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String diagrams are a powerful and intuitive graphical syntax, originating in theoretical physics and later

formalised in the context of symmetric monoidal categories. In recent years, they have found application in

the modelling of various computational structures, in fields as diverse as Computer Science, Physics, Control

Theory, Linguistics, and Biology.

In several of these proposals, transformations of systems are modelled as rewriting rules of diagrams. These

developments require a mathematical foundation for string diagram rewriting: whereas rewriting theory

for terms is well-understood, the two-dimensional nature of string diagrams poses quite a few additional

challenges.

This work systematises and expands a series of recent conference papers, laying down such a foundation. As

first step, we focus on the case of rewriting systems for string diagrammatic theories that feature a Frobenius

algebra. This common structure provides a more permissive notion of composition than the usual one available

in monoidal categories, and has found many applications in areas such as concurrency, quantum theory, and

electrical circuits. Notably, this structure provides an exact correspondence between the syntactic notion of

string diagrams modulo Frobenius structure and the combinatorial structure of hypergraphs.

Our work introduces a combinatorial interpretation of string diagram rewriting modulo Frobenius structures

in terms of double-pushout hypergraph rewriting. We prove this interpretation to be sound and complete and

we also show that the approach can be generalised to rewriting modulo multiple Frobenius structures. As a

proof of concept, we show how to derive from these results a termination strategy for Interacting Bialgebras,

an important rewriting theory in the study of quantum circuits and signal flow graphs.

CCS Concepts: • Theory of computation→ Categorical semantics; Equational logic and rewriting.

Additional Key Words and Phrases: string diagram, double-pushout rewriting, category theory, Frobenius

algebra

Reference Format:
Filippo Bonchi, Fabio Gadducci, Aleks Kissinger, Pawel Sobocinski, and Fabio Zanasi. String Diagram Rewrite

Theory I: Rewriting with Frobenius Structure. CoRR abs/2201.00233 (2022), 57 pages. To appear in Journal of

the ACM.

1 INTRODUCTION
This is the first of a series of papers [BGK

+
20, BGK

+
21] giving a comprehensive foundation for

the rewriting theory of string diagrams. String diagrams are a graphical syntax that is particularly

well-suited for capturing the behaviour of structures whose basic operations take many inputs to

many outputs. This can be contrasted with term syntax, which is best suited for algebraic structures,

whose basic operations take many inputs to a single output. In recent years, structures that mix
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2 Bonchi, Gadducci, Kissinger, Sobocinski and Zanasi

algebraic (i.e. many-to-1 operations) and coalgebraic (i.e. 1-to-many) operations have increasingly

found applications in a variety of fields, such as concurrency theory, control theory, quantum

physics, biology, computational linguistics, and even cognition and consciousness.

Notable features of string diagrams include their flexibility and intuitive aspects. Two diagrams

that can be topologically deformed into each other without cutting or joining wires must necessarily

describe the same map. This makes string diagrams into a powerful language for reasoning about

interacting processes, but also introduces unique challenges when it comes to formalising and

implementing string diagrammatic equational reasoning and rewriting theory.

The formal basis for string diagrammatic syntax is the theory of symmetric monoidal categories

(SMCs). SMCs provide a minimal setting for reasoning about processes that can compose in parallel

or in sequence. String diagrams describe compositions of morphisms in an SMC, where boxes

represent the morphisms themselves and wires represent objects, which serve as inputs and outputs

𝑓 : 𝐴 ⊕ 𝐵 ⊕ 𝐶 → 𝐷 ⊕ 𝐸 =⇒ 𝑓

𝐴

𝐷

𝐵

𝐸

𝐶

Composition in parallel (“⊕”) and in sequence (“ ; ”) are then depicted diagrammatically. For example

(𝑓 ⊕ 𝑔) ; ℎ ; (1 ⊕ 𝑓 ) =⇒
𝑔

𝑓

ℎ

𝑓

𝐵

𝐴

𝐴

𝐶

𝐴

𝐷

𝐵 𝐶

The relevant data of such a composition is the connectivity, rather than the physical layout of the

boxes and wires. Hence, it makes sense to consider ‘crossing’ of wires, and the SMC axioms make

the interpretation invariant under deformation, e.g.

𝑔

𝑓

ℎ

𝑓

=

𝑔

𝑓

ℎ

𝑓

There are many contexts where it furthermore makes sense to consider ‘wires’ that do not have

just two endpoints, but many. Or, put another way, we may wish to allow wires to branch and

merge in string diagrams, like in this example

𝑔

𝑓

ℎ

Rather than representing a path that information flows along, a branching wire represents a more

general kind of interface between components. For example, branching wires in a digital circuit

can be used to represent a physical wire, where junctions are used to join multiple wires into

one. Systems whose primitive pieces compose via shared names (e.g. indices in tensor networks,

variables in programming languages, or channels in process calculi) also naturally have such

splitting structures, unless we specifically impose that names only occur in matched pairs. For

non-deterministic, probabilistic, or quantum processes, branching wires represent the appropriate
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notion of correlation between their endpoints, e.g. statistical perfect correlations or (GHZ-like)

quantum entanglement.

These branching wires can be accommodated categorically by requiring that each object in the

category comes equipped with certain basic operations for ‘splitting’ and ‘merging’ wires, as well

as ‘initialising’ and ‘terminating’ them

𝛿 = 𝜇 = 𝜂 = 𝜖 =

satisfying some rules that again ensure that only the connectivity (i.e. the set of endpoints of a

connected component) matters. These generators and rules are known in the literature as a special
commutative Frobenius algebra (SCFA). A category where every object is equipped with an SCFA is

called a hypergraph category.
In this paper, we will focus on the study of hypergraph categories, and their associated string

diagrams. While this may seem counter-intuitive at first, the rewriting theory for hypergraph

categories is actually simpler than that for generic symmetric monoidal categories. Hence, it will

serve as a stepping stone toward doing rewriting for string diagrams with non-branching wires,

which is the topic of [BGK
+
20].

One can model composition and interaction between processes in hypergraph categories using

equational reasoning. That is, we can introduce some primitive ‘boxes’ into our theory and impose

a set E of (diagram) equations that those boxes satisfy. For example, we may introduce a box 𝑔 and

requires that it satisfies

E :=


𝑔

𝑔

𝑔

= , 𝑔 =


Just like in the case of equational reasoning with terms, when it comes to automated equational

reasoning with diagrams, it becomes more useful to consider equations as rewriting rules, with a

preferred orientation from left-to-right

R :=


𝑔

𝑔

𝑔

⇝
R1

, ⇝
R2

𝑔


It is then natural to ask questions about how well-behaved such a rewriting system is, for example

whether it terminates and in that case, whether it yields unique normal forms. However, more

fundamentally, one can ask what rewriting in the context of hypergraph categories means. A simple

answer is that diagram rewriting is simply term rewriting, performed modulo the axioms of a

hypergraph category. Indeed all of the diagram equations above can be represented as terms over

the basic generators of the theory, combined via two connectives ⊕ and ; , representing parallel
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and sequential composition, respectively. For example, adding boxes 𝑓 and ℎ, we may have

𝑔

𝑓

ℎ
:= (1 ⊕ 𝑔) ; (𝑓 ⊕ 𝛿) ; (ℎ ⊕ 1) ; (𝜇 ⊕ 1)

Then, we can apply the axioms of a hypergraph category in order to produce the LHS of one of our

rewriting rules (i.e. a reducible expression, or redex) as a subterm. For example, the interchange law

(𝑎 ⊕ 𝑏) ; (𝑐 ⊕ 𝑑) = (𝑎 ; 𝑐) ⊕ (𝑏 ; 𝑑) (1)

allows us to produce the subterm 𝑔;𝛿 , which is the LHS of the rule R1 above, at which point we

can replace the LHS of R1 with the RHS

(1 ⊕ 𝑔) ; (𝑓 ⊕ 𝛿) ; (ℎ ⊕ 1) ; (𝜇 ⊕ 1) = ((1 ; 𝑓 ) ⊕ (𝑔 ; 𝛿)) ; (ℎ ⊕ 1) ; (𝜇 ⊕ 1)
R1
⇝ ((1 ; 𝑓 ) ⊕ ((𝛿 ⊕ 𝛿) ; (1 ⊕ 𝜎 ⊕ 1) ; (𝑔 ⊕ 𝑔))) ; (ℎ ⊕ 1) ; (𝜇 ⊕ 1)

In other words, we do term rewriting in the usual way, modulo the SMC and Frobenius equations.

This rewriting-modulo step can be seen as the formal, syntactic underpinning to the intuitive

notion of rewriting defined directly on string diagrams. For example, the term rewrite above can be

depicted diagrammatically as

𝑔

𝑓

ℎ
⇝
R1

𝑓

ℎ

𝑔

𝑔

However, there are numerous drawbacks to this rewriting-modulo approach. First, some care must

be taken in applying the axioms of a hypergraph category to terms. For example, depending on the

types of 𝑎, 𝑏, 𝑐, 𝑑 it is possible for the LHS of the interchange law (1) to be well-defined while the

RHS is not. Second, and more importantly, even well-behaved rewriting systems quickly become

intractable when doing rewriting-modulo. Even a very simple rewriting system R becomes very

difficult to work with when taken modulo the 12 additional equations implied by the axioms of a

hypergraph category. Working purely with terms, this requires a great deal of careful book-keeping

to ‘reshuffle’ a term in such a way that it contains an exact copy of the LHS of a given rule as

a subterm, then applying it. This complexity then transfers into all the aspects of the rewriting

theory, making it difficult to define what it means, e.g. to enumerate all of the distinct places that a

rule matches or to determine whether the application of two rules overlap.

Computationally, a much better approach is to take seriously the notion that ‘only connectivity

matters’, and represent a morphism in a hypergraph category as a combinatorial object capturing

exactly this connectivity data. Indeed, as the name would suggest, the best choice for that object is

a hypergraph. In this paper (and in [BGK
+
20]) we combine and integrate the results of a series of

recent works [BGK
+
16, BGK

+
17, BGK

+
18] to develop a complete rewriting theory for hypergraph

categories based on hypergraphs with interfaces. In particular, we show the free hypergraph

category over a collection of generators can be represented combinatorially in terms of hypergraphs

and show that diagram substitution can be performed via double-pushout hypergraph rewriting.
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This corresponds exactly to rewriting modulo the axioms of a hypergraph category, hence all of

the hypergraph category axioms are subsumed by hypergraph isomorphism.

Often it is interesting to consider rewriting modulo in systems where each object is equipped

with more than one Frobenius algebra. For example, the ZX-calculus used in quantum computation,

as well as the system IB and its derivatives used to model linear systems, signal-flow graphs, and

concurrency, involve two interacting Frobenius algebras at their heart. We will show that such

systems can be accommodated within this framework while still preserving its good computational

properties. As a demonstration, we define a theory of two Frobenius algebras interacting as a

bialgebra and illustrate a simple, terminating strategy for transforming diagrams to a pseudo-

normal form using hypergraph rewriting.

In Section 2 we provide an introduction to the rationale of string diagram rewriting, while at the

same time recalling the preliminary notions of symmetric monoidal categories and PROPs, as well

as their respective extensions incorporating a Frobenius structure, with a particular attention for

the multi-sorted case. In Section 3 we introduce hypergraphs with interfaces, and the main tool

for manipulating them, i.e., double pushout (shortly, DPO) rewriting. The section also provides a

purely combinatorial interpretation for string diagrams as cospans of hypergraphs, and this result

in exploited in Section 4 to prove the completeness of such interpretation and the precise corre-

spondence between string diagram rewriting and DPO rewriting on hypergraphs with interfaces.

Section 5 offers a first proof-of-concept for our approach, showing that the equational reasoning

on the algebra of groups can be modelled via string diagrams and then by DPO rewriting with a

terminating reduction strategy. The main formalisation in this paper captures rewriting modulo

a single Frobenius algebra per sort, but we show in Section 6 that this can be easily extended to

multiple Frobenius algebras per sort. This latter result is then put to use in Section 7 by tackling a

more comprehensive example, which is represented by interacting bialgebras, one of the most-often

studied structures in graphical quantum theory. As for the group algebra, our graphical interpre-

tation of such diagrams allows for recasting the associated equational reasoning in term of DPO

rewriting with a terminating reduction strategy. A concluding section finally wraps up the paper.

Related work. There is a long tradition of works, both in mathematics and computer science,

exploring the link between syntactic and combinatorial representations of formal systems. In our

work, we make the following two contributions:

(i) a correspondence between symmetric monoidal categories with Frobenius structure, and

cospans of hypergraphs.

(ii) a correspondence between rewriting of string diagrams modulo Frobenius, and double

pushout rewriting of hypergraphs with interfaces.

Regarding (i), the research on the precise correspondence between visual languages for monoidal

categories and combinatorial structures witnessed a renewed interest in the 1990s [JS91, JSV96],

and we refer to [Sel11] for an extensive survey. The case of monoidal categories with Frobenius

structures is particularly important: their role in visually modelling circuit-like systems, and possibly

their manipulation, has been recognised early on [CW87, GH98], and more recently it has appeared

in categorical models of quantum processes [CK17], signal flow graphs [BSZ17a, BE15], electrical

circuits [BPSZ19, BCR17], Petri nets [BHPS17] and more.

Also the formal link between Frobenius monoids and cospans (both of sets and of graphs) have

been observed, with some variations, in several works [BG01, Lac04, RSW05, ASW09], and most

recently in [FS19]. Besides its fully worked out connection with PROPs, what is definitely new

of our formulation is the presentation of the multi-sorted version, and especially its lifting to the

“multi-Frobenius” case (Section 6).



6 Bonchi, Gadducci, Kissinger, Sobocinski and Zanasi

Regarding (ii) above, the study of string diagram rewriting dates back at least to Burroni’s work on

polygraphs [Bur93]. In that tradition, the drivingmotivation is to generalise term rewriting to higher

dimensions, including the three-dimensional case of string diagram rewriting: see e.g. [Mim14]

for a survey. The approach does not rely on graph rewriting, and goes instead via a completely

“syntactic” route: the laws of SMCs are considered as explicit rewriting rules, resulting in rather

elaborate rewriting systems, whose analysis is often challenging (see e.g. [Laf03]). Our approach is

instead to “absorb” the structural equations of string diagrams into the graph interpretation, and

study as rewriting rules only the “domain-specific” equations of the theory under consideration.

A first attempt at modelling string diagram rewriting as graph rewriting was proposed in [DDK10,

DK13], and was subsequently used in the Quantomatic proof assistant [KZ15]. That formalism dif-

fers from ours in that it does not capture rewriting modulo Frobenius structure, and instead assumes

the presence of a categorical trace. Moreover, we directly work in an adhesive category [LS05],

while the category of “open graphs” used in [DK13] is not adhesive, but instead inherits its good

rewriting properties from an embedding into a larger adhesive category. An important aspect of

our rewriting is the requirement that DPO rewriting respects a fixed mapping into a graph that

serves as an interface to a larger, possibly unknown context. As we will see in Section 3.4, the

presence of an interface has implications on which rewrites are applicable: only those that respect

the interface will be liftable to a larger context. This has been studied in the DPO literature, most

notably within the rewriting with borrowed contexts approach [EK04], and it will play an important

role in our study of confluence in a sequel to this paper [BGK
+
20]. The construction in [DK13]

also considers rewriting relative to an interface, but here we consider much more general kinds of

interfaces, as afforded by rewriting modulo Frobenius structure. This is explored in Section 4.5.

2 SYNTACTIC FOUNDATIONS OF STRING DIAGRAM REWRITING
We will develop two interlinked perspectives on string diagrams and the (co)algebraic structures

they express: a syntactic perspective based on symmetric monoidal theories and PROPs and a

combinatorial perspective based on hypergraphs. We will assume the reader is familiar with the

basics of category theory in general, and symmetric monoidal categories (of which cartesian

monoidal categories are a special case) in particular. The standard reference is [ML98].

To begin, one can ask simply: why is string diagram rewriting interesting? One could give many

different answers to this question, but perhaps the one that fits most naturally into a story about

rewriting is the following

String diagram rewriting is the natural extension of term rewriting for operations with
many outputs.

Term rewriting allows us to recast (universal) algebra as computation. That is, it translates an
algebraic structure – like a monoid, a ring, or some more exotic formalism – into a system for

performing ‘computations’ in a very general sense.

An algebraic theory consists of a signature, i.e. a collection of symbols with arities, as well as a

collection of equations between terms built from those symbols and some free variables. Arities are

natural numbers that tell us how many inputs a symbol should take, where an arity of 0 indicates

something has no inputs, i.e. it is a constant. A simple example is the theory of monoids, consisting of

the signature ΣMon = {· : 2, 𝜖 : 0} and the equations 𝐸Mon = {(𝑥 ·𝑦) ·𝑧 = 𝑥 · (𝑦 ·𝑧), 𝑥 ·𝜖 = 𝑥, 𝜖 ·𝑥 = 𝑥}.
By making a tiny tweak to an algebraic theory, one obtains a term rewriting system. The equations

of an algebraic theory are effectively unordered pairs of terms that share some variables. A term

rewriting system consists of a signature and a collection of ordered pairs of terms called rewriting
rules. A possible rewriting system for monoids is the following: 𝑅Mon = {(𝑥 ·𝑦) ·𝑧 ⇒ 𝑥 · (𝑦 ·𝑧), 𝑥 ·𝜖 ⇒
𝑥, 𝜖 · 𝑥 ⇒ 𝑥}.
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Unlike the equational theory, the rewriting system has some computational content. Namely,

if we apply the rules in a rewriting system from left-to-right in an arbitrary order until no rule

applies any more, we obtain (non-deterministic, possibly non-terminating) computations on terms.

In the case of 𝑅Mon, a particularly nice rewriting theory, the computation in fact always terminates

with a unique answer: the term obtained from removing any extra units and bracketing to the right.

For example:

((𝑎 · 𝑏) · (𝑐 · 𝜖)) · 𝑑 ⇒ ((𝑎 · 𝑏) · 𝑐) · 𝑑 ⇒ (𝑎 · 𝑏) · (𝑐 · 𝑑) ⇒ 𝑎 · (𝑏 · (𝑐 · 𝑑))

One could also refine this notion of computation, e.g. by considering different rewriting strategies

and/or termination criteria. Classical term rewriting, as a discipline, studies the properties of such

theories and their associated computations. Namely, it gives techniques for proving a rewriting

system is well-behaved in various ways, like being terminating or admitting unique normal forms.

It also provides techniques such as Knuth-Bendix completion [KB70] that turn ill-behaved rewriting

systems into well-behaved ones. Such techniques have proved to have far-reaching applications in

programming languages, computer algebra, and automated theorem proving, see e.g. [DJ90, Vis01]

for a survey.

However, algebraic theories, and hence term rewriting systems, can only handle signatures

where every operation produces exactly one output. This is so fundamental to the concept of what

a ‘formula’ or a ‘term’ is, that this limitation may even go unnoticed. Returning to the monoid

example, we could write the arities (i.e. numbers of inputs) as well as the co-arities (i.e. number

of outputs) explicitly as: ΣMon = {𝜇 : 2→ 1, 𝜖 : 0→ 1}. Note that we have switched from ‘·’ to 𝜇,
which we will shortly find more convenient.

