertainties can be explored by running an ensem-
ble of simulations, varying the source of the uncer-
tainty. For example, the uncertainty associated with
imperfections in the model formulation can be
addressed by running a multi-model ensemble. Cli-
mate signals common to all models are usually given
more confidence. This reasoning relies on the inde-
pendence of the errors of the different models, even
though this is not fully justified due to the common
building blocks of the diverse models (Fernández et
al. 2009, Knutti et al. 2010).

A recent series of EU-funded projects exploited
this multi-model ensemble approach to provide an
estimation of the uncertainties of regional climate
change over Europe. The latest projects in this series
were PRUDENCE (Christensen & Christensen 2007)
and ENSEMBLES (Van der Linden & Mitchell 2009).
In PRUDENCE (2001 to 2004), 2 SRES emission sce-
narios (A2 and B2) were analyzed for the last 3 de -
cades of this century (2071 to 2100) with an ensemble
of 11 RCMs at a spatial resolution of 50 km. Most of
the simulations were forced with the same General
Circulation Model (GCM) (HadCM3). The main ob-
jective of the subsequent ENSEMBLES project (2004
to 2009) was to generate an objective probabilistic
estimate of uncertainty in future climate scenarios.
Several combinations of 13 RCMs and 7 GCMs were
applied to the SRES emissions scenarios A1B and A2,
with a finer horizontal resolution (25 km). All RCMs

simulated a common period extending over the first
decades of the century, up to 2050. Additionally, EN-
SEMBLES included RCM evaluation simulations
nested into ‘perfect’ boundary conditions taken from
the ERA-40 Reanalysis (Uppala et al. 2005). 

Unfortunately, the Spanish territory is not well
 covered in these pan-European multi-model experi-
ments. For this reason, the Spanish government
funded a strategic action to generate high-resolution
downscaled scenarios over Spain, complementing
those produced within ENSEMBLES. The ESCENA
project is in charge of generating downscaled scenar-
ios using nested RCMs, including perfect-boundary
evaluation simulations, which are analyzed in this
study. The simulations produced within ESCENA
and, in particular, those described in this work, are
publicly available at http:// proyectoescena. uclm.es.

Compared to ENSEMBLES, ESCENA uses improved
(PROMES) or additional RCMs (MM5, WRF), new
GCM/RCM combinations, and a larger set of emis-
sion scenarios (A1B, A2 and B1), with the target do-
main centered over the IP and covering parts of the
Atlantic Ocean, including the Canary Islands. One of
the RCMs (WRF) has been run with 2 different con-
figurations of the boundary layer scheme. Addition-
ally, the evaluation runs in ESCENA are forced by
the higher resolution ERA-Interim reanalysis, instead
of the ERA-40 reanalysis used in ENSEMBLES.

Several previous studies analyzed the performance
of an ensemble of RCM simulations forced by perfect
boundaries and focused on the IP or included the IP
in their analyses. The main source for those analyses
has been the ENSEMBLES RCM database. In partic-
ular, Herrera et al. (2010) validated the mean and
extreme precipitation regimes simulated by the
ENSEMBLES RCMs over the IP. They used the
Spain02 gridded observational data set (Herrera et
al. 2012), which is also used in our study. Our work
extends that of Herrera et al. (2010) by including the
analysis of maximum and minimum temperature and
considering the ability of reproducing the inter -
annual variability. We also performed a seasonal
analysis, given that the climate in the IP exhibits a
marked intra-anual variability.

A number of references provide a measure of cur-
rent state-of-the-art RCM seasonal biases. For
instance, Christensen et al. (2010) explored different
metrics in order to weight the RCM simulations from
ENSEMBLES. They showed seasonal temperature
and precipitation climatologies all over Europe, but
did not find compelling evidence of an improved
description of mean climate states using perform-
ance-based weights in comparison to the use of equal
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weights. Coppola et al. (2010) indicate a wide vari-
ability in the performance across models included in
an ensemble of ENSEMBLES-project simulations
for the European region, mostly deriving from the
 mag nitude/ sign of precipitation-based functional
me trics. The authors indicate that weighting leads to
an overall improvement of the performance of the
ensemble especially over topographically complex
regions. Lastly, Kjellström et al. (2011) use an ensem-
ble of 16 regional climate model simulations to indi-
cate that the spread of the results and the biases in
the 1961–1990 period are strongly related to the rep-
resentation of the large-scale circulation in the GCMs.

Thus, the objectives of the present study were to
(1) characterize the ability of a multi-model ensem-
ble of RCMs to reproduce the observed regional cli-
mate over peninsular Spain and the Balearic Islands;
(2) quantify the performance of the RCMs, focusing
on the mean seasonal climate. not only on the cli-
matology, but particularly on the interannual vari-
ability, which usually receives little attention (Giorgi
et al. 2004); (3) compare the performance of the
ensemble mean with that of the individual models;
and (4) compare the model-to-model variability with
the intra-model variability induced by the use of a
local and a non-local planetary boundary layer
(PBL) scheme. The present work focuses on the
mean climate and interannual variability, while a
companion paper by Domínguez et al. (2013) char-
acterizes the ability of this new set of model simula-
tions in reproducing the extreme climatic situations
over the region.

2.  METHODOLOGY AND DATA

2.1.  RCM description

This study involved 4 different RCMs: PROMES,
WRF, MM5 and REMO. The WRF model was run
with 2 different physical parameterization configura-
tions in order to compare the model-to-model vari-
ability with the variability induced by changing the
physical scheme within the same RCM. All simula-
tions cover a present-day 18 yr period (1990 to 2007)
and were driven by ECMWF/ERA-Interim reanalysis
(Section 2.2). The simulations cover most of Europe,
with domains centered in the IP (Fig. 1). Some model
domains (PROMES, WRF and REMO) were rotated in
order to include the area of the Canary Islands (for
the ESCENA project) with a domain smaller than the
unrotated one used by MM5. The different domain
sizes and locations may bring additional uncertainty

to the model results. All models were run with a hor-
izontal resolution of ~25 km and set the top vertical
layer at 10 hPa using a different number of vertical
levels (see Table 1). A lateral boundary relaxation
zone of 5 to 10 additional grid points was used by the
different models. A brief description of each model
configuration is provided in the following sections
and is summarized in Table 1.

2.1.1.  PROMES

The regional climate model PROMES (Castro et al.
1993) has been developed by MOMAC (Model i za -
ción para el Medio Ambiente y el Clima) research
group at the Complutense University of Madrid
(UCM) and the University of Castilla-La Mancha
(UCLM). PROMES has been applied over many dif-
ferent simulation domains: IP (Gaertner et al. 2001,
Arribas et al. 2003), Europe (Gaertner et al. 2007,
Sánchez et al. 2009), West Africa (Domínguez et al.
2010, Gaertner et al. 2010) and South Ameri -
ca (Boulanger et al. 2010). The PROMES version
used in this work includes several improvements to
the physical parameterizations which have been
introduced during the last years. The resolved-scale
cloud formation and its associated precipitation pro-
cesses are modeled according to Hong et al. (2004).
This scheme in  cludes ice microphysics processes.
The sub-grid scale convective clouds and their pre -
cipi tation are simulated with the Kain-Fritsch para -
meterization (Kain & Fritsch 1993). The shortwave
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Fig. 1. Simulation domains used in the models used in the
ESCENA project. Color shades: topography of domain. Re-
laxation zone, where the regional climate model output is 

relaxed towards the reanalysis, is excluded
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and longwave radiation parameterizations described
in ECMWF (2004) are used, and the clouds-radiation
interaction is simulated with a fractional cloud cover
para meterization (Chaboureau & Bechtold 2002,
2005). The turbulent vertical ex change in the PBL is
modeled following Cuxart et al. (2000). PROMES has
been coupled to the land surface model ORCHIDEE
(Organizing Carbon and Hydrology in Dynamic Eco-
systEms, Krinner et al. 2005) with the aim of improv-
ing the land surface-atmosphere coupling. A contour
band of 10 points is used to relax the model variables
following Davies (1976). The method for the vertical
interpolation of the large scale variables to model
levels is described in Gaertner & Castro (1996).

2.1.2.  WRF

The Weather Research and Forecasting (WRF)
model is a state-of-the-art limited area model devel-
oped in a collaboration between the National Center
for Atmospheric Research (NCAR; Boulder, CO,
USA) and a number of research institutions in the
United States. In this study we used the Advanced
Research WRF (ARW) core (version 3.1.1), which is
the research version of the model and incorporates
the latest advances in the physics schemes. The ARW
solver (Klemp et al. 2007, Skamarock et al. 2008) inte-
grates the non-hydrostatic fully compressible Euler
equations in flux form, using a conservative scheme
over a staggered (Arakawa-C) horizontal grid and a
vertical mass coordinate. The WRF model simulations

were run by the Santander Meteorology Group
(SMG) of the University of Cantabria (Fita et al. 2010)
through the WRF4G execution workflow (Fernández-
Quiruelas et al. 2010), and represent the first WRF
simulations available over the IP, together with the
work of Argüeso et al. (2012). The main physical
schemes used were the Grell & Devenyi (2002; GD)
cumulus ensemble scheme, the WRF single-moment
5-class microphysics (WSM5; Hong & Lin 2006) and
the Community Atmospheric Model (CAM) 3.0 radia-
tion scheme (Collins et al. 2006). The simulations
used 2 different configurations (labeled WRF-A and
WRF-B in Table 1), which only differ in the PBL
scheme. WRF-A uses a local scheme (Mellor- Yamada-
Janjic; MYJ), whereas WRF-B uses a non-local scheme
(Yonsei University; YSU). The non-local scheme
treats vertical mixing of the entire PBL, meanwhile
in the local scheme, vertical mixing is computed suc-
cessively between contiguous vertical layers. As with
the MM5 model, the Noah LSM was used to solve the
soil processes on 4 layers to a depth of 2 m (Chen &
 Dudhia 2001a,b).