Suppose we wanted to consider an operation with the signature 𝛿 : 1→ 2, i.e. something which

takes 1 input, but produces 2 outputs. If this symbol is meant to represent a function of some kind,

this is not a problem. Instead of using just one operation, we can simply give two: 𝛿1 : 1→ 1, which

gives the first output of 𝛿 , and 𝛿2 : 1→ 1, which gives the second output. However, this translation

makes use of a fundamental property of functions (or more generally, of morphisms in a cartesian

category) that the two maps ⟨𝛿1, 𝛿2⟩ contain exactly the same data as the overall map 𝛿 . If we wish

to generalise from functions to other kinds of maps (e.g. non-deterministic operations, probabilistic

or quantum processes, etc.), this may not be true any more. For example, if we interpret symbols

probabilistically, a constant of the form 𝑝 : 0→ 1 could represent a fixed probability distribution

for a single value, whereas 𝑞 : 0 → 𝑛 could represent a joint distribution over 𝑛 values. In this

case, we would clearly lose some information if we attempt to factorise 𝑞 as 𝑞1, 𝑞2, . . . , 𝑞𝑛 . Indeed,

probabilistic maps are most naturally expressed in a (non-cartesian) symmetric monoidal category.

Even in cartesian categories, there may be good computational reasons for wanting to consider

operations with multiple outputs. For example, suppose 𝑓 : 1 → 2 is a function that does some

really difficult computation, then returns two copies of the output. While it is surely possible to

represent the same function as a pair of functions 𝑓1 : 1→ 1 and 𝑓2 : 1→ 1, each doing the same

difficult computation, in some contexts it might be incredibly wasteful. Following this idea to its

natural conclusion leads to generalisation from terms to termgraphs [Plu99, BvEG
+
87].

We argue that the appropriate generalisation of algebraic theory that allows operations with

multiple outputs is a symmetric monoidal theory (SMT). Indeed, while the syntax of algebraic

theories is terms, we will see in the following section that the syntax of SMTs is string diagrams.

2.1 Symmetric Monoidal Theories and PROPs
Much like an algebraic theory axiomatises a structure in a cartesian category (typically the category

of sets), a symmetric monoidal theory axiomatises a structure in a more general symmetric monoidal
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category. It consists of two parts: a signature, which we will call a monoidal signature to avoid

confusion with the notion of signature in an algebraic theory, and a set of equations.

Amonoidal signature consists of a set Σ of operations 𝑓 : 𝑛 →𝑚with a fixed arity 𝑛 and coarity𝑚,

for 𝑛,𝑚 ∈ N. Symmetric monoidal theories are defined using Σ-terms. The set of Σ-terms is obtained

by combining the operations in Σ, identities id𝑛 : 𝑛 → 𝑛 and symmetries 𝜎𝑚,𝑛 : 𝑚 + 𝑛 → 𝑛 +𝑚
for each𝑚,𝑛 ∈ N, by sequential (;) and parallel (⊕) composition. This is a purely formal process:

given Σ-terms 𝑟 : 𝑚 → 𝑛, 𝑠 : 𝑛 → 𝑜 , and 𝑡 : 𝑚′ → 𝑛′, we construct new Σ-terms 𝑟 ; 𝑠 : 𝑚 → 𝑜 and

𝑟 ⊕ 𝑡 : 𝑚 +𝑚′→ 𝑛 + 𝑛′.

Definition 2.1. A symmetric monoidal theory is a pair (Σ, E) where Σ is a monoidal signature and

E is a set of equations, namely pairs ⟨𝑙, 𝑟 ⟩ of Σ-terms 𝑙, 𝑟 : 𝑣 → 𝑤 with the same arity and coarity.

Typically we depict Σ-terms (or more accurately: equivalence classes of Σ-terms) graphically as

string diagrams. The operation 𝑓 : 𝑛 →𝑚 is represented as a box with 𝑛 wires in a𝑚 wires out

𝑓..
.

..
.𝑛 𝑚

We sometimes also write 𝑓 as a box with single wires in and out, labelled by their (co)arities

𝑓𝑛 𝑚

Sequential and parallel composition are depicted as one would expect

𝑓 ; 𝑔 = 𝑓..
.

..
. 𝑔

..
. 𝑓 ⊕ ℎ =

𝑓..
.

..
.

ℎ ..
.

..
.

Identities are (sets of) blank wires

id1 = id𝑛 = ..
.

and the symmetries are represented by wire-crossings

𝜎1,1 = 𝜎𝑛,𝑚 =

..
.

..
.

..
.

..
.

𝑛

𝑚 𝑛

𝑚

However this notation is ambiguous. For example

𝑎

𝑏

𝑐

𝑑

could represent either the Σ-term (𝑎 ⊕ 𝑏) ; (𝑐 ⊕ 𝑑) or the Σ-term (𝑎 ; 𝑐) ⊕ (𝑏 ; 𝑑). Hence string
diagram notation does not represent just one Σ-term, but instead an equivalence class of Σ-terms

modulo some equations. It is noteworthy that the appropriate set of equations for this are exactly

the axioms of a symmetric monoidal category [Sel11]. Figure 1 shows these equations, adapted to

the special case of Σ-terms. This allows us to give a fully syntactic definition of string diagram.

Definition 2.2. A string diagram is an equivalence class of Σ-terms, taken modulo the equations

in Figure 1.
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(𝑠 ; 𝑡) ; 𝑢 ≡ 𝑠 ; (𝑡 ; 𝑢) id𝑛 ; 𝑠 ≡ 𝑠 ≡ 𝑠 ; id𝑚
(𝑠 ⊕ 𝑡) ⊕ 𝑢 ≡ 𝑠 ⊕ (𝑡 ⊕ 𝑢) id0 ⊕ 𝑠 ≡ 𝑠 ≡ 𝑠 ⊕ id0

(𝑠 ; 𝑢) ⊕ (𝑡 ; 𝑣) ≡ (𝑠 ⊕ 𝑡) ; (𝑢 ⊕ 𝑣)
id𝑚 ⊕ id𝑛 ≡ id𝑚+𝑛

(𝜎𝑚,𝑛 ⊕ id𝑜 ) ; (id𝑛 ⊕ 𝜎𝑚,𝑜 ) ≡ 𝜎𝑚,𝑛+𝑜
𝜎𝑚,𝑛 ; 𝜎𝑛,𝑚 ≡ id𝑚+𝑛

(𝑠 ⊕ id𝑚) ; 𝜎𝑚,𝑛 ≡ 𝜎𝑚,𝑜 ; (id𝑚 ⊕ 𝑠)

Fig. 1. Equivalences of Σ-terms that generate the same string diagram.

It is often useful to consider not just the SMT itself, but a particularly simple kind of symmetric

monoidal category that it presents, called a PROP. This somewhat cryptic name was coined by

MacLane [Mac65] as shorthand for ‘(monoidal) PROduct and Permutation category’.

Definition 2.3. A PROP is a symmetric strict monoidal category with objects the natural numbers,

where ⊕ on objects is addition. PROP-morphisms are identity-on-objects symmetric strict monoidal

functors. PROPs and their morphisms form a category PROP.

In particular, no restriction is made on how either the morphisms of a PROP or the tensor product

of morphisms are defined.

Definition 2.4. Let SΣ,E be the free (i.e. ‘syntactic’) PROP presented by the SMT (Σ, E). Namely,

arrows 𝑢 → 𝑣 are Σ-terms 𝑢 → 𝑣 modulo the laws of symmetric monoidal categories given in

Figure 1 and the smallest congruence containing the equations 𝑡 = 𝑡 ′ for any ⟨𝑡, 𝑡 ′⟩ ∈ E. When E is

empty, we will denote SΣ,∅ as SΣ.

Example 2.5. Consider the SMT (ΣCMon, ECMon), where

ΣCMon :=

{
: 2→ 1, : 0→ 1

}
and ECMon is the set consisting of the following three equations

= = = (2)

Intuitively, the leftmost and the rightmost equations state associativity and commutativity of ,

while the central equation that is the unit of . For this reason, the PROP freely generated

by (ΣCMon, ECMon) is called the PROP of commutative monoids, denoted by CMon.

Just as an algebraic structure can have many different presentations via generators and equations,

many different SMTs can generate the same PROP. For example, we could (redundantly) add a

second unit law to (2) and the PROP CMon would be unchanged. In that sense, a PROP captures

the ‘essence’ of an algebraic structure in a presentation independent way, much like monads or

Lawvere theories do for algebraic theories [HP07].

Remark 2.6. Note that we have abused notation in Example 2.5 by giving the equations of the

SMT directly as string diagrams, which are technically equivalence classes of Σ-terms, not Σ-terms

themselves. Since we form the PROP associated with commutative monoids by quotienting over

the axioms of a symmetric monoidal category, this distinction becomes irrelevant. In other words,
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choosing any Σ-term to represent the lefthand-side and righthand-sides of the equations (2) will

yield the same PROP.

It is often interesting to not only consider PROPs freely generated from an SMT, but also more

concrete PROPs, built out of more combinatorial structures. A common theme in the study of PROPs

is to initially define a PROP syntactically, then give a more convenient concrete characterisation. A

canonical example is the following.

Proposition 2.7. CMon � F, where F is the PROP whose morphisms 𝑓 : 𝑚 → 𝑛 are functions
from the finite set [𝑚] := {0, . . . ,𝑚 − 1} to [𝑛] := {0, . . . , 𝑛 − 1} and [𝑚] ⊕ [𝑛] := [𝑚] + [𝑛] is given
by the disjoint union of finite cardinals.

The formal proof of Proposition 2.7 can be found e.g. in [Lac04]. However, for our purposes, it

will suffice to give some intuition as to why F is the PROP for commutative monoids. A morphism

𝑑 :𝑚 → 𝑛 in CMon can be described as an equivalence class of string diagrams with generators

and , modulo the equations (2). Such an equivalence class is precisely identified by

specifying, for each input 𝑖 ∈ [𝑚] the associated output 𝑗 ∈ [𝑛], connected to 𝑖 by means of

multiplication, identity, and/or swap maps. For example, consider this equivalence class of string

diagrams, modulo the monoid laws

0

1

2

3

4

5

0

1

0

1

2

3

4

5

0

1

,

· · ·
,


Every diagram in this class has the property that the inputs {0, 1, 2, 3} connect to output 1 and the

inputs {4, 5} connect to output 0. Hence, we can identify the above equivalence class of diagrams

with the function 𝑓 : [6] → [2] given by

𝑓 :: { 0 ↦→ 1, 1 ↦→ 1, 2 ↦→ 1, 3 ↦→ 1, 4 ↦→ 0, 5 ↦→ 0 }
Of course, commutative monoids can also be presented as an algebraic theory and reasoned

about using the usual machinery of terms and term rewriting. A simple example of an SMT that

does not have an evident presentation as an algebraic theory is a comonoid, which simply turns all

of the generators around.

Example 2.8. The SMT (ΣCComon, ECComon) of cocommutative comonoids has a monoidal signa-

ture

ΣCComon :=

{
: 1→ 2, : 1→ 0

}
with equations ECComon given by

= = = (3)

By essentially the same argument we gave before, one can see that CComon � F𝑜𝑝 .
As algebraic structures are presented by SMTs where all of the generators have co-arity 1,

it is natural to think of coalgebraic structures as SMTs where all of the generators have arity
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1. Cocommutative comonoids, as described above, are a simple example of such a coalgebraic

structure.

2.2 Frobenius algebras and cospans
In section 2.1, we saw an SMT for an algebraic structure (commutative monoids) as well as an SMT

for a coalgebraic structure (cocommutative comonoids). The most interesting SMTs are the ones

that have both algebraic and coalgebraic parts interacting with each other. One such SMT, and its

associated PROP, will play a central role throughout this paper.

Example 2.9. Consider the SMT (ΣFrob, EFrob), where

ΣFrob :=
{

, , ,

}
and EFrob contains the equations in (2)-(3) and the following ones

= = (4)

The PROP freely generated by (ΣFrob, EFrob) is called the PROP of special commutative Frobenius
algebras and denoted by Frob.

Note that we will often refer to special commutative Frobenius algebras simply as Frobenius

algebras. Just like we could give convenient alternative characterisations for PROPs of monoids

and comonoids, there is a concrete characterisation of the PROP of Frobenius algebras. To obtain

this characterisation, we need to generalise from functions to cospans.

Definition 2.10 (Csp(C)). Let C be a category with all finite colimits. A cospan from 𝑋 to 𝑌 is a

pair of arrows 𝑋 → 𝐴 ← 𝑌 in C. A morphism 𝛼 : (𝑋 → 𝐴 ← 𝑌 ) ⇒ (𝑋 → 𝐵 ← 𝑌 ) is an arrow

𝛼 : 𝐴→ 𝐵 in C such that the diagram below commutes

𝐴

𝛼
��𝑋

..

00

𝑌

nn

pp𝐵

Cospans 𝑋 → 𝐴 ← 𝑌 and 𝑋 → 𝐵 ← 𝑌 are isomorphic if there exists a morphism of cospans as

above, where 𝛼 : 𝐴 → 𝐵 is an isomorphism. For 𝑋 ∈ C, the identity cospan is 𝑋
id𝑋−−→ 𝑋

id𝑋←−− 𝑋 .
The composition of 𝑋 → 𝐴

𝑓
←− 𝑌 and 𝑌

𝑔
−→ 𝐵 ← 𝑍 is 𝑋 → 𝐴 +𝑓 ,𝑔 𝐵 ← 𝑍 , obtained by taking the

pushout of 𝑓 and 𝑔. This data is the category Csp(C): the objects are those of C and the arrows are

isomorphism classes of cospans. Finally, Csp(C) has a monoidal product given by the coproduct in

C, with unit the initial object 0 ∈ C.

Remark 2.11. It is natural to consider the bicategory of cospans [B6́7], where cospans form the

1-cells and cospan morphisms form the 2-cells. In this case, composition is only associative up to

isomorphism. However, taking isomorphism classes makes composition associative on-the-nose,

which allows us to define Csp(C) simply as a category.

Note that, when C = F, Csp(C) is a PROP, and furthermore the following holds.

Proposition 2.12 ([BG01, Lac04]). There is an isomorphism of PROPs Frob � Csp(F).

Again we refer to [Lac04] for a formal proof and give some intuition of why this is the case. As

with monoids, the relevant data of an equivalence class of morphisms in Frob is the connectivity
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of inputs and outputs. However, since we have both algebraic and coalgebraic generators, it is

possible for many inputs to be connected to many outputs

0

1

2

3

4

5

0

1

2

3

4

(5)

To represent a morphism in Frob as a cospan, the inputs become the set on the left, the outputs

the set on the right, and the connected components of generators in the diagram form the middle

set. The two functions in the cospan then respectively map each input or output to its associated

connected component

0

1

2

3

4

5

0

1

2

3

4

0

1

2

↦→

0

1

2

3

4

5

0

1

2

3

4

0

1

2

[6] [5][3]
𝑖 𝑗

For any cospan, we can construct a diagram using the generators , , , and

whose components induce that cospan. Conversely, any two ΣFrob terms inducing the same cospan

are equivalent by the Frobenius equations— see e.g. Example 2.13 below.

For ΣFrob terms 𝑠, 𝑡 , the connected components of 𝑠 ⊕ 𝑡 are the disjoint union of the components

of 𝑠 and 𝑡 respectively, which matches the tensor product in Csp(F). The composition 𝑠 ; 𝑡 acts

on connected components by first taking the disjoint union, then amalgamating together those

components that become connected, which is exactly what happens when taking the pushout. This

is easiest to see by means of an example.

Example 2.13. Consider the following composition of Frob-morphisms, where we label the

connected components on the LHS and RHS

0

1

2

3

4

5

0

1

2

3

4

0

1

2

;

0

1

2

3

4

4

0

1

2

3

3

5

6

=

0

1

2

3

4

5

x

y

0

1

2

3
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The composition of the associated cospans in Csp(F) is computed as follows

0

1

2

3

4

5

0

1

2

3

4

0

1

2

[6] [5][3]
𝑖 𝑗

;

0

1

2

3

0

1

2

3

4

3

4

5

[5] [4][4]

6

𝑘 𝑙

=

0

1

2

3

4

5

0

1

2

3

x

y

[6] [4][2]𝑖 ′ 𝑙 ′

That is, the pushout on the RHS is computed as the disjoint union {0, 1, 2} + {3, 4, 5, 6} modulo the

equivalence relation generated by { 𝑗 (𝑎) ∼ 𝑘 (𝑎) | 𝑎 ∈ [5]} = {0 ∼ 3, 0 ∼ 4, 2 ∼ 4, 2 ∼ 5, 2 ∼ 6}. The
∼-equivalence classes are given by x = {0, 2, 3, 4, 5, 6} and y = {1} and the new cospan maps 𝑖 ′, 𝑙 ′

on the RHS are induced by composing 𝑖 and 𝑗 with the pushout injections.

2.3 Models of SMTs and PROPs
For algebraic theories, one often wishes to study not the theory in isolation, but its concrete

realisation in a category. A model of an SMT is similar in spirit to a model of an algebraic theory.

Definition 2.14. A model of an SMT (Σ, E) in a symmetric monoidal category (C, ⊗, 𝐼 ) consists of
an object 𝐴 ∈ C and a morphism

ˆ𝑓 : 𝐴⊗𝑛 → 𝐴⊗𝑚 for each 𝑓 : 𝑛 →𝑚 ∈ Σ such that the equations

in E, interpreted as equations between compositions of C-morphisms, are all satisfied.

Note that 𝐴⊗𝑛 is shorthand for the 𝑛-fold monoidal product of 𝐴 with itself, where 𝐴⊗0 := 𝐼 .

When we refer to a structure defined by an SMT in a monoidal category, we really mean a model of

that SMT in that category.

A nice feature of PROPs is they allow us to give a presentation-independent notion of model.

Definition 2.15. A model of a PROP A in a symmetric monoidal category (C, ⊗, 𝐼 ) is a strong
symmetric monoidal functor 𝐹 : A→ C.

For a PROP SΣ,E presented by an SMT (Σ, E), these two notions of model coincide. Namely, the

chosen ‘carrier’ object 𝐴 from Definition 2.14 is 𝐹 (1) and since each generator of Σ can be regarded

as a morphism in the associated PROP, we can let
ˆ𝑓 := 𝐹 (𝑓 ). The fact that 𝐹 is a strong symmetric

monoidal functor forces all of the equations E to hold in C, since they hold, by definition, in SΣ,E .
Since our primary interest will be in theories, rather than their models, we will not go into

further details here, and conclude our discussion with some examples.

Examples 2.16. For the following symmetric monoidal categories

• (Set,×, 1) the category of sets with cartesian product,

• (Ab, ⊗,N) the category of abelian groups with the tensor product, and

• (Vect𝑘 , ⊗, 𝑘) the category of vector spaces over a field 𝑘 with the tensor product

the models of CMon are commutative monoids, commutative rings, and associative, commutative

𝑘-algebras, respectively. The models of CComon in Set are just sets, since the only comonoids in a

cartesian category come from the diagonal map Δ : 𝐴→ 𝐴 ×𝐴 on an object 𝐴.

The only model of Frob in Set (or any cartesian category) is the trivial one on the 1-element set

1. The models of Frob in Vect𝑘 are in 1-to-1 correspondence with bases [CPV13].
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2.4 Syntactic rewriting for PROPs
Equational reasoning on algebraic theories can bemechanised bymeans of term rewriting. Rewriting

plays the same role for SMTs, but here terms are more sophisticated structures than trees.

Definition 2.17. A rewriting system R in a PROP A consists of a set of rewriting rules, i.e. pairs
⟨𝑙, 𝑟 ⟩ of morphisms 𝑙, 𝑟 : 𝑖 → 𝑗 in A with the same arities and coarities. Given 𝑎, 𝑏 : 𝑚 → 𝑛 in A, 𝑎
rewrites into 𝑏 via R, written 𝑎 ⇒R 𝑏, if they are decomposable as follows, for some rule ⟨𝑙, 𝑟 ⟩ ∈ R

𝑎 = 𝑎1 𝑎2

𝑙
𝑖 𝑗

𝑛𝑚

𝑘

𝑚 𝑛
𝑏 = 𝑎1 𝑎2

𝑟𝑖 𝑗

𝑛𝑚

𝑘

𝑚 𝑛

(6)

In this case, we say that 𝑎 contains a redex for ⟨𝑙, 𝑟 ⟩.

When the PROP under consideration A is SΣ for some signature Σ, the notion of rewriting step

can be reformulated as follows: in order to apply a rewriting rule ⟨𝑙, 𝑟 ⟩ for 𝑙, 𝑟 : 𝑖 → 𝑗 to a diagram

𝑑 in SΣ we need to find a redex of 𝑙 in 𝑑 . This means finding a context 𝐶 : A term in SΣ+{★ : 𝑖→𝑗 } with
exactly one occurrence of ★, such that 𝑑 = 𝐶 [𝑙/★]. The rewrite then takes 𝑑 ⇒R 𝐶 [𝑟/★].

With these definitions, diagrammatic reasoning can now be seen as a special case of rewriting.

Given an arbitrary SMT (Σ, E) we can obtain a rewriting system RE as

RE = { ⟨𝑡, 𝑡 ′⟩ | (𝑡, 𝑡 ′) ∈ E} ∪ { ⟨𝑡 ′, 𝑡⟩ | (𝑡, 𝑡 ′) ∈ E }.

Proposition 2.18. Let 𝑐, 𝑑 be two diagrams in SΣ. Then 𝑐 = 𝑑 in the PROP freely generated by
(Σ, E) iff 𝑐 ⇒∗RE 𝑑 .

In order to find a redex in the string diagram 𝑎 as in (6) one needs to transform 𝑎 according to

the laws of SMCs (Figure 1). Thus rewriting in a PROP always happens modulo these laws.

2.5 Frobenius theories and FROPs
In this section, we will specialise the notions of symmetric monoidal theory and PROP to the

situation where there is a fixed, ‘default’ Frobenius algebra. There are two reasons we might want

to do this. The first, as explained in the introduction, is to allow structures that naturally admit

“many-to-many” wiring between boxes. For example, wires might capture names or variables that

can be shared across many processes, or data that can be copied and deleted.

The second, formal reason that it is useful to consider theories with a fixed Frobenius algebra is

that, as we’ll see in the following two sections, such structures correspond exactly to hypergraphs.

This enables us to get a direct combinatoric handle on symmetric monoidal theories and PROPs,

and conversely, to capture the structure of hypergraphs in a purely syntactic way.

We will call the ‘Frobeniated’ versions of SMTs and PROPs Frobenius theories and FROPs, respec-
tively.

Definition 2.19. A Frobenius theory is a pair (Σ, E) of a symmetric monoidal signature Σ and a

set E of well-typed equations over Σ′-terms, where Σ′ := Σ + ΣFrob.

Definition 2.20. A FROP is a PROP A equipped with a fixed special commutative Frobenius

algebra ( , , , ) on the object 1 ∈ ob(A).
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Note that we only assume that the object 1 carries a Frobenius algebra. However, this extends in

the obvious way to a Frobenius algebra on every object 𝑛 ∈ ob(A)

𝑛
:=

𝑛

𝑛

..
.

..
.

..
.

1

1

1

1

1

1

..
.

1

1

𝑛
:= ..

.

..
.

..
.

1

1

𝑛
:=

1

1

1

1

𝑛

𝑛

..
.

1

1

𝑛
:=

(7)

Just as SMTs present PROPs, Frobenius theories present FROPs. The FROP HΣ,E presented by a

Frobenius theory (Σ, E) has morphisms Σ′-terms over Σ′ := Σ + ΣFrob, modulo the SMC equations

in Figure 1 as well as the equations E ′ := E + EFrob. The chosen Frobenius algebra on the object

1 ∈ N of the presented FROP is then the one arising from the generators in ΣFrob.

Remark 2.21. While it should be clear why we used the notation SΣ,E to represent the ‘syntactic’

PROP, defined by an SMT, it is not yet obvious why we chose the notation HΣ,E for the analogous

concept involving Frobenius theories and FROPs. This is meant to indicate that we have formed

the free hypergraph category over (Σ, E), where a hypergraph category is a symmetric monoidal

category where each object is equipped with a fixed choice of Frobenius algebra (see e.g. [Kis14]).

Syntactic rewriting in a FROP is defined just as it was for PROPs in Definition 2.17, except when

defining a rule 𝑙 ⇝ 𝑟 , the equations

𝑎 = 𝑎1 𝑎2

𝑙
𝑖 𝑗

𝑛𝑚

𝑘

𝑚 𝑛
𝑏 = 𝑎1 𝑎2

𝑟𝑖 𝑗

𝑛𝑚

𝑘

𝑚 𝑛

are taken modulo the Frobenius equations in addition to the SMC equations.

2.6 Coloured PROPs and FROPs
We will conclude our discussion on syntactic foundations by introducing multi-sorted versions of

the constructions we have introduced before. Aside from being of interest as a generalisation of

multi-sorted algebraic structures, these concepts will come in handy in Section 6 when it comes to

formalising rewriting modulo multiple, interacting Frobenius algebras.

For a set 𝐶 , let 𝐶★
denote the set of words over 𝐶 . Then 𝐶★

carries the structure of a monoid,

where the unit is the empty word (written 𝜀) and binary operation is word concatenation (written

𝑣𝑤 for all words 𝑣,𝑤 ∈ 𝐶★
).

A multi-sorted SMT is a triple (𝐶, Σ, E) where 𝐶 is a set of sorts, or colours, Σ a set of operations

having arities and coarietes in 𝐶★
, and E is a set of equations between Σ-terms with matching

arities and co-arities.

Just as single-sorted SMTs present PROPs, multi-sorted SMTs present coloured PROPs.

Definition 2.22 (Coloured PROP). Given a finite set 𝐶 of colours, a 𝐶-coloured PROP A is a sym-

metric strict monoidal category where the set of objects is 𝐶★
and the monoidal product on objects

is word concatenation. A morphism from a 𝐶-coloured PROP A to a 𝐶 ′-coloured PROP A′ is a
symmetric strict monoidal functor 𝐻 : A → A′ acting on objects as a monoid homomorphism

induced by a function 𝐶 → 𝐶 ′. Coloured PROPs and their morphisms form a category CPROP.
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It is worth to note that fixing a colour and restricting to { }-coloured PROPs and morphisms

between them yields PROP as a full sub-category of CPROP.
Both categories CPROP and PROP have coproducts, which will be useful for the constructions to

follow. It is instructive to see how the coproduct in PROP differs from the one in CPROP. In PROP,
coproducts consist of formal compositions of morphisms from the two consistituent components,

on a single sort. For example, the coproduct of Frob with itself will consist of diagrams made from

two copies of the Frobenius algebra generators, which we will typically depict in two different

colours

,

modulo two copies of the Frobenius equations, one for each colour. On the other hand, the coproduct

in CPROP will yield morphisms on two different sorts

,

again modulo two copies of the Frobenius equations. In particular, the generators of the Frobenius

algebra cannot be composed with the generators of the Frobenius algebra. To emphasise this

difference, we write the coproduct in CPROP as Frob + Frob . More generally for a set of colours

𝐶 , we will write Frob𝐶 for

∑
𝑐∈𝐶 Frob.

The category Frob𝐶 will play an important role in the coming sections. Much like for Frob, we
can make a combinatoric version of Frob𝐶 using cospans. However, rather than cospans of sets, we

should use cospans of sets whose elements are labelled by colours in 𝐶 . Formally, we can express

𝐶-coloured sets as objects of the slice category F ↓ 𝐶 , whose objects are pairs of a finite cardinal
[𝑛] and a labelling function 𝑤 : [𝑛] → 𝐶 assigning a colour to each element in [𝑛] and whose

morphisms are functions respecting the labelling.

Proposition 2.23. F ↓ 𝐶 is a coloured PROP.

Proof. The pair ( [𝑛],𝑤 : [𝑛] → 𝐶) can equivalently be given as a word in 𝐶★
of length 𝑛

whose 𝑖-th letter is𝑤 (𝑖). As a slice category, F ↓ 𝐶 inherits coproducts from F that make it a strict

symmetric monoidal category. It is straightforward to check the inherited coproduct acts on objects

by concatenation of words. □

Theorem 2.24. For a finite cardinal 𝐶 ∈ F, Frob𝐶 � Csp(F ↓ 𝐶) is an isomorphism of coloured
PROPs.

Proof. Using a simple inductive argument, Lack showed in [Lac04] that Frob � Csp(F). This
generalises easily to the multi-sorted case since

Frob𝐶 =
∑︁
𝑐∈𝐶

Frob �
∑︁
𝑐∈𝐶

Csp(F) �
∑︁
𝑐∈𝐶

Csp(F ↓ 1) �★ Csp(F ↓
∑︁
𝑐∈𝐶

1) � Csp(F ↓ 𝐶)

The first equality is just the definition of Frob𝐶 , the first isomorphism follows from Lack’s result, the

next isomorphism follows from the fact that F � F ↓ 1, and the last isomorphism is again obvious.

Thus we need to justify only the isomorphism marked ★. The reason for this is, essentially, the fact

that coproducts and pushouts commute, and indeed as categories
∑

𝑐∈𝐶 Csp(Set𝑓 ↓ 1) �† Csp(Set𝑓 ↓∑
𝑐∈𝐶 1), where Set𝑓 is the category of finite sets and functions. As coloured PROPs, one additionally

needs to keep in mind the objects are not mere sets but words. This boils down to the argument

given in the proof of Proposition 2.23, but let us elaborate. The categories

∑
𝑐∈𝐶 Csp(Set𝑓 ↓ 1) and

Csp(Set𝑓 ↓
∑

𝑐∈𝐶 1) can both be considered to have the objects of Set𝑓 ↓ 𝐶 , i.e. functions 𝑋 → 𝐶

where𝑋 is a finite set. Choosing an ordering of the elements of𝑋 , as in the proof of Proposition 2.23,

is a uniform way of passing from categories to coloured PROPSs in all three cases, meaning that

the † isomorphism of categories above implies the ★ isomorphism of coloured PROPs. □
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Morphisms and composition look much like they did in the example at the end of Section 2.2,

but with sets replaced by coloured sets. Taking 𝐶 = [2] � { , }, an example of composition in

Csp(F ↓ 𝐶) is the following

; =

Even though coproducts in CPROP yield disjoint colours, the colours in two 𝐶-coloured PROPs

can be identified by using a pushout, as we see in the following example.

Example 2.25. The free𝐶-coloured PROP on the theory (𝐶,∅) with an empty signature is written

P𝐶 and has arrows𝑤 → 𝑣 the permutations of𝑤 into 𝑣 (thus arrows exist only when the word 𝑣

is an anagram of the word 𝑤 ). Given 𝐶-coloured PROPs A and A′, we use notation A +𝐶 A′ for
the pushout in CPROP of the span of the inclusions A ←− P𝐶 −→ A′: in a nutshell, A +𝐶 A′ is the
coproduct A + A′ where we have identified the copy from A and from A′ of each 𝑐 ∈ 𝐶 . Thus
A +𝐶 A is also a 𝐶-coloured PROP.

Remark 2.26. For reasons that will become clear later, it will often be more valuable if, rather

than identifying the two colours, we formally introduce an isomorphism between them. That is,

we introduce two new colour change generators { , } and impose the equations

= =

In this case, we will obtain a coloured PROP that is equivalent (but not isomorphic) to the one we

described in Example 2.25.

The notions of Frobenius theory and FROP extend in the obvious way to 𝐶-coloured Frobenius

theories (𝐶, Σ, E) and FROPsH𝐶,Σ,E . Namely, each colour 𝑐 ∈ C is equipped with a distinct Frobenius

algebra. Then, similar to equations (7), these induce a Frobenius algebra on any word𝑤 ∈ 𝐶★
.

Example 2.27. Fix a set𝐶 = { , } of colours and a signature Γ consisting of the two colour-change
operations, { , }. We may construct the free coloured FROP H𝐶,Γ,∅. Here is an example of a

string diagram in this category

(8)

We claim that H𝐶,Γ,∅ is the same as the category of finite directed bipartite graphs (with interfaces).

This will become clear in Example 4.6, after the characterisation provided by Corollary 4.2.

With the addition of colours, we now have all of the tools we need to understand string diagram

rewriting from the purely syntactic point of view, where we are rewriting Σ-terms modulo a set of

structural equations.
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3 COMBINATORIAL FOUNDATIONS OF STRING DIAGRAM REWRITING
While one can get quite some mileage out of treating string diagrams purely syntactically, we

argued in Section 1 that this point of view is often unwieldy. This comes from the fact that we are

never doing rewriting on Σ-terms themselves, but rather Σ-terms modulo the SMC (and Frobenius)

equations. This phenomenon is not unique to string diagrams: complications inevitably arise

whenever one considers rewriting modulo a set of equations [Hue80, PS81, BD89].

One way to avoid the complexity of rewriting modulo equations is to choose a better repre-

sentation for string diagrams that ‘absorbs’ the SMC and Frobenius equations directly into the

representation. This is analogous to the way, in term rewriting systems, it can be fruitful to consider

multisets of expressions directly, rather than terms modulo associativity and commutativity. In this

section, we will see that

Hypergraphs give a canonical, combinatorial representation for string diagrams.
A hypergraph is a generalisation of a graph, which comes in a few different variations. In all

of these variations, edges, which connect precisely two nodes, are replaced by hyperedges, which
connect arbitrary numbers of nodes together. The particular variation we will focus on have

hyperedges that are both directed and ordered. That is, each hyperedge has an ordered list of source

nodes and an ordered list of target nodes. We will depict these hyperedges using a symbol that

looks rather like a box in a string diagram, with source nodes connecting to the left and target

nodes connecting to the right

source vertices target vertices

hyperedge

..
.

..
.

This is by no means a coincidence: these will indeed play the role of the boxes that represent

morphisms in string diagrams.

Once we represent string diagrams using hypergraphs, we will show that rewriting of string

diagrams can be accomplished using double pushout (DPO) rewriting. This is a standard technique

for performing rewrites on graphs and graph-like structures, where the lefthand-side of a rule

is first ‘cut out’ of the target graph using an operation called the pushout complement, then the

righthand-side is ‘glued in’ using a pushout. The whole process results in a diagram of two pushout

squares side-by-side (cf. equation (13)), hence the name double pushout.
The only extra complexity we need to handle when applying the DPO approach to string diagrams

is to account for the inputs and outputs of a string diagram, i.e. the wires left dangling to the left

and the right. These form an interface to a possibly larger diagram (e.g. one consisting of multiple

string diagrams plugged together), and this interface should be respected by rewriting. To account

for this, we introduce double-pushout rewriting with interfaces (DPOI) in Section 3.4. This will give

us the right tool for establishing a formal correspondence between the syntactic notion of string

diagram rewriting in the previous section and the combinatorial one developed in this section.

3.1 The category of labelled hypergraphs
DPO rewriting makes sense in any category with pushouts, but it is often considered in a category

where those pushouts obey certain well-behavedness conditions, such as adhesive categories [LS05].

For our purposes, we will skip an abstract overview of DPO rewriting in an arbitrary adhesive

category and focus on the specific category Hyp of directed hypergraphs.

An object 𝐺 of Hyp is a hypergraph, which consists of a set of nodes 𝐺★ and for each 𝑘, 𝑙 ∈ N
a (possibly empty) set of hyperedges 𝐺𝑘,𝑙 with 𝑘 (ordered) sources and 𝑙 (ordered) targets. That is,

for each 0 ≤ 𝑖 < 𝑘 we have the 𝑖th source map 𝑠𝑖 : 𝐺𝑘,𝑙 → 𝐺★, and for each 0 ≤ 𝑗 < 𝑙 , the 𝑗 th target
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map 𝑡 𝑗 : 𝐺𝑘,𝑙 → 𝐺★. The arrows of Hyp are hypergraph homomorphisms: functions𝐺★→ 𝐻★ such

that, for each 𝑘, 𝑙 , 𝐺𝑘,𝑙 → 𝐻𝑘,𝑙 , they respect the source and target maps in the obvious way. The

following definition characterises Hyp as a presheaf topos, and as such, it is adhesive [LS05].

Definition 3.1 (Hypergraphs). The category of finite directed hypergraphs Hyp is the functor

category FI where I has as objects pairs of natural numbers (𝑘, 𝑙) ∈ N × N together with one extra

object ★. For each 𝑘, 𝑙 ∈ N, there are 𝑘 + 𝑙 arrows from (𝑘, 𝑙) to ★.
Nodes will be drawn as dots and a (𝑘, 𝑙) hyperedge ℎ will be drawn as a rounded box, whose

connections on the left represent the list [𝑠1 (ℎ), . . . , 𝑠𝑘 (ℎ)], ordered from top to bottom, and whose

connections on the right give [𝑡1 (ℎ), . . . , 𝑡𝑙 (ℎ)].
Example 3.2. Let 𝐺 be the hypergraph with nodes {𝑣1, . . . , 𝑣8}, a (3, 3)-hyperedge ℎ1, a (2, 1)-

hyperedge ℎ2, and a (1, 0)-hyperedge ℎ3, and the following source and target maps

𝑠1 (ℎ1) := 𝑣1
𝑠2 (ℎ1) := 𝑣2
𝑠3 (ℎ1) := 𝑣3

𝑡1 (ℎ1) := 𝑣5
𝑡2 (ℎ1) := 𝑣6
𝑡3 (ℎ1) := 𝑣6

,

𝑠1 (ℎ2) := 𝑣3
𝑠2 (ℎ2) := 𝑣4
𝑡1 (ℎ2) := 𝑣8

, 𝑠1 (ℎ3) := 𝑣6

Then 𝐺 is drawn as follows

ℎ1

ℎ2

ℎ3

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6 𝑣7

𝑣8

(9)

There are often many ways one can generalise concepts from graphs to hypergraphs. In order to

fix conventions, we will define some basic concepts for hypergraphs that will be useful for later.

Definition 3.3. For a hyperedge ℎ, node 𝑣 and 𝛼 ∈ {𝑠, 𝑡}, a connection for 𝑣 is a triple (𝛼,ℎ, 𝑖) such
that 𝛼𝑖 (ℎ) = 𝑣 . The degree deg(𝑣) of a node 𝑣 is the number of distinct connections in 𝐺 .