2.1.3.  MM5

MM5 consists of a climatic version developed at the
University of Murcia (Gómez-Navarro et al. 2011,
Jerez et al. 2012a, 2013) of the Fifth-Generation
Pennsylvania State University-NCAR Mesoscale
Model (Dudhia 1993, Grell et al. 1994). MM5 has
been extensively used in a number of regional cli-
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Model              Geo.      Vert.     Horiz.                                           Physics parameterizations
                        proj.       level       resol.       Microphysics    Cumulus              Radiation                   PBL                     LSM

PROMES      Lambert      37        25 km       Includes ice      Kain &           ECMWF (2004)        Cuxart et          ORCHIDEE 
                                                                        processes        Fritsch           with fractional         al. (2000)          LSM (Krinner 
                                                                       (Hong et al.       (1993)               cloud cover                                       et al. 2005)
                                                                            2004)                                   (Chaboureau & 
                                                                                                                   Bechtold 2002, 2005)

WRF-A         Lambert      33        25 km           WSM5              GD                      CAM                     MYJ                    Noah

WRF-B          Lambert      33        25 km           WSM5              GD                      CAM                      YSU                    Noah

MM5            Lambert      30        25 km        Simple ice         Grell                    RRTM                    MRF                    Noah

REMO           Rotated      31         0.22°          Roeckner       Tiedkte            Morcrette et        Higher-order    Bucket scheme 
                       lat-lon                                     et al. (1996)   (1989) with        al. (1986) with    closure scheme   for hydrology; 
                                                                                            modifications       modifications         (Brinkop &          5 layers for 
                                                                                           after Nordeng   after Giorgetta &       Roeckner              thermal 
                                                                                                  (1994)               Wild (1995)                1995)                processes

Table 1. Configurations used in each of the models run in this study. Columns: model name, geographical projection (Geo.
proj), number of vertical levels (Vert. level), horizontal resolution (Horiz. resol.), and physical parameterizations for convective
clouds and precipitation (Cumulus), resolved cloud microphysics, radiation, planetary boundary layer (PBL) and land surface 

models (LSM). See Section 2.1 for details; Fig. 1 shows domain covered by each model
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mate simulations under different configurations (e.g.
Boo et al. 2006, Nunez et al. 2009, Gómez-Navarro et
al. 2010, among others). The physical configuration
has been chosen in order to minimize the computa-
tional cost, since none of the tested configurations
provides the best performance for all kinds of synop-
tic events and regions (Fernández et al. 2007, Jerez
et al. 2012a). The physical options used were Grell
cumulus parameterization (Grell 1993), Simple Ice
for microphysics (Dudhia 1989), rapid radiative trans-
fer model (RRTM) radiation scheme (Mlawer et al.
1997) and medium-range forecast scheme (MRF) for
planetary boundary layer (Hong & Pan 1996). The
Noah Land-Surface model (Chen & Dudhia 2001a,b)
has been used in summer over the southern part of
the IP, as it simulates the climate more accurately,
especially in dry areas (Jerez et al. 2012b).

2.1.4.  REMO

REMO is a hydrostatic, three-dimensional regional
climate atmospheric model developed at the Max-
Planck-Institute for Meteorology in Hamburg. It is
based on the Europa Model, a former numerical
weather prediction model of the German Weather
Service and is described in Jacob et al. (2001). REMO
uses the physical package of the global circulation
model ECHAM4 (Roeckner et al. 1996). In the verti-
cal, variations of the prognostic variables are repre-
sented by a hybrid vertical coordinate system (Sim-
mons & Burridge 1981). The relaxation scheme
according to Davies (1976) is applied.

2.2.  Driving data

All the simulations were forced at the boundaries
by the latest reanalysis product from the ECMWF:
ERA-Interim (Dee et al. 2011). ERA-Interim has sev-
eral differences with respect to ERA-40 (Uppala et al.
2005), such as variational bias correction of satellite
radiance data, improvements in model physics and
new humidity analysis, among others. The ERA-
Interim atmospheric model and reanalysis system
uses cycle 31r2 of ECMWF’s Integrated Forecast Sys-
tem (IFS), which was introduced operationally in
September 2006, configured for the following spatial
resolution: (1) 60 levels in the vertical, with the top
level at 0.1 hPa; (2) T255 spherical-harmonic repre-
sentation for the basic dynamical fields; (3) a reduced
Gaussian grid with approximately uniform 79 km
spacing for surface and other grid-point fields. In the

study, all models have used boundary and initial con-
ditions from ERA-Interim every 6 h with a spatial
 resolution of 0.7° × 0.7°.

With respect to the forcings along the ERA-Interim
period, all models use a sea surface temperature
interpolated from ERA-Interim data and updated
every 6 h. Aerosols in PROMES follow the GADS cli-
matology (d’Almeida et al. 1991, Koepke et al. 1997),
while the rest of the models do not include aerosols in
their forcing for regional climate simulations. For
greenhouse gases, REMO uses trends in the amounts
of specified radiatively active gases (CO2, CH4, N2O,
CFC-11, CFC-12) according to the ones used to gen-
erate the ERA reanalysis (Houghton et al. 1996).
PROMES, WRF and MM5 use constant values of
greenhouse gases.