Connections are sometimes called tentacles in the hypergraph literature. For us, their main utility

is obtaining the correct notion of degree of a node when it is connected multiple times to the

same hyperedge. For example, 𝑣6 in (9) has degree 3, even though it is only connected to 2 distinct

hyperedges.

Definition 3.4. A path in a hypergraph is an alternating list 𝑝 = [𝑝1, . . . , 𝑝𝑛] of hyperedges and
nodes such that for all hyperedges 𝑝𝑖 , the nodes 𝑝𝑖−1 and 𝑝𝑖+1 are a source and target for 𝑝𝑖 , when

they are defined (i.e. when 𝑖 > 1 and 𝑖 < 𝑛, respectively). A hypergraph is said to be acyclic if it has
no path containing the same node twice.

A monoidal signature Σ can be regarded as a directed hypergraph 𝐺Σ with a single node. Each

symbol in the signature is depicted as a hyperedge with a number of sources equal to the arity

and a number of targets equal to the coarity, all connected to the single node. For example, Σ =

{𝑜1 : 2→ 2, 𝑜2 : 1→ 0} yields

𝐺Σ :=

𝑜1 𝑜2

(10)

This extends naturally to multi-sorted signatures (𝐶, Σ) by letting the nodes of𝐺 (𝐶,Σ) correspond
to colours in 𝐶 and for a symbol 𝑜 : 𝑢 → 𝑣 in Σ, adding a corresponding hyperedge where the 𝑖th
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colour in 𝑢 is the 𝑖th source node and the 𝑗 th colour in 𝑣 is the 𝑗 th target node. For instance the

hypergraph for (𝐶, Σ) where 𝐶 = {𝑐1, 𝑐2} and Σ = {𝑜1 : 𝑐1𝑐2 → 𝑐2𝑐2, 𝑜2 : 𝑐2 → 𝜖} is depicted as

follows

𝑐1

𝑜1 𝑜2

𝑐2

(11)

The utility of writing a monoidal signature (𝐶, Σ) as a hypergraph is that we can now define

hypergraphs labelled by (𝐶, Σ) as the slice category Hyp𝐶,Σ := Hyp ↓ 𝐺𝐶,Σ. That is to say, an

object of Hyp𝐶,Σ consists of a hypergraph 𝐺 together with a graph homomorphism 𝑙 : 𝐺 → 𝐺𝐶,Σ.

Intuitively 𝑙 labels each node of 𝐺 with a colour in 𝐶 and each hyperedge with an operation in Σ.
Observe that this definition ensures that a Σ-operation 𝑜 : 𝑢 → 𝑣 labels a hyperedge only when

the label of its input (resp. output) nodes forms the word 𝑢 (resp. 𝑣). We call such objects (𝐶, Σ)-
hypergraphs and we visualise them as hypergraphs whose nodes 𝑛 are coloured by 𝑙 (𝑛) and whose

hyperedges ℎ are labelled by 𝑙 (ℎ).

Example 3.5. Considered the following (unlabelled) hypergraph

𝑣2

𝑣1

𝑣5

ℎ1

𝑣4

𝑣3

𝑣7

ℎ2
𝑣6

ℎ3

labelled by the signature (10) as follows

𝑙 :=


𝑣1, 𝑣5 ↦→
𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣7 ↦→
ℎ1, ℎ2 ↦→ 𝑓

ℎ3 ↦→ 𝑔

with 𝑐1 := and 𝑐2 := . This is depicted as

𝑓

𝑓

𝑔

3.2 String diagrams as cospans of hypergraphs
We have already written hypergraphs in a way that is suggestive of how, in the next section, we will

relate them to string diagrams. Namely, hyperedges play the role of the ‘boxes’ in a string diagram

and nodes play the role of ‘wires’, insofar as they allow us to connect boxes to each other. So, it

should seem plausible how one could interpret a string diagram as a hypergraph and vice-versa.

For example

𝑓

𝑓

𝑔

←→
𝑓

𝑓

𝑔

We will formalise this translation in Section 4, but before we do so, we need to answer a couple

of open questions. First, in translating from a string diagram to a hypergraph, we seem to have

lost some data. Namely, we no longer know which nodes should be treated as inputs and which as
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ouputs and in what order. We can solve this by replacing hypergraphs with cospans of hypergraphs

𝑀 → 𝐺 ← 𝑁 where 𝑀 and 𝑁 are discrete hypergraphs embedding the inputs and outputs,

respectively

𝑓

𝑓

𝑔

←→
𝑓

𝑓

𝑔

0

1

2

0

1

2

0

1

2

0

1

2

Here, the labels are used to indicate how the two graphs𝑀 and 𝑁 are embedded into 𝐺 .

For generic𝑀, 𝑁 , this does not impose an ordering on the inputs and outputs, but we always take

𝑀 and 𝑁 to be finite cardinals, i.e. sets of the form [𝑛] = {0, 1, . . . , 𝑛−1}, considered as hypergraphs.
More formally, there is a faithful, coproduct-preserving functor 𝐷 : F → HypΣ sending each

𝑖 ∈ obF = N to a hypergraph whose set of nodes is [𝑖] and sending each function to the induced

homomorphism of discrete hypergraphs. Then, we can let𝑀 := 𝐷𝑚, 𝑁 := 𝐷𝑛.

By introducing a functor that ‘picks out’ the objects, we get a more refined notion of a cospan

category than the one encountered in section 2.2.

Theorem 3.6. Let X be a PROP whose monoidal product is a coproduct, C a category with finite
colimits, and 𝐹 : X → C a coproduct-preserving functor. Then there exists a PROP Csp𝐹 (C) whose
arrows𝑚 to 𝑛 are isomorphism classes of C cospans 𝐹𝑚 → 𝐶 ← 𝐹𝑛.

Proof. Composition in Csp𝐹 (C) is given by pushout as in Definition 2.10. Given 𝐹𝑚 → 𝐶 ←
𝐹𝑚′ ∈ Csp𝐹 (C) (𝑚,𝑚′) and 𝐹𝑛 → 𝐷 ← 𝐹𝑛′ ∈ Csp𝐹 (C) (𝑛, 𝑛′) their monoidal product is the cospan

𝐹 (𝑚 + 𝑛) ∼−→ 𝐹𝑚 + 𝐹𝑛 → 𝐶 + 𝐷 ← 𝐹𝑚′ + 𝐹𝑛′ ∼←− 𝐹 (𝑚′ + 𝑛′)

where the leftmost and rightmost maps are iso since 𝐹 preserves the monoidal product (given by

the coproduct). It follows that this data defines a strict monoidal category.

The symmetries are inherited from X, being the following cospans

𝐹 (𝑚 + 𝑛)
𝐹𝜎𝑚,𝑛−−−−→ 𝐹 (𝑛 +𝑚) ← 𝐹 (𝑛 +𝑚)

To see that the symmetries are natural, it suffices to note that the symmetry structure in X is

determined by the universal property of the coproduct, which is preserved by 𝐹 . □

Our main example is Csp𝐷 (HypΣ), which we sometimes refer to as the category of discrete
cospans of hypergraphs. Composition and monoidal product in this category correspond exactly to

the intuitive notions of plugging string diagrams together and putting diagrams side-by-side.

Example 3.7. Consider the following morphisms 𝐺 : 2→ 3, 𝐻 : 3→ 1 in Csp𝐷 (HypΣ)

𝐺 :=

𝑏

𝑎
0

1

0

0

1

1

2

0

1

2
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𝐻 := 𝑐

0

01

2

0

1

2

0

We can form the composition and monoidal product as follows

𝐺 ; 𝐻 =

𝑏

𝑎
0

1

0

1

𝑐
0 0

𝐺 ⊕ 𝐻 =

𝑏

𝑎
0

1

0
0

1
1

2

0

1

2

𝑐

2

3

4

3

2

3

4

3

The composition and tensor product in Csp𝐷 (HypΣ) now give us a way to interpret string

diagrams (or more precisely, Σ-terms) as hypergraphs. For each of the generators 𝑜 :𝑚 → 𝑛 in Σ,
we can form a cospan𝑚 → 𝑂 ← 𝑛 where 𝑂 consists of a single 𝑜-labelled hyperedge with𝑚 input

nodes and 𝑛 output nodes

𝑜..
.

..
.

..
.

..
.

Thus, any Σ-term is interpreted by taking compositions and monoidal products of such cospans.

This gives us a recipe for interpreting any string diagram as a cospan of hypergraphs, but what

about interpreting a generic cospan of hypergraphs as a string diagram? In particular, note that all

of the examples above have involved hypergraphs where each node has at most one in-hyperedge

and one out-hyperedge. We made no such restriction when we defined hypergraphs, so how can we

make sense of more general hypergraphs where a single node is connected to many hyperedges?

Thankfully, we already answered this question without realising it back in Section 2.2, when we

showed thatCsp(F) is isomorphic to the PROP of Frobenius algebras. The only missing ingredient is

to find a relationship between Csp(F) and Csp𝐷 (HypΣ). It turns out that the first embeds faithfully

in the latter, a fact that arises as a special case of the following theorem.

Theorem 3.8. LetX be a PROP whose monoidal product is a coproduct and C a category such thatX
and C have finite colimits, and 𝐹 : X→ C a colimit-preserving functor. Then there is a homomorphism
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of PROPs 𝐹 : Csp(X) → Csp𝐹 (C) that sends𝑚
𝑓
−→ 𝑋

𝑔
←− 𝑛 to 𝐹𝑚

𝐹 𝑓
−−→ 𝐹𝑋

𝐹𝑔
←−− 𝐹𝑛. If 𝐹 is full and

faithful, then 𝐹 is faithful.

Proof. Since 𝐹 preserves finite colimits, 𝐹 preserves composition (since it preserves pushouts)

and monoidal product (since it preserves coproducts). Symmetries, which are inherited from X, are

clearly preserved. Finally, suppose that 𝐹 (𝑚
𝑓
−→ 𝑋

𝑔
←− 𝑛) = 𝐹 (𝑚

𝑓 ′

−→ 𝑌
𝑔′

←− 𝑛). Then we have a

commutative diagram in C
𝐹𝑋

𝜓��𝐹𝑚

𝐹 𝑓 44

𝐹 𝑓 ′
**

𝐹𝑛

𝐹𝑔jj

𝐹𝑔′
tt

𝐹𝑌

where 𝜓 is an iso. Since 𝐹 is full there exists 𝜑 : 𝑋 → 𝑌 with 𝐹𝜑 = 𝜓 . Since 𝐹 is faithful, 𝜑 is an

isomorphism. Hence, the cospans𝑚
𝑓
−→ 𝑋

𝑔
←− 𝑛 and𝑚

𝑓 ′

−→ 𝑋
𝑔′

←− 𝑛 are equal in Csp(X), so 𝐹 is

faithful. □

From this, we get the following corollary.

Corollary 3.9. There is a faithful PROP homomorphism 𝐷 : Csp(F) → Csp𝐷 (HypΣ).

That is, we get an embedding of the PROP Frob � Csp(F) into our PROP Csp𝐷 (HypΣ) of
‘combinatorial string diagrams’.

Definition 3.10. Let [·] : Frob → Csp𝐷 (HypΣ) be the homomorphism obtained by composing

the isomorphism of Proposition 2.12 with the homomorphism of Corollary 3.9.

Following the recipe from Section 2.2 relating Frobenius algebra diagrams to cospans, the four

basic generators of a Frobenius algebra map to cospans as follows

↦→
1

0

0 ↦→
1

0

0

↦→ 0 ↦→ 0

where all of the cospan maps are given by the unique function into the one-element set. These

capture in a compositional way all the ways in which a node in a hypergraph could have different

numbers of in- and out-hyperedges.

Example 3.11. Consider the following composition of string diagrams

𝑎

𝑏

; =

𝑎

𝑏

The corresponding composition in Csp𝐷 (HypΣ) looks like this

𝑎

𝑏

0

1

0

1

0

1

0

1
;

1

0

0
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This is computed by taking the pushout, which identifies the two nodes connected to the outputs

of the 𝑎 and 𝑏-labelled hyperedges. Hence, we obtain

𝑎

𝑏

↦→
𝑎

𝑏

0

1

00

0

1

By composing with the Frobenius algebra generators, we can obtain even more general cospans.

For example

𝑎

𝑏

𝑐

↦→

𝑎

𝑐

00

0

𝑏

1

0

1

Note how, like in Section 2.2, connected components of Frobenius algebra generators become single

nodes in the combinatorial picture. In the next section, we will see that any cospan in Csp𝐷 (HypΣ)
arises from a string diagram, possibly with some Frobenius algebra generators, in this way.

Remark 3.12. For coloured PROPs, we have a similar situation, except that we get a different

Frobenius algebra for each colour and we end up with hypergraphs whose nodes are labelled by

the colours associated to those Frobenius algebras.

Fix a set of colours𝐶 ∈ F. As shown in Theorem 2.24, Csp(F ↓ 𝐶) is isomorphic to the coproduct∑
𝑐∈𝐶 Frob𝑐 consisting of one copy of Frob for each of the colours 𝑐 ∈ 𝐶 . We define a coproduct

preserving, full and faithful functor 𝐷𝐶 from F ↓ 𝐶 to the category of finite hypergraphs Hyp𝐶,Σ,
which sends a coloured set to its corresponding discrete (node-labelled) hypergraph.

This extends to a faithful coloured PROP homomorphism 𝐷𝐶 in the same way as in Corollary 3.9.

Hence, following Definition 3.10, we get an interpretation [.]𝐶 :

∑
𝑐∈𝐶 Frob → Csp𝐷𝐶 (Hyp𝐶,Σ)

from coloured Frobenius algebras into cospans of hypergraphs with coloured nodes.

3.3 DPO rewriting for hypergraphs
We now introduce the basics of DPO rewriting, applied to Σ-hypergraphs. We recall the DPO

approach to rewriting applied to a category C with pushouts. A DPO rule is a span 𝐿 ←− 𝐾 −→ 𝑅

in HypΣ. 𝐿 gives the LHS of the rule, 𝑅 gives the RHS, whereas 𝐾 gives the invariant subgraph
associated with the rule. For our purposes, 𝐾 will always be a discrete hypergraph consisting of

the inputs and the outputs of the two sides of the rule.

Example 3.13. Consider the following hypergraph DPO rule

𝑓 𝑔 ℎ
0

1

2

0

1

22

0

1

𝐿 𝐾 𝑅

(12)

where the numbering is used to indicate how𝐾 embeds into 𝐿 and 𝑅, respectively. While we will not

establish a formal correspondence between string diagram equations and DPO rules until Section 4,

one can see intuitively how this corresponds to the following equation between string diagrams

𝑓 𝑔 = ℎ
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Namely, hyperedges play the role of boxes and vertices track how the boxes are connected to

each other. The embeddings of 𝐾 into 𝐿 and 𝑅 play an important role in the rule above: they

maintain the correspondence between inputs/outputs on the LHS and inputs/outputs on the RHS.

If we change these embeddings, we will change the rule. For example, if 𝐾 → 𝑅 in (12) is mapped

0 ↦→ 1, 1 ↦→ 0, 2 ↦→ 2, the rule would become

𝑓 𝑔 = ℎ

Remark 3.14. Note that if we considered 𝐿 and 𝑅 as cospans 2

𝑖−→ 𝐿
𝑜←− 1 and 2

𝑖′−→ 𝑅
𝑜′←− 1

following Section 3.2, 𝐾 � 2 + 1, the coproduct of the input and the output sets. The maps from

𝐾 to 𝐿 and 𝑅 are given by the induced copairings, [𝑖, 𝑜] : 𝐾 → 𝐿 and [𝑖 ′, 𝑜 ′] : 𝐾 → 𝑅. This will

play a role in the next section when we establish a formal correspondence between syntax and

combinatorics.

A DPO rewriting system R is a set of DPO rules. Given hypergraphs 𝐺 and 𝐻 , we say that 𝐺

rewrites into 𝐻 —notation𝐺 ⇝R 𝐻— if there exists 𝐿 ←− 𝐾 −→ 𝑅 in R, object𝐶 and morphisms such

that the squares below are pushouts

𝐿
𝑚 ��

𝐾

��
⌝ ⌜

oo // 𝑅
��

𝐺 𝐶oo // 𝐻
(13)

Typically the object 𝐶 and the arrows 𝐾 −→ 𝐶 −→ 𝐺 are computed from 𝐾 −→ 𝐿
𝑚−→ 𝐺 in such a way

that the left square above forms a pushout. In this case, the arrows 𝐾 −→ 𝐶 −→ 𝐺 are called a pushout
complement. Hence, DPO rewriting can be seen as two distinct steps: first computing the pushout

complement 𝐾 −→ 𝐶 −→ 𝐺 , then pushing out the span 𝐶 ←− 𝐾 −→ 𝑅 to produce the rewritten object

𝐻 . A derivation from 𝐺 into 𝐻 is a sequence of such rewriting steps.

Example 3.15. Consider a rewriting system with the following rule

0 1

𝑓
0

𝑔
1

𝑓
0

𝑔
1

The rule has a matching into the following hypergraph

𝑓 𝑔 𝑓 (14)

yielding the following DPO rewriting diagram

0 1

𝑓 𝑔 𝑓𝑓 𝑔 𝑓 𝑓

𝑓
0

𝑔
1

𝑓
0

𝑔
1

The above rewrite is the hypergraph equivalent of applying the rule 𝑓 ;𝑔⇒ 𝑔; 𝑓 to the term 𝑓 ;𝑔; 𝑓

to obtain 𝑔; 𝑓 ; 𝑓 .
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Pushout complements do not necessarily have to exist or be unique. For a fixed rule 𝐿 ←− 𝐾 −→ 𝑅,

a matching𝑚 : 𝐿 → 𝐺 is a morphism with the additional property that the pushout complement of

𝐾 −→ 𝐿
𝑚−→ 𝐺 exists. For the example C := Hyp𝐶,Σ, we can give the precise conditions under which

𝑚 is a matching, drawing e.g. from [CMR
+
97].

Definition 3.16. Morphisms𝐾
𝑖−→ 𝐿

𝑚−→ 𝐺 satisfy the no-dangling condition if, for every hyperedge
not in the image of𝑚, every node of its source and target is either (i) not in the image of𝑚 or (ii)

in the image of 𝑖 ; 𝑚. They satisfy the no-identification condition if any two nodes merged by𝑚 are

in the image of 𝑖 .

Proposition 3.17. A pushout complement of 𝐾
𝑖−→ 𝐿

𝑚−→ 𝐺 exists if and only if it satisfies the
no-dangling and no-identification conditions.

Uniqueness is a simpler story, as it only relies on 𝑖 to be mono.

Proposition 3.18. If 𝑖 : 𝐾 → 𝐿 is mono, the pushout complement of 𝐾
𝑖−→ 𝐿

𝑚−→ 𝐺 is unique (up
to commuting isomorphism), when it exists. That is, when 𝐶,𝐶 ′ are two pushout complements, there
exists an isomorphism 𝐶

�−→ 𝐶 ′ such that the following diagram commutes

𝐿
𝑚 ��

𝐾

��

oo

��
𝐺 𝐶oo

� $$
𝐶 ′

jj

If 𝑖 is not mono, the pushout may not be unique, see Section 4.5 below. In fact, the property holds

for any adhesive category, of which labelled directed hypergraphs are an example [LS05]. The

case where 𝐾 → 𝐿 is mono is important, because the matching𝑚 fully determines the resulting

hypergraph 𝐻 , due to the uniqueness of pushout complements. A rule 𝐿 ←− 𝐾 −→ 𝑅 is said to be

left-linear if the morphism 𝐾 → 𝐿 is mono.

On the other hand, we will occasionally study rules that are not left-linear, in which case the

pushout complement does not need to be unique. In the case of hypergraphs, all of the distinct

pushout complements can still be effectively enumerated [HJKS11], which in our setting is closely

related to enumeration of contexts when rewriting modulo the Frobenius equations. This will be

covered in detail in Section 4.5.

3.4 Double-Pushout Rewriting with Interfaces
Our first observation is that an extension of the traditional DPO rewriting, acting on hypergraphs

with interfaces, actually fits best our purposes. This is for two main reasons. First, taking interfaces

into account is essential to adequately map syntactic rewriting into DPO rewriting. Indeed, string

diagrams are interpretable as cospans of hypergraphs, and the source and target of such cospans

constitute the interface of the diagram. Second, DPO rewriting with interfaces (henceforth, DPOI) is

of independent interest in the context of confluence. It is well-known [Plu10] that local confluence

for DPO is undecidable. As shown in the sequel to this paper (after [BGK
+
17, BGK

+
21]), DPOI

enjoys the Knuth-Bendix property: joinability of critical pairs is the same as local confluence. Hence,

DPOI in this case closely matches standard term rewriting, whereas DPO is analogous to restricting

rewriting to ground terms, where confluence is undecidable.

Remark 3.19. DPOI has appeared in different guises in the graph rewriting literature, such as

rewriting with borrowed contexts [EK04], the graphical encodings of process calculi [Gad07, BGK09],
and some foundational studies connecting DPO rewriting with computads in cospans [GH98, SS05].
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Fix a category C with pushouts. We provide a definition of rewriting for morphisms 𝐺 ←− 𝐽 in C.
When C is HypΣ, we call them (hyper)graphs with interface. The intuition is that𝐺 is a hypergraph

and 𝐽 is an interface that allows 𝐺 to be “glued” to a context.

Given𝐺 ← 𝐽 and𝐻 ← 𝐽 inC,𝐺 rewrites into𝐻 with interface 𝐽 —notation (𝐺 ←− 𝐽 ) ⇝R (𝐻 ←− 𝐽 )
— if there exist rule 𝐿 ←− 𝐾 −→ 𝑅 in R and object 𝐶 with suitable morphisms in C such that the

diagram below commutes, where the marked squares are pushouts

𝐿
𝑚 ��

𝐾

��
⌝ ⌜

oo // 𝑅
��

𝐺 𝐶oo // 𝐻

𝐽

OO ::dd (15)

Hence, the interface 𝐽 is preserved by individual rewriting steps.

Remark 3.20. Similar to the case of rewriting rules (cf. Remark 3.14) if 𝐺 comes from a cospan

representing a string diagram, the interface 𝐽 is the coproduct of the inputs and the outputs.

When C has a (strict) initial object 0 (e.g. in HypΣ, 0 is the empty hypergraph), ordinary DPO

rewriting can be considered as a special case, by taking 𝐽 to be 0. Like for traditional DPO, rewriting

steps are considered up to isomorphism: 𝐺1 ← 𝐽 : 𝑓1 and𝐺2 ← 𝐽 : 𝑓2 are isomorphic if there is an

isomorphism 𝜑 : 𝐺1 → 𝐺2 with 𝑓1 ; 𝜑 = 𝑓2.

In Section 3.3 we said that a morphism is called a match if a suitable pushout complement exists.

In DPOI, the condition for being a match is strictly stronger, as this pushout complement must

furthermore respect the interface in (15).

Example 3.21. We now extend Example 3.15 to DPOI rewriting. We consider the same rewriting

rule as before

0 1

𝑓
0

𝑔
1

𝑓
0

𝑔
1

but now the target graph also has an interface

𝑓 𝑔
0 1

𝑓
0 1

(16)

Hence, rewriting produces the following DPOI diagram, where the interface of the target graph is

tracked on the bottom row

0 1

𝑓 𝑔 𝑓

0 1

0 1 0 1

𝑓 𝑔 𝑓
0 1

𝑓

𝑓
0

𝑔
1

𝑓
0

𝑔
1
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Note that, while the top two pushout squares in this diagram are identical to the ones in Example 3.15,

the presence of an interface has an effect on whether a rewriting rule applies. For example, if the

hypergraph in (16) is given the following, different interface

𝑓 𝑔
0 1

𝑓
0 1 22

(17)

the LHS now has no match, as the new interface no longer factors through the pushout complement.

While the interface in (17) would not arise from a morphism in a generic monoidal category,

it can arise when we include Frobenius algebra structure. Namely, it corresponds to one of the

following diagrams

𝑓 𝑔 ℎ 𝑓 𝑔 ℎ

Whether it corresponds to the left or right diagram above depends on whether the node ‘1’ came

from an input or an output in the associated cospan (cf. Remark 3.20).

4 EQUIVALENCE OF SYNTAX AND COMBINATORICS
4.1 Terms as cospans
In Section 2, we defined SΣ as the free PROP generated by a signature Σ. By freeness, we can

completely define the PROP homomorphism

[[·]] : SΣ → Csp𝐷 (HypΣ)

by specifying how it acts on the generators in Σ. We do this by sending each generator 𝑜 : 𝑘 → 𝑙 to

a cospan 𝑘 → 𝑂 ← 𝑙 where 𝑘, 𝑙 are discrete hypergraphs and 𝑂 is hypergraph containing a single

𝑜-labelled hyperedge connected to a single distinct node for each input and output. The cospan

maps embed the inputs and outputs in the obvious way

𝑜..
.

..
.

..
.

..
.

This mapping of generators extends by universal property to a PROP homomorphism [[·]] : SΣ →
Csp𝐷 (HypΣ) sending any Σ-term in SΣ to its associated composition of cospans.

4.2 Characterisation theorem for string diagrams
We now have all the ingredients needed to prove the equivalence of the free (i.e. syntactic) category

HΣ of string diagrams modulo Frobenius structure and its combinatoric representation Csp𝐷 (HypΣ).
We begin by noting that HΣ is isomorphic to the coproduct of PROPs SΣ +Frob, and in the following

wewill use them interchangeably, depending onwhat is most convenient. Then, we define ⟨⟨·⟩⟩ as the
copairing in PROP of the faithful functors [[·]] : SΣ → Csp𝐷 (HypΣ) and [·] : Frob→ Csp𝐷 (HypΣ).

Theorem 4.1. ⟨⟨·⟩⟩ : SΣ + Frob→ Csp𝐷 (HypΣ) is an isomorphism of PROPs.

Proof. It suffices to verify that Csp𝐷 (HypΣ) satisfies the universal property of the coproduct

SΣ + Frob in PROP.
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SΣ

𝛼
++

[[ ·]] // Csp𝐷 (HypΣ)
𝛾
��

Frob
[ ·]oo

𝛽
ssA

(18)

Given 𝛼 , 𝛽 , and a PROP A as in (18), we need to show the existence of a unique 𝛾 making the

diagram commute. Now, because all morphisms in (18) are identity-on-objects, it suffices to show

that any arrow of Csp𝐷 (HypΣ) can be decomposed in an essentially unique way into an expression

where all the basic constituents lie in the image of [[·]] or [·].
To this aim, fix a cospan 𝑛

𝑓
−→ 𝐺

𝑔
←− 𝑚 in Csp𝐷 (HypΣ,𝐶), where 𝐺 has set of nodes 𝑁 , set of

hyperedges 𝐸 and a labelling function 𝜒 : 𝐸 → Σ. We pick an order 𝑒1, . . . , 𝑒 𝑗 on the hyperedges

in 𝐸. Let �̃�
𝑖−→ 𝐸

𝑜←− �̃� be the cospan defined as

⊕
1≤𝑖≤ 𝑗 [[𝜒 (𝑒𝑖 )]]. Intuitively, 𝐸 piles up all the

hyperedges of𝐺 , but disconnected from each other. �̃� and �̃� are the concatenations of all the inputs,

respectively outputs of these hyperedges.

There are obvious functions 𝑓 : 𝑛 → 𝑁 , 𝑔 : 𝑚 → 𝑁 , 𝑗 : �̃� → 𝑁 and 𝑝 : �̃� → 𝑁 mapping nodes to

their occurrence in the set 𝑁 of all nodes of𝐺 . All this information is now gathered in the following

composition of cospans
1

(𝑛
𝑓
−→ 𝑁

(𝑖𝑑,𝑗)
←−−−− 𝑁 ⊕ �̃�) ; (𝑁 ⊕ �̃� 𝑖𝑑⊕𝑖−−−→ 𝑁 ⊕ 𝐸 𝑖𝑑⊕𝑜←−−−− 𝑁 ⊕ �̃�) ; (𝑁 ⊕ �̃�

(𝑖𝑑,𝑝)
−−−−→ 𝑁

𝑔
←−𝑚) (19)

Copairing maps (𝑖𝑑, 𝑗) and (𝑖𝑑, 𝑝) are well-defined as ⊕ is also a coproduct in HypΣ. One can

compute that the result of composing (19) (by pushout) is indeed isomorphic to 𝑛
𝑓
−→ 𝐺

𝑔
←−𝑚.

Towards a definition of 𝛾 , we need to check that every component of (19) is in the image of either

[[·]] or [·]. First, the middle cospan is clearly in the image of [[·]], as it is the monoidal product of the

identity cospan𝑤
𝑖𝑑−→ 𝑤

𝑖𝑑←− 𝑤 with �̃�
𝑖−→ 𝐸

𝑜←− �̃�, which itself is the monoidal product of cospans

each in the [[·]]-image of some generator in Σ. Second, we have that the two outmost cospans

are in the image of [·]: this is because, by Definition 3.10 and Proposition 2.12, any morphism

𝑢1 −→ 𝑢3 ←− 𝑢2 of Csp𝐷 (HypΣ), with 𝑢1, 𝑢2, 𝑢3 discrete, is in the image of [·].
Therefore,𝛾 can be defined on𝑛

𝑓
−→ 𝐺

𝑔
←−𝑚 by the values of [[·]] and [·] on its decomposition as in

(19). This is a correctly and uniquely defined assignment: in the construction of the decomposition

(19), the only variable parts are the different orderings that are picked for nodes and for hyperedges

in 𝐸, but these are immaterial since all the involved categories are symmetric monoidal. □

We now observe two interesting consequences of this theorem. Recall from Section 2.5 that HΣ

is the free FROP over the signature Σ.

Corollary 4.2. HΣ � Csp𝐷 (HypΣ)

Proof. [·] : Frob → Csp𝐷 (HypΣ) defines a FROP structure on Csp𝐷 (HypΣ) and the isomor-

phism of Theorem 4.1 extends to one of FROPs. Then the result follows by Proposition 2.12 and

Theorem 4.1. □

The next corollary states that there is no ‘information loss’ in passing from the free PROP to the

free FROP on Σ.

Corollary 4.3. [[·]] : SΣ → Csp𝐷 (HypΣ) is faithful.
1
Note in (19) 𝑁 is seen both as a discrete hypergraph — when appearing in the carrier — and as an object of Csp𝐷 (HypΣ) —
when appearing in the domain or codomain of a cospan. We did not emphasise this distinction to not overload notation.
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Proof. We use the fact that coproducts of PROPs can be computed as pushouts in the category

SymCat of small symmetric monoidal categories. In particular, SΣ + Frob in PROP arises as

P

!1

��

!2 //

⌜

Frob

[ ·]
��

SΣ [[ ·]]
// SΣ + Frob � Csp𝐷 (HypΣ)

(20)

in SymCat, where P is the category of finite sets and bijections (the initial object in the category

PROP, see Example 2.25) and the maps !1 and !2 are given by initiality of P. Intuitively, in (20)

SΣ + Frob is built as the disjoint union of the categories SΣ and Frob where one identifies the two

copies of each object 𝑛 ∈ N and the symmetric monoidal structure of the two categories, i.e. the

morphisms in the image of P.
Now, in order to prove that [[·]] is faithful, we can use a result [MS09, Th. 3.3] about amalgamation

in Cat (which transfers to SymCat). As all the functors in (20) are identity-on-objects and !1, !2

are faithful, it just requires to show that !1 and !2 satisfy the so-called 3-for-2 property: for !1, this

means that, given ℎ = 𝑓 ; 𝑔 in SΣ, if any two of 𝑓 , 𝑔, ℎ are in the image of !1, then so is the third.

This trivially holds as every arrow of P is an isomorphism. The argument for !2 is identical. □

4.3 Characterisation theorem for coloured PROPs
Of crucial importance for the results in the latter half of this paper is that all of the results

from the previous section extend in the obvious way to coloured PROPs. Notably, we can state

a version of Theorem 4.1 for 𝐶-coloured PROPs, with ⟨⟨·⟩⟩𝐶 the copairing in CPROP, modulo

the identification of the colours, of the faithful functors [[·]]𝐶 : S𝐶,Σ → Csp𝐷𝐶 (Hyp𝐶,Σ) and
[·]𝐶 : Frob𝐶 → Csp𝐷𝐶 (Hyp𝐶,Σ), the 𝐶-coloured versions of [[·]] and [·], respectively.

Proposition 4.4. ⟨⟨·⟩⟩𝐶 : S𝐶,Σ +𝐶 Frob𝐶 → Csp𝐷𝐶 (Hyp𝐶,Σ) is an isomorphism of 𝐶-coloured
PROPs.

It is also worth noting that the Frobenius structure identifies the hypergraphs with no hyperedges,

i.e. the sets of 𝐶-labelled nodes.

Corollary 4.5. There is an isomorphism of 𝐶-coloured PROPS Frob𝐶 � Csp𝐷𝐶 (Hyp𝐶,∅).

As arrows of Csp𝐷𝐶 (Hyp𝐶,Σ) are the same thing as cospans in the slice category FinSet ↓ 𝐶 , this
corollary is essentially a restatement of Theorem 2.24.

Example 4.6. Consider the free FROP H𝐶,Σ for colours 𝐶 = { , } introduced in Example 2.27. By

Corollary 4.2, H𝐶,Σ � Csp𝐷𝐶 (Hyp𝐶,Σ). In hypergraphs of Csp𝐷𝐶 (Hyp𝐶,Σ), hyperedges correspond
to switches or . Since these hyperedges are in fact edges (i.e. they have one input and

one output node), we can draw them as such. Since they connect any two nodes only when these

have a different colour, what we obtain are exactly finite directed bipartite graphs. For example,

the combinatorial presentation of the diagram (8) from Example 2.27 is

⟨⟨·⟩⟩
↦−−−→
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This shows that Theorem 4.1 not only provides a combinatorial representation for algebraic

structures, but conversely it allows us to give a purely algebraic representation for bipartite graphs.

4.4 Characterisation theorem for rewriting
DPOI rewriting deals with hypergraphs (𝐺 ←− 𝐼 ) with a single interface. These may be seen as a

particular class of morphisms in Csp𝐷 (HypΣ), namely those of the form 0 −→ 𝐺 ←− 𝐼 , where 0 is the
empty hypergraph (which also serves as the initial object of Csp𝐷 (HypΣ)). This means that DPOI

rewriting can be meaningfully defined on morphisms of Csp𝐷 (HypΣ) with source 0. However, our

semantics ⟨⟨·⟩⟩ maps diagrams of SΣ + Frob to cospans with any source. This gap can be overcome:

in order to interpret syntactic rewriting as DPOI rewriting, we need an intermediate step in which

we ‘fold’ the two interfaces𝑚,𝑛 of a string diagram 𝑎 : 𝑚 → 𝑛 into one𝑚 + 𝑛.
For cospans𝑚

𝑖−→ 𝐺
𝑜←− 𝑛, we already noted in Remark 3.20 that we can do this simply by using

the copairing [𝑖, 𝑜] :𝑚 + 𝑛 → 𝐺 . We will now show that there is an equivalent syntactic operation

to the passage from𝑚
𝑖−→ 𝐺

𝑜←− 𝑛 to 0→ 𝐺
[𝑖,𝑜 ]
←−−−𝑚 +𝑛. First, we note that we can use the Frobenius

algebra structure in HΣ to build ‘cup’ and ‘cap’ morphisms ∪ : 0→ 2 and ∩ : 2→ 0 as follows

:= := (21)

It follows from the Frobenius equations that the cup and cap maps satisfy the following equations

= = = (22)

These equations capture the fact that the object 1 is equal to its own dual. This structure extends to
cups and caps ∪𝑛 : 0→ 𝑛 + 𝑛, ∩𝑛 : 𝑛 + 𝑛 → 0 for an arbitrary object 𝑛 as follows

:=

𝑛

𝑛

..
.

..
.

:=

𝑛

𝑛

..
.

..
.

This collection of cups and caps for every object 𝑛 endows a FROP with the structure of a compact

closed category, which is furthermore coherently self-dual in the sense of [Sel10].

Remark 4.7. The fact that hypergraph categories (i.e. categories where every object is equipped

with a chosen Frobenius algebra structure) are always compact closed was noted in [CW87],

motivating the original name of well-supported compact closed categories.

We can use the ‘cup’ part of the compact structure to define an operation ⌜·⌝ that bends all of the
input wires around to become outputs. That is, for a map 𝑎 :𝑚 → 𝑛, we can form ⌜𝑎⌝ : 0→𝑚 + 𝑛
as ∪𝑚 ; (1𝑚 ⊕ 𝑎). Or, as a diagram

⌜𝑎⌝

𝑚

𝑛 :=

𝑚

𝑛
𝑎

(23)

This operation is sometimes called forming the ‘name’ of a morphism [AC04] and can be inverted

by post-composing with ∩𝑚 ⊕ 1𝑛 and applying the first equation in (22).

Proposition 4.8. Suppose ⟨⟨𝑎⟩⟩ yields a cospan𝑚 𝑖−→ 𝐴
𝑜←− 𝑛, then ⟨⟨⌜𝑎⌝⟩⟩ yields a cospan isomorphic

to 0→ 𝐴
[𝑖,𝑜 ]
←−−−𝑚 + 𝑛.
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Proof. From the definition of the cup map in terms of Frobenius structure, it follows that

⟨⟨∪⟩⟩ = ∅

and hence

⟨⟨∪𝑚⟩⟩ = ∅

..
.

..
.

..
.

The result then follows from interpreting ⌜𝑎⌝ := ∪𝑚 ; (1𝑚 ⊕ 𝑎) as a composition of cospans and

computing the result by pushout. □

Using ⌜·⌝ will enable us to pass freely between syntactic rewriting of Σ-terms with non-trivial

inputs and outputs to rewriting Σ-terms that only have outputs. We can do this both for the Σ-term
being rewritten and for the rewriting rule itself. Namely, a rewriting rule ⟨𝑙, 𝑟 ⟩ can be replaced by an

equivalent (modulo Frobenius structure) rule ⟨⌜𝑙⌝, ⌜𝑟⌝⟩. Such terms and rules having only a single

interface (the outputs) will in turn correspond directly to DPOI rewriting under the interpretation

functor ⟨⟨·⟩⟩. Putting these ingredients together, we are ready to state our main equivalence theorem

for string diagram rewriting.