2.3.  Observational database

We used the Spain02 precipitation and tempera-
ture database (Herrera et al. 2012). Spain02 is a daily
gridded dataset developed using surface station data
from a set of 2756 quality-controlled stations over
peninsular Spain and the Balearic islands. This data
set covers the period 1950–2008, with a daily fre-
quency and 0.2° × 0.2° resolution. A 2-step interpola-
tion procedure was used: firstly, the monthly means
were interpolated using thin-plate splines, and sec-
ondly, daily departures from the monthly means
were interpolated using a kriging methodology. In
the case of precipitation, occurrence and amounts
are interpolated through indicator and ordinary krig-
ing, respectively. The interpolation procedure for
precipitation is similar to that of the E-OBS European
database (Haylock et al. 2008), except for the
absence of the elevation-dependent splines ap plied
to the E-OBS database, which was not used in
Spain02 since the topography is well represented by
the large amount of stations. For temperature, the
Spain02 database applied a more stringent filter to
the station data in order to provide a product better
suited for trend analyses (Herrera et al. 2012). Unlike
the precipitation product, where the maximum num-
ber of available stations at a given day were used, the
temperature data set was built from a reduced set of
only those stations with a record longer than 40 yr
and <1% of missing data, leaving 186 stations. These
stations were gridded using the same methodology
as E-OBS, the only difference being the better qual-
ity and higher number of stations over spain.

The large number of stations used in this product
compared with the ECA database provides a better
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representation of precipitation (Herrera et al. 2010)
and temperature variability (Herrera et al. 2012) over
Spain.

2.4.  Validation methodology

The Spain02 regular latitude-longitude grid has
been used as the reference for validation. Thus, all
RCM data have been bilinearly interpolated onto the
Spain02 grid. Since the resolution of the RCMs is
similar to that of Spain02 and we are interested in the
mean climate, the interpolation procedure is not
expected to significantly alter any of our results.

All the statistical measures are calculated at indi-
vidual grid points. Only land grid points over penin-
sular Spain and the Balearic islands are considered in
the analysis. Since this work focuses on mean cli-
mate, we only worked with monthly averaged data.
Thus, we will use the notation for a variable
from model k at grid point i, in year y = 1990, …, 2007
and month m = 1, …, 12. If we use bracket notation
for an average over a given index (e.g. for an
average over all years and months, i.e. a time aver-
age), we can express the bias (b) at a given grid point
as:

                                     (1)

where Oiym is the value observed. The model bias is
the simplest measure of model performance.

The ensemble mean, � �k, is usually considered
as an additional simulation that compensates the
errors of the different ensemble members. Even
though this is a very simplistic view of the ensemble
(which should be considered from a probabilistic
point of view), it can be useful to reinforce the com-
mon signal of the different models in our analysis of
the mean climate. Notice, however, that the ensem-
ble mean is not a physical realization of any of the
models, but just a statistical average of different non-
linear trajectories (Knutti et al. 2010).

For seasonal analyses, the seasons were defined as
winter (DJF), spring (MAM), summer (JJA) and
autumn (SON). Seasonal biases can be defined by
averaging over months in a specific season, e.g.

.
The seasonal cycle was calculated as follows:

                                     (2)

Then, the interannual variability was assessed on
the series without considering their annual cycle
( ). The averaged monthly annual cycle was
removed from each corresponding monthly value:

                                     (3)

The ability to represent the interannual variability
can be decomposed into (1) the ability to represent its
size, which can be represented by the standard devi-
ation (SD) of the deseasonalized series as:

                                     (4)

and (2) can be compared to that of the observations
SD[O]i, and (3) the ability to represent the year-to-
year variations, which can be represented by the
linear correlation coefficient with the observations:

                                     (5)

The latter ability can only be expected on RCM
simulations nested into ‘perfect’ boundary conditions
such as those considered in this study.

Finally, pattern agreement between simulated and
observed seasonal climatologies was quantified by
means of the spatial correlation and the ratio be -
tween simulated and observed SDs, , as:

                                     (6)

                                     (7)

This information can be summarized in a Taylor
(2001) diagram, which is a polar plot, with radial
coordinate sk and angular coordinate related to rk.

3.  RESULTS

3.1.  Bias

Seasonal model biases in representing the climatol-
ogy of maximum and minimum temperature and pre-
cipitation are represented in Figs. 2 & 3 and summa-
rized in Table 2a by their spatial averages, along with
the average annual bias. The ensemble average is
also displayed as if it were an additional simulation.

Annual maximum temperatures are cold-biased
(Table 2a) in most models (ranging from –2.43K in
MM5 to –1.74K in PROMES). REMO is the only
exception and shows a warm bias (+0.64K). The
models keep in all seasons the same bias sign as the
annual values: REMO shows warm biases in all sea-
sons and the other models show cold biases. The
models show similar bias spatial patterns (Fig. 2). For
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instance, all models overestimate maximum temper-
ature during summertime over the southern IP and
some areas along the Mediterranean coast.