Theorem 4.9. Let ⟨𝑙, 𝑟 ⟩ be any rewriting rule on SΣ + Frob. Then

𝑎 ⇒⟨𝑙,𝑟 ⟩ 𝑏 iff ⟨⟨⌜𝑎⌝⟩⟩⇝⟨⟨⟨⌜𝑙⌝,⌜𝑟 ⌝⟩⟩⟩ ⟨⟨⌜𝑏⌝⟩⟩ .

Proof. On the direction from left to right, suppose that 𝑎 ⇒⟨𝑙,𝑟 ⟩ 𝑏. Thus, by definition

𝑎
𝑚 𝑛

= 𝑎1
𝑚 𝑛𝑎2

𝑙

𝑘

𝑖 𝑗
𝑏

𝑚 𝑛
= 𝑎1

𝑚 𝑛𝑎2
𝑟

𝑘

𝑖 𝑗

(24)

Using the Frobenius structure of SΣ + Frob we can put ⌜𝑎⌝ in the following shape

⌜𝑎⌝

𝑚

𝑛 =

𝑚

𝑛
𝑎

=

𝑚

𝑎1
𝑛𝑎2

𝑙

𝑘

𝑖 𝑗

=

𝑚
𝑎∗
1

𝑛𝑎2

𝑙

𝑘

𝑖 𝑗

(25)

where

𝑚
𝑎∗
1𝑘

𝑖

:=
𝑚 𝑎1

𝑘

𝑖
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The dashed line in (25) decomposes the rightmost diagram into ⌜𝑙⌝ : 0 → 𝑖 + 𝑗 followed by a

diagram of type 𝑖 + 𝑗 →𝑚 + 𝑛, which we name 𝑎. With analogous reasoning

⌜𝑏⌝

𝑚

𝑛 =

𝑚
𝑎∗
1

𝑛𝑎2
𝑟

𝑘

𝑖 𝑗

meaning that ⌜𝑎⌝ = ⌜𝑙⌝ ; 𝑎 and ⌜𝑏⌝ = ⌜𝑟⌝ ; 𝑎.

(26)

Next, we introduce cospans giving semantics to the various diagrams

⟨⟨⌜𝑙⌝⟩⟩ = 0 −→ 𝐿 ←− 𝑖 + 𝑗 ⟨⟨𝑎⟩⟩ = 𝑖 + 𝑗 −→ 𝐶 ←−𝑚 + 𝑛 ⟨⟨⌜𝑟⌝⟩⟩ = 0 −→ 𝑅 ←− 𝑖 + 𝑗
⟨⟨⌜𝑎⌝⟩⟩ = 0 −→ 𝐺 ←−𝑚 + 𝑛 ⟨⟨⌜𝑏⌝⟩⟩ = 0 −→ 𝐻 ←−𝑚 + 𝑛. (27)

Equation (26) tells that the cospan giving semantics to ⌜𝑎⌝ (respectively, ⌜𝑏⌝) is the composite

of cospans giving semantics to ⌜𝑙⌝ (respectively, ⌜𝑟⌝) and 𝑎. As composition of cospans is by

pushout, we obtain a double-pushout diagram as in (13) with 𝐽 = 𝑖 + 𝑗 and 𝐼 =𝑚 + 𝑛, meaning that

⟨⟨⌜𝑎⌝⟩⟩⇝⟨⟨⟨⌜𝑙⌝,⌜𝑟 ⌝⟩⟩⟩ ⟨⟨⌜𝑏⌝⟩⟩.
We now conclude the proof by showing the right to left direction of the statement. Suppose

that ⟨⟨⌜𝑎⌝⟩⟩⇝⟨⟨⟨⌜𝑙⌝,⌜𝑟 ⌝⟩⟩⟩ ⟨⟨⌜𝑏⌝⟩⟩. Naming cospans ⟨⟨⌜𝑎⌝⟩⟩, ⟨⟨⌜𝑏⌝⟩⟩, ⟨⟨⌜𝑙⌝⟩⟩ and ⟨⟨⌜𝑟⌝⟩⟩ as in (27), this

implies by definition the existence of a pushout complement 𝐶 yielding a DPOI diagram as (13)

with 𝐽 = 𝑣1𝑣2 and 𝐼 = 𝑤1𝑤2. Now, pick 𝑎 : 𝑣1𝑣2 → 𝑤1𝑤2 such that ⟨⟨𝑎⟩⟩ = 𝑣1𝑣2 −→ 𝐶 ←− 𝑤1𝑤2, which

exists by fullness of ⟨⟨·⟩⟩. Because composition in Csp𝐷 (HypΣ) is by pushout, the existence of such

a DPOI diagram yields

⟨⟨⌜𝑎⌝⟩⟩ = (0 −→ 𝐺 ←− 𝑤1𝑤2) = (0 −→ 𝐿 ←− 𝑣1𝑣2) ; (𝑣1𝑣2 −→ 𝐶 ←− 𝑤1𝑤2) = ⟨⟨⌜𝑙⌝⟩⟩ ; ⟨⟨𝑎⟩⟩
⟨⟨⌜𝑏⌝⟩⟩ = (0 −→ 𝐻 ←− 𝑤1𝑤2) = (0 −→ 𝑅 ←− 𝑣1𝑣2) ; (𝑣1𝑣2 −→ 𝐶 ←− 𝑤1𝑤2) = ⟨⟨⌜𝑟⌝⟩⟩ ; ⟨⟨𝑎⟩⟩.

(28)

Because ⟨⟨·⟩⟩ is faithful, (28) yields decompositions ⌜𝑎⌝ = ⌜𝑙⌝ ; 𝑎 and ⌜𝑏⌝ = ⌜𝑟⌝ ; 𝑎 also on the

syntactic side. This allows for a rewriting step 𝑎 ⇒⟨𝑙,𝑟 ⟩ 𝑏 as below, where the dashed lines show

how the syntactic matching (cf. the shape (6)) is performed

⌜𝑎⌝ 𝑛

=
𝑚 𝑛

𝑎 =

𝑙𝑖 𝑗

𝑚

𝑎
𝑛

𝑚

=

𝑟
𝑖 𝑗

𝑎
𝑛

𝑚

= =
𝑚 𝑛

𝑏
⌜𝑏⌝ 𝑛

𝑚

□

Furthermore, we can prove an analogous result for the rewriting of coloured PROPs, which thus

subsumes and generalises the one for PROPs. Now, syntactic rewriting occurs in S𝐶,Σ +𝐶 Frob𝐶 ,
DPOI rewriting is in Csp𝐷𝐶 (Hyp𝐶,Σ), and the folding operation ⌜·⌝𝐶 works as expected in the

coloured setting. The result is stated below without proof.
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Proposition 4.10. Let ⟨𝑙, 𝑟 ⟩ be any rewriting rule on S𝐶,Σ +𝐶 Frob𝐶 . Then

𝑎 ⇒⟨𝑙,𝑟 ⟩ 𝑏 iff ⟨⟨⌜𝑎⌝𝐶⟩⟩𝐶 ⇝⟨⟨⟨⌜𝑙⌝𝐶,⌜𝑟 ⌝𝐶 ⟩⟩⟩𝐶 ⟨⟨⌜𝑏⌝𝐶⟩⟩𝐶 .

Example 4.11. We give an illustration of the correspondence of Proposition 4.10. Fix 𝐶 = { , }
and Σ = { a }, and take the 𝐶-coloured PROP SΣ,𝐶 +𝐶 (Frob + Frob ). We consider a rule 𝛼

on such a PROP, together with its interpretation in Csp𝐷𝐶 (Hyp𝐶,Σ)

𝑎

⟨⟨·⟩⟩

⇒
𝑎

⟨⟨·⟩⟩

𝑎
0 0

2

1

1
𝑎

0

0 11

2 2 2

⇝

We use numbers to indicate how the morphisms in the cospan are defined. Notice that these legs

may be non-injective. Also, notice how the interpretation “absorbs” the Frobenius component. With

the above rule, one can perform the syntactic rewriting step

a
a ⇒𝛼

a
a . It is

implemented in Csp𝐷𝐶 (Hyp𝐶,Σ) via the DPOI rewriting step below

𝑎
0

2
1

1 𝑎
0 0 1

2

2

𝑎

0

2

1

𝑎

3

𝑎
0 1

𝑎

3

0 1

𝑎

3

2

2 4

1

0 3

4

44

Note that the node labelled 2 in the resulting graph is not in the image of the interface (corresponding

to a ) and the node labelled by 1 and 3 is in the image of two nodes in the interface (corresponding

to a ). Hence, the outcomes of syntactic and DPOI rewriting coincide.

4.5 Pushout complements and rewriting modulo Frobenius
We conclude our discussion of the connection between syntactic and combinatoric rewriting by

studying rule applications for which more than one pushout complement may exist. We will see
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that, rather than a “bad” feature of combinatoric rewriting in this approach, this naturally subsumes

the extra freedom one obtains in performing rewrites modulo Frobenius structure.

As discussed in Section 3.3, in adhesive categories such as HypΣ, pushout complements for

𝐾 → 𝐿 → 𝐺 are guaranteed to be unique only when the morphism 𝐾 → 𝐿 is mono. If we have a

look again at a DPOI rewrite from Section 3.4

𝐿
𝑚 ��

𝐾

��
⌝ ⌜

oo // 𝑅
��

𝐺 𝐶oo // 𝐻

𝐽

OO ::dd (29)

it follows that the rewritten graph 𝐻 is totally determined by the map 𝐿 → 𝐺 only in the case

where the mapping of 𝐾 into the LHS 𝐿 of the rule is mono. However, when rewriting modulo

Frobenius structure, there are cases where this is not true. For example, consider the relatively

harmless-looking equation that captures the fact that 𝑓 is a one-sided inverse of 𝑔

𝑓 𝑔 = (30)

If we translate this into a hypergraph rewriting rule from the LHS to the RHS, we have no problem,

because the embedding of 𝐾 into 𝐿 is mono

𝑓 𝑔
0 1 0 1 0, 1

(31)

Hence, a rewriting step involving this rule will be uniquely fixed by the matching𝑚. Consider

applying the rule above to this diagram

𝑓 𝑔

𝑓 𝑔

which corresponds to this cospan of hypergraphs

𝑓 𝑔

𝑓 𝑔

0

1

0 𝑥0

𝑦0

𝑦1

𝑎0

𝑎1

(32)

Then, we see the LHS of the rewriting rule (31) has exactly two matchings, corresponding to the

upper and lower copies of 𝑓 and 𝑔, respectively. Since the embedding of the boundary into the LHS

of (31) is mono, each of these matchings corresponds to a unique way to rewrite the diagram

𝑓 𝑔

𝑓 𝑔

=

𝑓 𝑔
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𝑓 𝑔

𝑓 𝑔

=

𝑓 𝑔

However, the identity wire in equation (30) is captured as a single node in the image of two

nodes in the boundary of the rewriting rule: one corresponding to the input of the wire and one

corresponding to the output. Hence, if we consider equation (30) instead as a rewriting rule from

the RHS to the LHS, we obtain the following span of hypergraphs

𝑓 𝑔
0 10 10, 1

(33)

Now, there is a matching of the LHS of rule (33) for each of the nodes in (32). Unlike before, a

single matching corresponds to multiple ways to rewrite the diagram, modulo Frobenius. For the

matching 𝑚 whose image is the node 𝑎1, one possible rewrite corresponds to the obvious one,

where we expand the wire between 𝑓 and 𝑔 to contain another copy of 𝑓 and 𝑔

𝑓 𝑔

𝑓 𝑔

=

𝑓 𝑔

𝑓 𝑔𝑓 𝑔

(34)

But this is not the only rewrite we can perform at this location. We can also apply some Frobenius

algebra equations to create another, distinct rewrite here

𝑓 𝑔

𝑓 𝑔

𝑓 𝑔

𝑓 𝑔

𝑓 𝑔

=

𝑓 𝑔

𝑓 𝑔

= (35)

Each of these corresponds to a DPO rewrite with the same matching𝑚, but with a different

context. That is, a different graph 𝐶 in the DPO diagram (29) is chosen to complete the left pushout

square. It is not clear a priori how many such contexts exist, or even if the collection of possible

contexts is even finite, up to isomorphism.

Thankfully, this question has already been answered for hypergraphs by [HJKS11], which shows

that the set of pushout complements for a given pair of morphisms 𝐾 → 𝐿 → 𝐺 is finite whenever

𝐾, 𝐿 and 𝐺 are so, and gives a method for enumerating them. We now will briefly sketch how this

method works and apply it to the example above, referring the interested reader to [HJKS11] for

the relevant proofs.

We begin by constructing an “exploded” context 𝐾 +𝐺 , which is the disjoint union of 𝐾 and a

new graph 𝐺 defined as follows

(1) add one vertex to 𝐺 for every vertex 𝑣 ∈ 𝐺 not in the image of𝑚,

(2) add one hyperedge to 𝐺 for every hyperedge ℎ ∈ 𝐺 not in the image of𝑚, and

(3) for each hyperedge ℎ ∈ 𝐺 , let the 𝑖-th source �̃�𝑖 (ℎ) be 𝑠𝑖 (ℎ) if 𝑠𝑖 (ℎ) ∈ 𝐺 , and otherwise let it

be a new, fresh vertex; define the targets similarly.
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Then, [HJKS11] showed that any pushout complement 𝐶 arises as a quotient of this exploded

context. That is, we obtain a morphism 𝑛 : 𝐾 → 𝐶 by composing the embedding of 𝐾 into 𝐾 +𝐺
with the quotient map. If pushing out 𝑛 along 𝐾 → 𝐿 gives our matching𝑚 : 𝐿 → 𝐺 , we have a

valid pushout complement.

In principle, there are exponentially many possible quotients of this graph to consider. However

thanks to the fact that the quotient of 𝐾 +𝐺 must yield a valid pushout complement, we typically

only need to consider a small fraction of the possible quotients. By construction of the exploded

context, we have an induced map 𝑞 : 𝐾 +𝐺 → 𝐺 that sends nodes and hyperedges in 𝐺 which

came from 𝐺 to themselves and nodes in 𝐾 to their image under 𝐾 → 𝐿 → 𝐺 . It was shown in

[HJKS11] that all of the pushout complements arise from 𝑞 by identifying nodes in the fibres of 𝑞,

i.e. sets of the form 𝑞−1 (𝑣) for nodes 𝑣 ∈ 𝐺 . We can therefore enumerate contexts by looking at all

the possible quotients of non-trivial fibres of 𝑞 and seeing which of them push out to the correct

graph. Hence, if 𝑞 only has a small number of non-trivial fibres, and the fibres themselves are also

relatively small, it is practical to enumerate all of the possible contexts.

To see how this works on our example, we first compute the exploded context for the matching

𝑚 whose image is the vertex 𝑎1 in (32)

𝑓 𝑔

𝑓 𝑔

𝑥0

𝑦0

𝑦1

𝑎0

𝑎′
1

𝑎′′
1

𝑘0 𝑘1

(36)

The vertices {𝑘0, 𝑘1} come from 𝐾 , and the vertices {𝑎′
1
, 𝑎′′

1
} are new, fresh copies of the vertex 𝑎1,

which was in the image of𝑚.

We can form candidate contexts for𝑚 as quotients of the graph above. By the discussion above,

we can conclude that the only allowed quotients of (36) are the ones that identify nodes in the only

non-trivial fibre of 𝑞 : 𝐾 +𝐺 → 𝐺 , which is 𝑞−1 (𝑎1) = {𝑎′1, 𝑎′′1 , 𝑘0, 𝑘1}. Of the 15 possible partitions
for the set 𝑞−1 (𝑎1), five will yield a map 𝑛 : 𝐾 → 𝐶 that pushes out to give𝑚 : 𝐿 → 𝐺 , as required.

The rest will result in a graph 𝐺 ′ with strictly more nodes that 𝐺 . The five good candidates for 𝐶

are the following

𝑓 𝑔

𝑓 𝑔

𝑥0

𝑦0

𝑦1

𝑎0

𝑎′
1
, 𝑘0

𝑎′′
1
, 𝑘1

𝑓 𝑔

𝑓 𝑔

𝑥0

𝑦0

𝑦1

𝑎0

𝑎′
1
, 𝑘1

𝑎′′
1
, 𝑘0

𝑓 𝑔

𝑓 𝑔

𝑥0

𝑦0

𝑦1

𝑎0

𝑎′
1
, 𝑎′′

1
, 𝑘0

𝑘1

𝑓 𝑔

𝑓 𝑔

𝑥0

𝑦0

𝑦1

𝑎0

𝑎′
1
, 𝑎′′

1
, 𝑘1

𝑘0

𝑓 𝑔

𝑓 𝑔

𝑥0

𝑦0

𝑦1

𝑎0

𝑎′
1
, 𝑎′′

1
, 𝑘0, 𝑘1

(37)
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Note that, even though we see the same context graph multiple times, they differ in the embedding

𝑛 : 𝐾 → 𝐶 , as indicated by the labels. The first context yields the “obvious” rewrite (34), whereas if

we compute the DPOI diagram for the third context, we obtain (35)

𝑓 𝑔

𝑓 𝑔

𝑥0

𝑦0

𝑦1

𝑎0

𝑎1

𝑓 𝑔

𝑓 𝑔

𝑥0

𝑦0

𝑦1

𝑎0

𝑎′
1
, 𝑎′′

1
, 𝑘0

𝑘1

𝑓 𝑔

𝑓 𝑔

𝑥0

𝑦0

𝑦1

𝑓 𝑔

𝑓 𝑔

𝑚

𝑘1𝑘0 𝑘1𝑘0𝑎1

𝑥0

𝑦0

𝑦1

𝑎′
1
, 𝑎′′

1
, 𝑘0

𝑘1

𝑎0

𝑏0

𝑏0

If we perform this rewriting step for each of the five different contexts in (37), we obtain five

different results

𝑓 𝑔

𝑓 𝑔𝑓 𝑔

𝑓 𝑔

𝑓 𝑔𝑓 𝑔

𝑔

𝑔

𝑓 𝑔

𝑓

𝑓𝑔

𝑔

𝑓 𝑔

𝑔

𝑔

𝑓 𝑔

𝑓

𝑓

𝑓

𝑓

Thanks to Theorem 4.9, we can find all of the distinct ways of rewriting a diagram with a given rule,

modulo Frobenius, by enumerating all of the matchings, then enumerating all of the valid contexts.

Finally, note that even though the mapping 𝐾 → 𝐿 in rule (33) is not mono, there is only one

context in (37) that yields a sound rewrite for matching𝑚 in the absence of Frobenius structure.

This is a general feature of string diagram rewriting without Frobenius structure, which we will

revisit in the second paper in this series [BGK
+
20].

5 EXAMPLE: GROUP ALGEBRAS
In order to showcase the techniques we have introduced, we now study a string diagram rewriting

system relevant to the representation theory of finite groups. We introduce boxes𝑚 : 2 → 1, 𝑖 :
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1→ 1, 𝑢 : 0→ 1 satisfying the following associativity, inverse, and unit laws

𝑚
𝑚 𝑚

𝑚
= 𝑚

𝑖

= 𝑢

𝑚
𝑢

= 𝑚
𝑢

=

(38)

which are furthermore “natural” with respect to ( , ) in the following sense

𝑚

=

𝑚

𝑚 =𝑚

=𝑖
𝑖

𝑖

=𝑖

=𝑢
𝑢

𝑢
=𝑢

(39)

Remark 5.1. Note that the Frobenius structure is used to allow expressions that refer to inputs

in a non-linear fashion. For instance, if one thinks of the input wire of the top-right equation

in (38) as a variable 𝑥 , this roughly corresponds to the term equation𝑚(𝑥, 𝑖 (𝑥)) = 𝑢. Notably, the
lefthand-side refers to 𝑥 twice (indicated by “copying” the input with ) and the rightside-side

refers to 𝑥 zero times (indicated by “deleting” the input with ).

Let (Vect𝑘 , ⊗) be the symmetric monoidal category of finite-dimensional vector spaces and linear

maps with the tensor product. The models of the SMT defined above are an important structure in

the study of finite groups.

Proposition 5.2. For Σ = {𝑚, 𝑖,𝑢} and E given by the equations (38) and (39), the models of (Σ, E)
in (Vect𝑘 , ⊗) are group algebras. That is, a model consists of vector space 𝑉 spanned by the elements
of a finite group 𝐺 and (bi)linear maps𝑚 : 𝑉 ⊗ 𝑉 → 𝑉 , 𝑖 : 𝑉 → 𝑉 , 𝑢 : 𝑘 → 𝑉 defined on the basis of
group elements as follows

𝑚(𝑔 ⊗ ℎ) = 𝑔ℎ 𝑖 (𝑔) = 𝑔−1 𝑢 (1) = 𝑒 (40)

Proof. (Sketch) This follows from the fact that fixing a (special commutative) Frobenius algebra

over a finite-dimensional vector space is equivalent to fixing a basis of vectors “copied” by 𝛿 :=

, i.e. satisfying 𝛿 (𝑣) = 𝑣 ⊗ 𝑣 (see [CPV13]). Then, equations (39) imply that𝑚,𝑢, 𝑖 send basis

elements to basis elements, and the equations (38) imply the usual associativity, unit, and inverse

laws of a group. For details, see e.g. [Kas12] or [CK17]. □
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Now, applying the techniques introduced in the previous section, we can translate the 10 equations

(38) and (39) into combinatoric form. For example, the associativity, inverse, and first naturality

equation translate as follows

𝑚

𝑚
𝑚

𝑚

0

1

2

3

0

1

2

3

0

1

2

3

𝑚 𝑢
0 1 0 1 0 1

𝑖

𝑚

0

2, 3

0

1
1

2

3

𝑚
0

1

2

𝑚
3

(41)

The remaining 7 equations are similar.

We can use these rules to obtain a terminating rewriting strategy for normalising expressions

over Σ = {𝑚,𝑢, 𝑖}, at least in the case of acyclic hypergraphs. Intuitively, we eliminate as many 𝑢

and 𝑖 boxes as possible, associate the𝑚 boxes to the right, and push𝑚,𝑢 and 𝑖 boxes as far toward

the outputs as possible.

First, we note that the rules (39) can have bad behaviour if they are applied in a completely naïve

fashion modulo Frobenius. For example, applying the naturality rule for 𝑖 , we can get infinite chains

like this

𝑖𝑖 =
𝑖

=

𝑖

𝑖
=

𝑖
𝑖=

𝑖

𝑖

= · · · (42)

However, such rewrites are not making any progress in “pushing 𝑖 towards the outputs”. We can

fix this problem by constraining the rewriting with using a total order than measures progress and

only accept rewrites that are decreasing with respect to that order.

Whereas this is difficult to do in a purely syntactic fashion, it is fairly straightforward to define

“progress” using the combinatoric structure. First, we will introduce a number that measures how

far a given hyperedge is from an output.

Definition 5.3. For a hyperedge ℎ in an acyclic hypergraph with interface 𝐺
𝑏←− 𝐾 , let 𝑝 be the

shortest path connecting ℎ to a node that is not in the source of any hyperedge (which by acyclicity

always exists). The branching depth of ℎ is the sum of the branching degree of every node in 𝑝 ,

where the branching degree of node 𝑣 is max(0, deg(𝑣) + |𝑏−1 (𝑣) | − 2).

Intuitively, the branching degree of a node captures how many and maps a single

node represents, and the branching depth captures a notion of distance from an output (or a ),

measured in terms of those maps.

The applications of the rules obtained from (39) that “make progress” do so by replacing a single

hyperedge ℎ with (possibly) multiple hyperedges whose branching depth is strictly smaller than

ℎ. Conversely, the “bad” sequences we want to rule out, such as (42), generate more hyperedges

without decreasing the branching depth of the original one.
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Let D(𝐺) ∈ N★ be a word where D(𝐺)𝑘 is the number of hyperedges with branching depth 𝑘 .

By comparing words of the form D(𝐺) lexicographically, we obtain a total order on hypergraphs

that measures “progress” in the sense we are after.

Definition 5.4. For a totally ordered set𝐴, the reverse lexicographic order ≺ℓ is defined recursively
on the set 𝐴★

of words as follows: 𝑢 ≺ℓ 𝑣 if
• |𝑢 | < |𝑣 |, or
• |𝑢 | = |𝑣 | = 𝑘 and 𝑢𝑘 < 𝑣𝑘 , or

• |𝑢 | = |𝑣 | = 𝑘 , 𝑢𝑘 = 𝑣𝑘 , and 𝑢1 ...𝑢𝑘−1 ≺ℓ 𝑣1...𝑣𝑘−1.

Reduction Strategy We begin with an acyclic hypergraph with interface 𝐺 ← 𝐽 . The graph is
normalised with respect to rules obtained from (38) and (39) as follows
(1) pick a rule from (38) and apply it if possible;

(2) pick a rule from (39) and apply it if possible, subject to the condition that D(𝐺) is strictly
reduced with respect to ≺ℓ ;

(3) repeat until no rule can be applied in steps 1 and 2.

Theorem 5.5. The Reduction Strategy above terminates.

Proof. The unit and inverse laws from (38) strictly decrease the number of hypereges in 𝐺 ,

which will strictly decreaseD(𝐺). By construction, applying the rules in (39) must strictly decrease

D(𝐺). The associativity law strictly decreases the number of𝑚-labelled hyperedges connected to

the left (i.e. ‘upper’) input of another𝑚-labelled hyperedge, while leaving D(𝐺) fixed. Since all of
these quantities are finite and bounded below, the reduction strategy must terminate. □

6 REWRITING MODULO MULTIPLE FROBENIUS ALGEBRAS
The previous sections have shown that the Frobenius equations are an intrinsic part of the structural

rules of diagrammatic theories, distinguished from the domain-specific equations in a rewriting

system. However, the hypergraph representation can absorb the structure of a Frobenius algebra,

but only one per sort. This is in contrast with many applications of Frobenius algebra rewriting – e.g.

in quantum theory [CD08, CK17], graphical linear algebra [Sob], concurrency theory [BHP
+
19], cir-

cuits [BPSZ19], and control theory [BSZ14b, BE15] – which typically deal with multiple, interacting

Frobenius algebras on a single sort.

In order to deal elegantly with multiple Frobenius algebras on a single sort, we need an inter-

mediate step, moving from a single-sorted to a coloured setting. Concretely, our starting domain

will be a PROP C, with 𝑛 Frobenius algebras. From this, we build a 𝑛-coloured PROP DΥ, where

each colour carries one of the 𝑛 different Frobenius structures. We then make each of the colours

formally isomorphic by introducing pairs of “colour-switch” maps (e.g. and ) and

imposing equations making them inverses to each other.

We shall then prove that C→ DΥ is actually an equivalence of coloured PROPs, meaning that

DΥ is a faithful representation of the information carried by C. By working in the multi-sorted

setting provided by DΥ, we can now exploit the correspondence established in Proposition 4.10.

However, we will need a further step: the elimination of redundant colour-switch maps after

the application of a rule. This is obtained by normalising graphs with respect to the confluent

and terminating rewriting system Υ that removes pairs of inverse colour-switch maps. Thus our

implementation establishes a new correspondence stating that “Rewriting PROPs with𝐶 Frobenius

algebras” corresponds to “DPO rewriting of hypergraphs with 𝐶-sorted nodes, in Υ-normal form.”
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6.1 The Polychromatic Interpretation
Throughout this and the next section we fix a PROP

C := SΣ + Frob + Frob
freely generated by a signature Σ and two Frobenius algebras (cf. Section 2.6), together with a

rewriting system R on C. Our goal is to provide a DPOI implementation for R-rewriting in C.

Remark 6.1. Even though our exposition deals with rewriting modulo two Frobenius algebras,

this is just for simplicity. The theory works for an arbitrary number of Frobenius algebras, via a

straightforward generalisation of the developments presented in this section.

Towards this goal, this section provides the intermediate step of representing C in terms of a

coloured PROP DΥ; this setup will make our diagrammatic theory adapted to DPOI rewriting, via

Proposition 4.10. DΥ is defined as follows. Consider a signature of “colour conversion” operations Γ
(cf. Remark 2.26 and Example 2.27), which we denote graphically as

Γ = { : → , : → }
together with equations

Υ = { = , = }
Then D is defined as the { , }-coloured PROP

D := S{ , },Σ⊎Γ +{ , } (Frob + Frob ) (43)

and DΥ as D quotiented by Υ. Notice that DΥ is generated by the same signature Σ as C, including
operations on sort , but also from the colour conversion operations in Γ. Whereas the two Frobenius

structures in C were on the same sort, the two in DΥ are on two different sorts: and . We use

+{ , } (cf. Example 2.25) to identify the sorts of Frob + Frob with those of S{ , },Σ⊎Γ .

We now define the “polychromatic interpretation” (·) : C → DΥ. Intuitively, (·) will “shift”

one of the two Frobenius structures of C from sort to sort , so that each sort hosts a single

Frobenius algebra. Formally, (·) : C→ DΥ is a morphism of coloured props, where C is here seen

as a { }-coloured PROP. It suffices to define (·) on the generating objects and arrows of C. For
objects, the single sort of C is mapped to . For arrows, (·) acts as the identity with the exception

of the generators of the second Frobenius algebra

↦→ ↦→

↦→ ↦→

Notice that equations Υ are needed in order for this functor to be well-defined. For instance, they

ensure preservation of the separability law for the “red” Frobenius algebra( )
=

=

= = = ( )

Remark 6.2. As (·) has been defined in terms of the generators of C and D, it will sometimes

be useful to regard, by abuse of notation, (·) as a mapping from formal string diagrams of the

generators of C to morphisms in D. It is worth noting that this mapping would not extend to a

well-defined functor from C to D, since the latter is missing the equations of Υ.
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It is essential for our developments that the polychromatic interpretation is without loss (or gain)

of information. This is guaranteed by the following result.

Proposition 6.3. (·) induces an equivalence C ≃ DΥ in CPROP.

Proof. We have already shown that (·) gives a strict monoidal functor from C to DΥ. We define

another functor 𝐾 : DΥ → C on objects by letting 𝐾 ( ) = 𝐾 ( ) = . Since DΥ is presented by

generators and equations, it suffices to say what it does on generators of DΥ. It sends the generators

Σ and the two Frobenius algebras to their monochromatic versions, whereas it sends each of the

two colour-changers in Γ to id . One can straightforwardly check that this gives a well-defined,

strict monoidal functor and that 𝐾 ((·) ) = IdC. So, it remains only to give a natural isomorphism

𝜅 : IdDΥ � (𝐾 (·)) .
For a word𝑤 in { , }, (𝐾 (·)) = |𝑤 |

. So, let 𝜅𝑤 : 𝑤 → |𝑤 |
be the unique monoidal product of

id and morphisms of the correct type. This is an isomorphism by construction. Naturality

then follows from the definition of (·) and the equations Υ. □

Remark 6.4. The construction in this section ‘splits the difference’ between the two coproducts

discussed in Section 2.6. As noted there, the embedding 𝑈 : PROP→ CPROP does not preserve

coproducts. However, we can consider the introduction of the colour changers and equations Υ as a

weak truncation operation on coloured PROPs (·)•, which forces all of the colours to be isomorphic

to . Then, we do indeed have an equivalence of coloured PROPs 𝑈 (A + A′) ≃ (𝑈 (A) +𝑈 (A′))•.
Proposition 6.3 is then the instantiation of this fact for A := SΣ + Frob and A′ := Frob.

6.2 Interpreting the Rewriting
Now that we have representedC as a coloured PROPDΥ, we can pass to hypergraphs by instantiating

Proposition 4.4.

Corollary 6.5. There is an isomorphism of { , }-coloured PROPs betweenCsp𝐹{ , }𝐼{ , } (Hyp{ , },Σ⊎Γ)
quotiented by ⟨⟨Υ⟩⟩{ , } and DΥ.

With respect to rewriting, Corollary 6.5 is still unsatisfactory: rewriting in DΥ (and thus in C)
corresponds to DPOI rewriting in Csp𝐹{ , }𝐼{ , } (Hyp{ , },Σ⊎Γ) only modulo the equations Υ. Clearly,

it would be computationally obnoxious to reason about rewriting of ⟨⟨Υ⟩⟩{ , }-equivalence classes
of graphs. We now proceed in steps towards a solution to the problem. First, henceforth we shall

treat the two equations in Υ as rewriting rules on D, with a left-to-right orientation. For simplicity

we denote by Υ also the resulting rewriting system. We then observe the result below.

Lemma 6.6. Υ is terminating and confluent on D.

Our next goal is then to show that rewriting modulo Υ can be simulated without loss of generality

by putting a graph in Υ-normal form and then applying the rewriting rule. However, a naive

application of this approach immediately poses problems, as it is shown by the following example.

Example 6.7. Suppose Σ contains an operation 𝑜 : 0→ 1 and consider a rewriting rule 𝛼 defined

as

⇒𝑜
𝑜

𝑜

Under the interpretation (·) it yields a rule 𝛼 in D defined as

⇒𝑜
𝑜

𝑜
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The translated rule conflicts with Υ, meaning that Υ can erase 𝛼 -redexes. For instance

⇒𝑜

̸⇒

𝑜

𝑜

𝑜

⇒

𝛼

Υ
(44)

This kind of problematic example motivates the following transformation on the rewriting rules

of D. As a preparatory step, we record the following lemma, where ↓𝑐 is the unique Υ-normal form

of a morphism 𝑐 of D, guaranteed by Lemma 6.6.

Lemma 6.8. Let 𝑙 be a morphism ofD in the image of (·) . Then, there is a morphism 𝑙 ′ not containing
any Υ-redex such that (in D)

n m� l =
���

p1

js

j1

q1

k1

qr

kr

ps

��� l� (45)

where 𝑝1 + 𝑗1 + · · · + 𝑝𝑠 + 𝑗𝑠 = 𝑛 and 𝑞1 + 𝑘1 + · · · + 𝑞𝑟 + 𝑘𝑟 =𝑚, with 𝑝𝑖 , 𝑗𝑖 , 𝑞𝑖 , 𝑘𝑖 ∈ N. Moreover, there
is a unique such 𝑙 ′ in D for each 𝑙 .

Proof. Given 𝑙 , by Lemma 6.6 there is a unique ↓𝑙 in Υ-normal form. Because 𝑙 is in the image

of (·) , besides and it can only contain -sorted operators, and external dangling

wires are also of sort : thus every wire of sort inside ↓𝑙 can only be connected to the left boundary

via a and to the right boundary via a . Using the laws of SMCs to “pull out” all such

connecting operators towards the corresponding boundary, we obtain the LHS of (45). □

We are now ready to introduce the transformation that will remove the conflicts between a

rewriting rule and Υ.

Definition 6.9. Let 𝛼 be a rewriting rule of type
𝑛 → 𝑚

on D

l
n m ⇒𝛼

n mr

We obtain 𝑙 ′ through Lemma 6.8

l
n m

=
���

p1

js

j1

q1

k1

qr

kr

ps

��� l�

The rule 𝛼⋄ is defined as

���

p1

js

j1

q1

k1

qr

kr

ps

��� l� ⇒ ���

p1

js

j1

q1

k1

qr

kr

ps

��� r

Given a rewriting system R, we write R⋄ = {𝛼⋄ | 𝛼 ∈ R}.

It is instructive to show how this transformation neutralises the problem of (44).
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Example 6.10. The rule 𝛼 from Example 6.7 is transformed into (𝛼 )⋄, defined as o ⇒
o
o Observe that coexistence with Υ is not problematic anymore, as Υ cannot erase (𝛼 )⋄-redexes.
For instance, in computation (44) we are not stuck anymore

⇒𝑜

⇒

𝑜

𝑜

𝑜

Υ

(𝛼 )⋄

𝑜

𝑜

⇒Υ

We claim that this “improved” rewriting system removes conflicts with Υ. Or, to put it another

way: a single syntactic rewriting step is possible if and only if it can be obtained as a combinatoric

step on an Υ-normal form, followed by renormalising using Υ. Symbolically, we can write this as

follows

𝑎 ⇒R 𝑏 iff ↓⟨⟨𝑎 ⟩⟩{ , } ⇛⟨⟨R⋄⟩⟩{ , }
★

⇛⟨⟨Υ⟩⟩{ , } ↓⟨⟨𝑏 ⟩⟩{ , }
Proving the formal statement above will be the main task for the remainder of this section, and

it appears as Theorem 6.16.

Contrary to the situation depicted at the beginning of the section, in Theorem 6.16 DPOI rewriting

in the combinatorial domain is “on-the-nose”: instead of dealing with ⟨⟨Υ⟩⟩{ , }-equivalence classes of
hypergraphs, we can now deal exclusively with ⟨⟨Υ⟩⟩{ , }-normal forms, which thanks to Lemma 6.6

are straightforward to compute.

The proof of Theorem 6.16 will go in steps. The theory so far ensures a correspondence between

• rewriting in C and rewriting in DΥ, thanks to Proposition 6.3;

• rewriting in D and rewriting in Csp𝐹{ , }𝐼{ , } (Hyp{ , },Σ⊎Γ), thanks to Proposition 4.10.

Thus the only missing link to complete the correspondence in Theorem 6.16 is to adequately

represent rewriting in DΥ as rewriting in D. This is the remit of the next section.

6.3 Adequacy of the Implementation
For the purposes of this section, let R be a rewriting system on D. We focus on the missing piece

of the proof of Theorem 6.16: showing that the rule transformation of Definition 6.9 is an adequate

implementation for R-rewriting modulo Υ in D.

Theorem 6.11 (Adeqacy). Let 𝑐 and 𝑑 be arrows in D. Then

𝑐
★⇔Υ⇒R

★⇔Υ 𝑑 iff ↓𝑐 ⇒R⋄
★⇒Υ ↓𝑑.

The proof will follow from Propositions 6.12 and 6.15. For the right-to-left direction (complete-

ness), we can prove a stronger statement.

Proposition 6.12. 𝑐 ⇒R⋄ 𝑑 implies 𝑐
★⇔Υ⇒R 𝑑 .