For minimum temperature (Table 2a), REMO is
again strongly warm biased (+2.63K) compared with
the other models, which range from –0.37 (WRF-A) to
+0.79K (WRF-B). Two configurations of the same
model provide a wide range of minimum tempera-
tures. Regarding minimum temperature, the differ-
ence between different PBL parameterizations in a
single model is larger than between completely dif-
ferent models in the ensemble (e.g. MM5 and
PROMES), except in the case of REMO. Again, the
spatial patterns (Fig. 2) of the different models are
very similar. The topographical characteristics of
minimum temperatures are well captured by the
models, but they all show overestimations over
mountainous areas and slight underestimations else-
where. Note that these tend to partly compensate
each other in the spatially averaged biases shown in
Table 2a.

For precipitation, only those cells over land with
observed precipitation >0.25 mm d−1 (monthly aver -
age) have been selected for comparisons. Annual
biases (Table 2a) range from –0.38 (WRF-A) to
+0.44 mm d−1 (PROMES). In this case, the spatial
pattern of seasonal biases (Fig. 3) are presented as
a relative difference (in %), since larger absolute
biases tend to occur over areas with larger precipi-
tation. The threshold chosen (0.25 mm d−1) is espe-
cially noticeable for summertime in the south and
southeastern Mediterranean coast. In autumn, most
models show a large precipitation underestimation
in southern and eastern peninsular Spain and
the Bale aric Islands, where torrential precipitation
occurs. PROMES shows a different behaviour
 compared with the rest of the models, since it over-
estimates seasonal precipitation, especially during
spring.

Table 2a and Figs. 2 & 3 include the biases of the
ensemble mean, considered as an additional model
simulation. As expected, the ensemble mean shows
an intermediate behaviour, which in most cases leads
to reduced biases. However, common biases, such as
the cold-biased maximum temperature or the com-
mon pattern in minimum temperature, remain in the
ensemble mean, although the most extreme biases
are attenuated. For precipitation, the ensemble mean
shows the smallest absolute bias compared to the
individual simulations.

An especially remarkable result is the high spread
of the simulated bias, despite the small amount of
models used in this study. It is crucial to work with an
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Fig. 2. Seasonal maximum (Tmax) and minimum (Tmin) temperature (°C; top row) for Spain02 and biases (K) for models. Columns: 
winter (DJF) and summer (JJA) values
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Fig. 3. Seasonal precipitation for Spain02 (mm d−1, top row) and biases (%) for models. Columns (left to right): winter (DJF),
spring (MAM), summer (JJA) and autumn (SON) values. Grey shading: areas where biases are not shown (ocean and 

precipitation <0.25 mm d−1)
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Fig. 4. Standard deviation (SD) of seasonal maximum (Tmax) and minimum (Tmin) temperature for Spain02 (K; top row) and SD 
biases (K) for models. Columns: winter (DJF) and summer (JJA) values
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Fig. 5. Coefficient of variation (CV) of seasonal precipitation for Spain02 and CV biases for models. Columns: same order as in Fig. 3
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ensemble of regional climate models instead of one
individual model to get more robust future climate
projections, for a better assessment of uncertainties
due to the dynamical downscaling process. These cli-
mate projections have already been carried out in the
ESCENA project. An important issue, which we do
not address here but will be considered in future
stages of the ESCENA project, is the relationship be -
tween past and future performance of models (as
evaluated by Whetton et al. 2007 and Abe et al. 2009,
among others). As stated by Annan & Hargreaves
(2010), climate models have already been tuned to
some extent to the recent climate data and therefore
accurately reproduce present-day climate conditions.
It would be interesting to further test the reliability of
the ensemble in other ways, for example considering
simulations of other epochs or other climatic observa-
tions that are less widely used during model con-
struction and tuning.

3.2.  Interannual variability

For precipitation, SD is normalized by the period
average, therefore by obtaining a coefficient of vari-
ation (CV). This is done because the SD of precipita-
tion is typically related to the mean (Giorgi et al.
2004), so that the CV is a more independent measure
of interannual variability.

Table 2b shows the spatially averaged seasonal
and annual interannual variability biases for maxi-
mum and minimum temperature and the spatially
averaged CV biases for precipitation. The seasonal
spatial distribution of the mentioned statistics are
represented in Figs. 4 & 5, for maximum and mini-
mum temperature and precipitation, respectively.

All models except for PROMES and WRF-A tend to
slightly underestimate the interannual SD of maxi-
mum temperature (Fig. 4). Similar values and re -
sponses from models are observed for different sea-
sons. In winter, the biases of maximum temperature
SD vary be tween –0.27K in MM5 to +0.07K in
WRF-A (Table 2b). The biases range from –0.38
(MM5) to +0.33K (PROMES) in spring, and –0.20
(MM5) to +0.32K (PROMES) during summer; mean-
while for autumn MM5 once more provides the
largest underestimation of the SD (–0.12K) and
PROMES the highest overestimation (+0.22K). The
rest of the models show an intermediate behavior for
representing the interannual SD, with the best skills
during the autumn season.

For minimum temperature (Fig. 4), the results are
similar to maximum temperature, but in this case it is

REMO which tends to provide the largest biases in
the minimum temperature variability (Table 2b). The
SD is generally underestimated by all models, espe-
cially during winter over the highest mountain chains
of the IP. In this season, biases vary between –0.60
(REMO) and –0.09K (PROMES). All models predict
spring variability better than for wintertime (–0.21K
in REMO and 0.11K in PROMES during springtime).
However, in summer all the models show values
close to Spain02.

Regarding precipitation, the models (except
PROMES) pervasively underestimate the interannual
variability over the domain, especially in southwest-
ern Spain in winter, and the Mediterranean coast and
the Balearic Islands during summer and autumn
(Fig. 5). The biases of the CV range from +0.04 (win-
ter and autumn) to +0.28 (summer) in the case of
PROMES, to underestimations in WRF-A (–0.28 in
autumn to –0.18 in spring). MM5 and REMO present
the smallest average biases, ranging from –0.15 to
0.03.

The multi-model ensemble mean outperforms most
of the individual models in all seasons, showing the
added value of using an ensemble of RCMs to
improve the amount of interannual variability. How-
ever, common model deficiencies still remain (e.g.
the low precipitation variability in autumn on the
Mediterranean coast).

The temporal correlation (ρ) between simulated
and observed deseasonalized series is shown in
Fig. 6 for maximum and minimum temperature and
precipitation. Maximum temperatures show the
highest correlations (>0.85) over most of the domain,
especially over the river valleys of northern Spain.
The fact that the lowest correlations (~0.4) are found
in northeastern Spain for all models may point to (1)
problems with the quality of raw observed data used
to create the Spain02 database or (2) to local climatic
features that the models are unable to capture at the
selected resolution. For minimum temperature, ρ is
generally slightly lower than for maxima. The spatial
structure of the correlation presents common minima
in all models, and this points to a relation with topog-
raphy, since the lowest correlation coefficients (ρ <
0.5) are located in the highest mountain chains in
Spain, such as the Pyrenees, Sistema Ibérico or Sierra
Nevada, from north to south of the domain. On the
other hand, the highest correlations for minimum
temperatures are observed over the Central Plateaus
and the river valleys. The precipitation correlations
show a strong east-west gradient reaching the lowest
values (~0.30 to 0.50) towards the Ebro Valley and
the southeastern IP (Fig. 6).
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Tmax Tmin Precipitation
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Fig. 6. Mean temporal correlation coefficients for simulated maximum (Tmax) and minimum (Tmin) temperature and precipita-
tion vs. Spain02 observations. Correlations were calculated using individual months in each season yr-1 and for each point
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In order to discriminate the seasonal behavior of
this temporal correlation, Table 3 represents spatially
averaged correlations for maximum and minimum
temperature and precipitation. Maximum tempera-
ture shows the highest correlations and they present
a low seasonal variability. Spring has slightly higher
correlations than the rest of the seasons. In general,
there is also a low model-to-model variability. Only
WRF shows somewhat higher correlations (mostly
>0.8). REMO, unlike the rest of the models, presents
a value <0.70 in summer, indicating a lower capabil-
ity to capture maximum temperature variability in
summer. For minimum temperatures, correlations
are, in general, lower than for maximum temperature
and they exhibit a clearer seasonal variability, with
higher correlations in winter and autumn. In this
case, spring shows the lowest correlations, and sev-
eral models show correlations <0.7 in different sea-
sons. Only WRF-B is above this threshold throughout
the year and performs best on average. For this vari-
able, WRF-A is more similar to other models, such as
MM5, than to WRF-B. Lastly, for precipitation the
correlations are generally much lower than for tem-
perature, and the seasonal dependence is very
strong. As expected, higher correlation coefficients
are at tained during winter (0.77 to 0.80), when syn-
optic systems, well captured in the reanalysis data,
drive precipitation. During summer, the synoptic
activity is lower and precipitation is mostly driven by
convective systems, less constrained by the boundary
conditions; therefore, the lowest correlations are
attained (0.42 to 0.55). An intermediate behaviour is
shown in the transition seasons.

The most noticeable aspect regarding correlation
(Fig. 6), is the large improvement achieved when
considering the ensemble mean. Spatially (Fig. 6),
there are areas where correlations are above any of
the component members; most noticeably in precipi-
tation over the eastern coast, where a common RCM
defect is improved by the ensemble, softening the
strong gradient present in each individual model.
Also, after spatial averaging (Table 3), the ensemble
mean performs at least as well as the best member,
and in most cases shows better correlation than any of
the members. This is true especially for precipitation.

3.3.  Spatial variability

Here, we focus on the ability of the models to rep-
resent the observed spatial variability by using Tay-
lor diagrams (Taylor 2001), which enable an easy
comparison between the spatial and temporal pat-

terns of 2 fields. In our diagrams (Fig. 7), the statistics
displayed are the relative spatial SD (radial distance
from the origin) and the correlation (cosine of the
angular coordinate). Better models, in terms of cen-
tered root mean squared error (RMSE), are located
closer to the black circle shown in Fig. 7, which cor-
responds to Spain02. Centered RMSE increases with
distance from this point.

With respect to the mean field of maximum temper-
ature (Fig. 7a), all models perform well, especially for
winter, with very high spatial correlations and a
 normalized SD close to observations. However,
PROMES and REMO represent excessive spatial
variability during summertime. The spatial variabil-
ity of the interannual SD (Fig. 7b), as well as its spa-
tial mean (Table 2) is strongly overestimated by
PROMES in spring and summer, providing higher
values of spatial patterns of variability. There is a
strong variation in the skill of the models as a func-
tion of the season of the year, with better correlation
values during spring and autumn.

In the simulation of the mean minimum tempera-
ture (Fig. 7c), the models perform very similarly with
each other, showing a high spatial correlation with
the observations, but in most cases with a small
underestimation of the spatial variability, except for
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(a)

DJF MAM JJA SON Annual

PROMES 0.77 0.79 0.77 0.80 0.78
WRF-A 0.78 0.85 0.83 0.84 0.83
WRF-B 0.80 0.86 0.83 0.84 0.84
MM5 0.77 0.83 0.74 0.80 0.78
REMO 0.78 0.83 0.69 0.83 0.79
Ensemble 0.81 0.87 0.83 0.86 0.84
(b)
PROMES 0.67 0.74 0.77 0.76 0.73
WRF-A 0.76 0.69 0.74 0.80 0.75
WRF-B 0.82 0.74 0.74 0.82 0.78
MM5 0.81 0.70 0.73 0.79 0.76
REMO 0.78 0.66 0.68 0.78 0.72
Ensemble 0.82 0.74 0.77 0.83 0.79
(c)
PROMES 0.79 0.68 0.55 0.60 0.67
WRF-A 0.78 0.68 0.52 0.62 0.68
WRF-B 0.80 0.69 0.53 0.63 0.69
MM5 0.77 0.64 0.44 0.62 0.66
REMO 0.77 0.67 0.42 0.64 0.66
Ensemble 0.85 0.77 0.63 0.73 0.77

Table 3. Time-correlation for modeled (a) maximum and (b)
minimum temperature, and (c) precipitation vs. Spain02 ob-
servations for all seasons and diverse models included in ES-
CENA. Seasons: winter (DJF), spring (MAM), summer (JJA),
autumn (SON). Light to dark shading indicates low to high 

correlation coefficients, respectively
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the cold season. The models do not capture the spa-
tial structure of the variability during summer and
wintertime (Fig. 7d). This variability is pervasively
underpredicted for winter and summer, when spatial
correlation does not ex ceed 0.45. Both for maximum
and minimum temperature, the diverse models (and
seasons) present a high spread in the representation
of the spatial structure of the SD.

The mean precipitation pattern (Fig. 7e) is captured
worse than those of temperature. This is ex pected,
since the temperature patterns are strongly related to
the orography. PROMES tends to provide a higher
spatial variability than observations, especially for
summertime (see red diamond outside the Taylor dia-
gram in 7e), but with a high correlation (>0.88). In
this case, REMO tends to better capture the field vari-
ability. For the SD pattern (Fig. 7f), a similar analysis
can be performed, with PROMES tending to overesti-
mate the SD of the spatial variability.

In this case, the added value of considering the
ensemble mean is not clear for the maximum temper-
ature (the ensemble mean outperforms most but not
all models), albeit it generally improves the skill of
most models. For minimum temperature and, overall,
precipitation, the ensemble mean outperforms the
individual models in all seasons, although it some-
what underestimates the variance of the SD patterns.

4.  DISCUSSION AND CONCLUSIONS

In this work we have analyzed the RCM evaluation
simulations of the ESCENA project over peninsular
Spain and the Balearic Islands. This work evaluates,
for the first time over a European region, the MM5
and WRF open-source, US-developed models along
with European RCMs (PROMES and REMO). This
study is also one of the earliest works using ERA-
Interim as boundary conditions over Europe. As an
initial evaluation of the ESCENA simulations, we
used simple, widely used metrics to enable the com-
parison of the model performance with earlier stud-
ies. Also, we focused on the mean climate and inter-
annual variability, therefore relying on monthly data.

As an indication of the quality of the simulations,
we can compare the spatial correlation values for
precipitation deduced from Fig. 7 with those ob -
tained for RCMs in ENSEMBLES included in Herrera
et al. (2010). That work classified the RCMs into 2
groups, according to a gap in the spatial correlation
of precipitation. According to this classification, all
individual RCMs in ESCENA would be in the group
of the ‘best’ models. Also, the ensemble mean in

ESCENA is similar to the best ensemble in the afore-
mentioned work. Therefore, the ability to reproduce
precipitation within ESCENA is high, at least in this
aspect, when compared to Herrera et al. (2010) and
references therein. The temperature results can be
qualitatively compared to the bias maps shown by
Christensen et al. (2010), which show typical biases
within ENSEMBLES of the order of 2K in this region,
similar to those found in ESCENA. Temperature-out-
lier models in ENSEMBLES show biases much larger
than those in ESCENA. Therefore, overall, the 5
regional climate simulations included in ESCENA
show good quality in reproducing the climatology of
the IP, even though these models are based on
 completely different approaches and physical para-
meterizations.

WRF was used in 2 different settings, which differ
only in the representation of the PBL. WRF-A used a
local closure scheme, which has been reported to
develop shallower, colder, and moister PBLs than
WRF-B, which used a non-local closure scheme
 (García-Díez et al. 2013). The weaker low-level mix-
ing in WRF-A leads to colder nighttime (i.e. mini-
mum) temperatures. Therefore, the largest differ-
ences be tween the WRF ensemble members appear
in the minimum temperature. Remarkably, MM5 is
the only other model in the ensemble using a non-
local closure PBL scheme, but the results are closer to
WRF-A. It seems that biases arising from other com-
ponents (model dynamics, numerics or other parame-
terizations) are compensating the expected summer
warm bias.

Regarding the inherent uncertainties of model
 validation methodologies, climate models here are
assessed on their capacity to reproduce present cli-
mate conditions, which in turn are established by
comparing the output of climate simulations with
observational datasets including gridded products
(here, Spain02 dataset). However, due to the nature
of the procedures to obtain observations and the sta-
tistical techniques employed to extrapolate this infor-
mation onto reference gridded databases, they con-
tain important uncertainties which may compromise
the evaluation process. A recent work by Gómez-
Navarro et al. (2012) indicates that, even in areas
covered by dense monitoring networks such as
Spain, uncertainties in the observations are compara-
ble to the uncertainties within state-of-the-art RCMs
driven by reanalysis, such as those used in ESCENA.
Therefore, some of the common deficiencies found,
can probably be traced to problems in the observa-
tional database. For instance, the warm biased mini-
mum temperatures over northeastern Spain are a
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Fig. 7. Taylor diagrams for seasonal (a,b) maximum temperature, (c,d) minimum temperature, and (e,f) precipitation for all mod-
els included in the analysis. (a,c,e) Mean fields; (b,d,f) SD. Seasons: winter (DJF), spring (MAM), summer (JJA), autumn (SON)
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candidate to a misrepresentation in the observational
database, since (1) the problem is common to all
models, (2) there are no complex topographic fea-
tures over that area, and (3) the problem does not
arise in any other variable.

No single model outperforms the rest of the models
for all the variables analyzed. Depending on the vari-
able and season, different models stand out. For
example, REMO stands out for temperature (espe-
cially minimum temperature), PROMES shows a wet
bias when the rest tend to be drier than observed,
and WRF is also especially dry during autumn.
Regarding the inclusion of US-developed models in
the ensemble, we found no ‘home court advantage’
(Takle et al. 2007) for the European models. Unlike
shown in other recent studies over north America
(Mearns et al. 2012), the use of RCMs out of their
‘home’ domain did not lead to poorer performance.

The different performance of the RCMs in different
seasons and variables encourages the use of the
whole ensemble of simulations, taking the range of
biases as an indicator of model uncertainty. The sim-
plest way of considering the ensemble of RCMs is
through the use of the ensemble mean as an addi-
tional simulation. The results show that the ensemble
mean is usually less biased than the individual mem-
bers or is close to the best member. Remarkably, the
ensemble of simulations is able to correct the prob-
lems associated with the interannual variability for
precipitation, showing substantially higher temporal
correlation than the best individual model. These re -
sults are in accordance with previous works (Gleckler
et al. 2008, Coppola et al. 2010, Kjellström et al.
2011). As stated by Annan & Hargreaves (2011), one
hypothesis for the improvement of the ensemble
mean when compared to the performance of the indi-
vidual models is the paradigm of models being con-
sidered as independent samples from some distribu-
tion that is centered on the truth, as in this case the
ensemble mean could be expected to converge to the
truth as more models are added to the ensemble
(Tebaldi & Knutti 2007). However, this hypothesis
has been refuted by Knutti et al. (2010). Annan &
Hargreaves (2010, 2011) defend the point that the
statistically indistinguishable paradigm provides a
reasonable basis for explanation of the properties of
the CMIP3 ensemble. However, their results are only
directly applicable to their specific comparisons and
a convincing explanation for the outperformance of
the ensemble mean is still an open question in cli-
mate science.

We can, therefore, conclude that the use of ensem-
ble simulations in this kind of study substantially

improves the representativity of the climatologies,
and we also expect that studies of future climates, by
using ensemble methodologies, will provide more
robust climate projections and a valuable estimation
of the associated uncertainty. As shown, these data
can be complementary to other European projects
such as ENSEMBLES over the Iberian Peninsula and
surrounding areas. The data from this study are pub-
licly available on the ESCENA project server (http://
proyectoescena.uclm.es). The analyses shown are
just an initial evaluation that needs to be extended in
forthcoming studies by the climate and impact
 communities in the Iberian Peninsula, who are en -
couraged to use the whole RCM ensemble, thereby
propagating the uncertainties found.
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