Proof. For the sake of readability, all the diagrams in the proofs of this section are depicted

with unlabelled wires: it is intended that each wire stands for a number of parallel wires of the

same type, arbitrary but compatible with its position in the diagram.
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We know 𝑐 has a redex for 𝛼⋄ for some rule 𝛼 ∈ R. If 𝛼 is given by 𝑙 ⇒ 𝑟 , then 𝛼⋄ rewrites 𝑐 as

c = c2��� l�

���
c1 ���

(46)

⇒𝛼⋄ ���
��� r

c2c1

���

(47)

In light of (46), 𝑐 modulo Υ contains a redex for 𝛼 as well

c2��� l�

���
c1 ���

★⇔Υ ���
���

���

l�
c2c1

★⇔Υ ���
���

c2c1

���

l

⇒𝛼 ���
��� r

c2c1

���

where the second step is justified by the definition of 𝑙 ′ as in (45). This proves the statement. □

The left-to-right direction (soundness) of Thorem 6.11 requires more work. First, we have that

R⋄ is as powerful as R, modulo Υ.

Lemma 6.13. 𝑐
★⇔Υ⇒R

★⇔Υ 𝑑 iff 𝑐
★⇔Υ⇒R⋄

★⇔Υ 𝑑 .

Proof. It suffices to show that 𝑐 ⇒R 𝑑 implies 𝑐
★⇔Υ⇒R⋄

★⇔Υ 𝑑 and 𝑐 ⇒R⋄ 𝑑 implies 𝑐
★⇔Υ⇒R

★⇔Υ

𝑑 . For the left-to-right implication, the assumption is that 𝑐 contains a redex for a rule 𝛼 ∈ R, say
of the form 𝑙 ⇒ 𝑟

c = ���
���

c2c1

���

l

⇒𝛼 ���
��� r

c2c1

���

(48)

Then, modulo Υ, 𝑐 also contains a redex for (𝑙 ⇒ 𝑟 )⋄. Applying this rule yields the same outcome,

modulo-Υ, as (48)

���
���

c2c1

���

l

★⇔Υ ���
���

���

l�
c2c1

⇒𝛼⋄ ���
���

���

c2c1 r

★⇔Υ ���
��� r

c2c1

���
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This proves the left-to-right implication of the statement. The right-to-left implication is given by

Proposition 6.12. □

The next step is to show that⇒R⋄ satisfies a “diamond property” with respect to Υ. This property
implies that Υ-rewriting does not interfere with R⋄-rewriting— whence the latter can be assumed

without loss of generality to work on arrows in Υ-normal form, as in the desired implementation

(Theorem 6.11). As shown in Example 6.7, the diamond property fails for arbitrary rewriting systems

and justifies the introduction of the transformation (·)⋄.

Lemma 6.14 (Diamond Property). If 𝑐 ⇒R⋄ 𝑑 and 𝑐 ⇒Υ 𝑒 then there exists an 𝑓 such that 𝑑 ⇒Υ 𝑓

and 𝑒 ⇒R⋄ 𝑓
𝑐R⋄

rz
Υ
$,

𝑑

Υ #+

𝑒

R⋄t|𝑓

Proof. This is immediate from the fact that, by Definition 6.9, the application of R⋄ cannot
introduce Υ-redexes. Therefore, R⋄ and Υ are orthogonal rewriting systems (i.e. they have no critical

pairs between each other). □

We are now ready to show soundness.

Proposition 6.15. 𝑐
★⇔Υ⇒R

★⇔Υ 𝑑 implies ↓𝑐 ⇒R⋄
★⇒Υ ↓𝑑.

Proof. Since Υ is confluent and terminating (Lemma 6.6), the conclusion is equivalent to ↓
𝑐 ⇒R⋄

★⇔Υ 𝑑 , so we focus on this statement.

Assume 𝑐
★⇔Υ⇒R

★⇔Υ 𝑑 . By Lemma 6.13, this implies 𝑐
★⇔Υ⇒R⋄

★⇔Υ 𝑑 . Since Υ is confluent and

terminating, this implies 𝑐
★⇒Υ↓𝑐

★

Υ⇐⇒R⋄
★⇔Υ 𝑑 .

We can now drop the first part of the rewrite sequence and focus on ↓𝑐 ★

Υ⇐⇒R⋄
★⇔Υ 𝑑 . By

repeatedly applying Lemma 6.14, we can commute⇒R⋄ through
★

Υ⇐ to obtain ↓𝑐 ⇒R⋄
★

Υ⇐
★⇔Υ 𝑑 .

Finally, merging

★

Υ⇐ and

★⇔Υ yields ↓𝑐 ⇒R⋄
★⇔Υ 𝑑 as required. □

We now have all the ingredients to prove the main theorem of this section: the DPOI rewriting

implementation of rewriting in C.

Theorem 6.16. Let R be a rewriting system on C. Then

𝑎 ⇒R 𝑏 iff ↓⟨⟨𝑎 ⟩⟩{ , } ⇛⟨⟨R⋄⟩⟩{ , }
★

⇛⟨⟨Υ⟩⟩{ , } ↓⟨⟨𝑏 ⟩⟩{ , }
Proof. First, we have a correspondence at the level of syntactic rewriting (Definition 2.17) in

the props C and DΥ

𝑎 ⇒R 𝑏
in C

iff

𝑎 ⇒R 𝑏

in DΥ

(49)

This is ensured by the fact that (·) is a functorial and full and faithful mapping. Second, we interpret

Υ as a set of rewriting rules instead of a set of equations. Then, rewriting in DΥ is just the same as

rewriting in D modulo Υ-rewriting. Starting from the right-hand side of (49)

𝑎 ⇒R 𝑏

in DΥ

iff

𝑎
★⇔Υ⇒R

★⇔Υ 𝑏

in D
(50)
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where 𝑎 and 𝑏 are understood on the right as arrows of D, cf. Remark 6.2. Third, we use Theorem

6.11 to give an implementation for rewriting modulo-Υ. Starting from the right-hand side of (50)

𝑎
★⇔Υ⇒R

★⇔Υ 𝑏

in D
iff

↓𝑎 ⇒R⋄
★⇒Υ↓𝑏

in D
(51)

Last, Corollary 6.5 and Proposition 4.10 yield the correspondence between rewriting in D and

DPO-rewriting in Csp𝐹{ , }𝐼{ , } (Hyp{ , },Σ⊎Γ). Starting from the right-hand side of (51)

↓𝑎 ⇒R⋄
★⇒Υ↓𝑏

in D
iff

⟨⟨↓𝑎 ⟩⟩{ , } ⇛⟨⟨R⋄⟩⟩{ , }
★

⇛⟨⟨Υ⟩⟩{ , } ⟨⟨↓𝑏 ⟩⟩{ , }
in Csp𝐹{ , }𝐼{ , } (Hyp{ , },Σ⊎Γ)

(52)

Note that ⟨⟨↓𝑎 ⟩⟩{ , } =↓⟨⟨𝑎 ⟩⟩{ , } , where the normal form on the right is computed in the category

Csp𝐷{ , } (Hyp{ , },Σ⊎Γ) according to the rules ⟨⟨Υ⟩⟩{ , } . To conclude, by chaining (49) to (52) we

obtain the statement of the theorem. □

This theorem gives us an effective combinatorial method for rewriting modulo multiple Frobenius

algebras.

7 EXAMPLE: INTERACTING BIALGEBRAS
We now turn to one of the main examples of multiple interacting Frobenius algebras: the case of two

Frobenius algebras that together interact as a bialgebra. In some sense, this specialises the example

from Section 5 that had a single Frobenius algebra interacting with a group (𝑚 : 2→ 1, 𝑢 : 0→
1, 𝑖 : 1 → 1). Here, we assume that𝑚 and 𝑢 are themselves part of a second Frobenius algebra.

In this case, the associativity and unit equations come for free, so it remains to state analogous

equations to(39), which make the two Frobenius structures “natural” with respect to each other

=

(𝑏)
=

(𝑐1)

=

(𝑐2)

(𝑢)
= (53)

=

(𝑏′)
=

(𝑐1′)

=

(𝑐2′)

(𝑢′)
= (54)

For simplicity, we also require that the induced ‘cup’ and ‘cap’ maps coincide

=

(ca)
=

(cu)
(55)

which will entail the “inverse” equation from (38) for 𝑖 = id1 (see rule (ℎ) in the derived rules (56)

below). Hence, it is a strict specialisation of the group algebra structure introduced in Section 5.

This system, referred to as IB [BSZ14a] (‘Interacting Bialgebras’), has appeared ubiquitously

in the study of component-based systems across different research areas. It forms the core of the

ZX-calculus [CD08], which has recently been extended to give sound and complete equational
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theories for approximately [JPV18] and fully [NW17] universal families of quantum circuits. Also,

it has been employed to reason about signal processing circuits in control theory [BSZ14b, BE15],

electrical circuits [BPSZ19], and Petri nets [BHP
+
19].

Remark 7.1. Recall that the models in (Vect𝑘 , ⊗) of the structure from Section 5 correspond

exactly to representations of finite groups (i.e. group algebras). The models of a pair of Frobenius

algebras , satisfying equations (53) and (54) specialise this fact: they correspond exactly to the

representations of finite Abelian groups. If we additionally impose (55), these are representations

of finite Abelian groups whose elements are all self-inverse. See [CK17], Section 9.6.1 for details.

7.1 A Representation Theorem
This section will propose a rewriting strategy that exploits the DPO implementation presented in

the previous sections and allows for turning any diagram of such an "interacting bialgebra" into a

suitable normal form.

The first step is to note that from the rules above one can derive (see e.g. [CD08]) the following

two rules, which will soon be useful

=

(d)

(𝑢1)
=

=

(h)

(𝑢2)
=

(56)

A generic diagram composed of generators from these two Frobenius algebras consists of

arbitrarily many alternating layers of and generators

...

Any such diagram can be rewritten into a -reduced form that consists of just four layers: an

initial layer of -comonoid structure, followed by -monoid structure, followed by -comonoid

structure, followed by a final layer of -monoid structure

...... (57)

We call this the -reduced form because there is no internal layer of generators.We now characterise

these forms in terms of their associated hypergraphs with interfaces. To express hypergraphs with

interfaces compactly and unambiguously, we adopt the following notational conventions

(1) As we did in Example 4.6, hyperedges corresponding to and are depicted as

unlabelled, directed edges between nodes of appropriate colour, hence

0

0

= ⟨⟨ ⟩⟩ 0

0

= ⟨⟨ ⟩⟩

(2) To avoid writing interfaces explicitly, we will indicate these by consistently placing labels

above nodes for inputs and below nodes for outputs. For example, the following hypergraph
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with interfaces is abbreviated as

0, 1

1

0
:=

𝐺[2] [2]

Using these conventions, the rules in the system Υ can be written as the following two DPOI rules

0

0

⇝Υ
2

0

0

0

0

⇝Υ
1

0

0

Hence, normalising with respect to Υ contracts away any node with precisely one in-edge and one

out-edge. We are now ready to characterise -reduced forms.

Proposition 7.2. A string diagram generated by two Frobenius algebras and is in -reduced
form as in (57) (modulo Frobenius equations) if and only if its associated hypergraph with interfaces
𝐼1 → 𝐺 ← 𝐼2 satisfies the following conditions. 𝐺 is directed acyclic and every node in 𝐺 is either

(I) in the image of a single node in 𝐼1 and has no in-edges,
(O) in the image of a single node in 𝐼2 and has no out-edges, or
(IO) in the image of one or more nodes in both 𝐼1 and 𝐼2.

Proof. When hypergraph nodes representing Frobenius algebra generators are composed, they

fuse together. Hence, the nodes in 𝐺 correspond to maximal connected components of Frobenius

algebra generators of the same colour.

First, suppose a string diagram is in the form of (57). Then, each node in the hypergraph 𝐺

corresponds to a maximal connected component of Frobenius generators in (57). We first note

that any (co)unit connected to a (co)multiplication can be reduced away. Hence, we need to consider

only 5 cases for connected components of generators: (1) a counit applied to an input wire, (2) a

unit applied to an output wire, (3) a tree of comultiplications applied to an input wire, (4) a tree

of multiplications connected to an output wire, or (5) a connected component of cases (3) and (4).

Cases (1) and (3) yield a node of type (I). Cases (2) and (4) yield a node of type (O), and case (5)

yields a node of type (IO).

Conversely, we can interpret each of the nodes of types (I) and (O) as cases (1)-(4) described

above. The only difficult case is nodes of type (IO). These can be interpreted as a ‘zig-zag’ of

comultiplications in the first layer of (57) and multiplications in the last layer, with no generators

in between

0, 1, ...,𝑚

0, 1, ..., 𝑛

· · · ↦→

...

...
... ...

...

□

Crucially, a hypergraph with interfaces that satisfies the conditions above contains no interior
nodes, i.e. nodes not in the image of 𝐼1 or 𝐼2. Eliminating these nodes will form the main component

of the strategy below. In order to obtain a hypergraph with interfaces satisfying these conditions,

we first perform the transformation of the interacting bialgebra rules into a DPOI rewriting system.

This is a mechanical procedure, but for clarity, we will show it explicitly for the rule (𝑏). Following
the recipe of Theorem 6.16, we first use (·) to get the polychromatic interpretation —(58) below—
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then apply (·)⋄ to shift the colour change maps on inputs/outputs to the right-hand side —(59)—

and finally apply ⟨⟨·⟩⟩{ , } to interpret

= (58)

= (59)

0, 1

0, 1
⇝𝐵

0

1

0

1

(60)

We can give a similar treatment to (𝑐𝑝1), (𝑐𝑝2), and (𝑢) rules. Equivalently, we can introduce a

family of rules 𝐾𝑚,𝑛 for𝑚,𝑛 ≥ 0

0...𝑚−1

0...𝑛−1
⇝𝐾𝑚𝑛

0

𝑚−1

0

𝑛−1

..
.

..
.

..
.

..
.

(61)

where the righthand-side contains the fully connected bipartite graph from𝑚 red nodes to 𝑛 black

nodes. Note when𝑚 = 0 (resp. 𝑛 = 0), we interpret the range 0...𝑚− 1 (resp. 0...𝑛− 1) as empty. This

family of rules is implied by the Frobenius equations and (𝑏), (𝑐𝑝1), (𝑐𝑝2), and (𝑢). Conversely, it
implies these 4 rules as special cases (see e.g. [CK17]).

We have mentioned the derived equations in box (56) because, once we translate them into DPOI

rules, we see that rule (𝑑) allows to reverse the direction of an arbitrary edge, rule (ℎ) to delete

parallel edges, and rules (𝑢1) and (𝑢2) to delete single, isolated nodes

0

⇝D
0

0

0

0

⇝H
0

0

0

⇝U1

⇝U2

Note the rule (𝐷) (and its converse) allow us to essentially work with undirected graphs, as we

can always reverse an edge directions if necessary to create a match. This renders the additional

“primed” equations in box (54) redundant, since they are the same as the rules above, but with the

directions reversed.

Hence, the only other rule we need is a rule for introducing red caps



52 Bonchi, Gadducci, Kissinger, Sobocinski and Zanasi

0

1

⇝CA

0, 1

Reduction Strategy We begin with a hypergraph with interfaces 𝐼1 → 𝐺 ← 𝐼2, whose interfaces
𝐼1, 𝐼2 are all of the -sort. It should be understood that after every rewriting step, the graph is normalised
with respect to rules (Υ1) and (Υ2). The strategy proceeds as follows
(1) Reduce as much as possible using rules (𝑈 1), (𝑈 2), and (𝐻 ), using the rule (𝐷) to reverse

edge directions as necessary.

(2) If there are no interior nodes, go to step 5. Otherwise, apply the rule 𝐾𝑚𝑛 to an interior

node 𝑣 and one neighbouring 𝑤 node to remove it as follows:

𝑣 𝑤

..
.

..
.

..
.

..
.⇝𝐾𝑚𝑛⇝

∗
Υ

where we again use the (𝐷) rule to reverse edge directions as necessary.

(3) If there are remaining interior nodes, go to step 1.

(4) If a node is in the image of multiple nodes in 𝐼1 and of no nodes in 𝐼2, apply the converse of

rule (𝐶𝐴) to split it into multiple nodes connected by nodes. For example

..
.

0, 1, 2

⇝∗CA

..
.

0

1

2

We split nodes only in the image of 𝐼2 similarly.

(5) Apply (𝐷) or its converse to direct the remaining edges from the image of 𝐼1, to the nodes,

then to the image of 𝐼2.

The “essential trick” in this strategy is step (2), which removes pairs of adjacent nodes (𝑣,𝑤)
at the expense of introducing some additional edges. Since we are always removing nodes and

parallel edges in the “main loop” (i.e. steps 1-3), the number of nodes in the graph always goes

down, and the number of edges is bounded above by the number of nodes. Steps (4) and (5) are

then just a finite amount of post-processing in order to get the exact form in Proposition 7.2.

Theorem 7.3. The Reduction Strategy above terminates and yields a graph in reduced form.

Proof. Each iteration of steps 1-3 reduces the number of interior nodes by 1. Hence it terminates

after 𝑛 iterations for 𝑛 interior nodes, with no interior nodes. Step 4 guarantees all remaining,

non-interior nodes are of the form (I), (O), or (IO) as in Proposition 7.2, and step 5 guarantees the

directed acyclicity conditions. □

Remark 7.4. The quantum circuit optimisation tool PyZX [KvdW20] uses a version of the Re-
duction Strategy above to simplify phase-free diagrams using the ZX-calculus.

7.2 Rewriting as quantifier elimination
We close this section with a brief discussion about the -reduced form, and its relationship to

the semantics of IB. It was shown in [BSZ14a] that the PROP for IB is isomorphic to the PROP
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LinRel(Z2) of Z2-linear relations. That is, morphisms 𝑆 : 𝑚 → 𝑛 are linear sub-spaces 𝑆 ⊆
𝑍𝑚
2
× 𝑍𝑛

2
� 𝑍𝑚+𝑛

2
, ⊕ is given by direct product, and composition is done relation-style

(𝑣,𝑤) ∈ (𝑆 ;𝑇 ) ⇐⇒ ∃𝑢.(𝑣,𝑢) ∈ 𝑆, (𝑢,𝑤) ∈ 𝑇 (62)

As explained in [Zan15], the -reduced form (called the cospan form therein) enables us to ‘read

off’ 𝑆 as a homogeneous system of equations (or equivalently, as a basis for 𝑆⊥). In this form, nodes

correspond to variables, and nodes to equations, whose LHS and RHS consist of those variables

connected by in-edges and out-edges, respectively. For example, the diagram below represents the

space of solutions to the following system of equations

0

1

𝑥0

𝑥1

𝑒0

𝑒1

𝑒2

𝑦0 ↦→
©«
𝑥0 + 𝑥1

𝑒0
= 𝑦0

0

𝑒1
= 𝑦0

𝑥0 + 𝑥1
𝑒2
= 0

ª®®¬ (63)

This interpretation gives a semantical view of theReduction Strategy as a quantifier elimination

procedure. The main purpose of the procedure is to eliminate interior nodes. Since these nodes

arise from sequential compositions in LinRel(Z2), equation (62) tells that they correspond to

existentially quantified variables

0

1

𝑥0

𝑥1

𝑒0

𝑒1

𝑒2

𝑦0

0

1

𝑥0

𝑥1

𝑑0
𝑧0

0

;

0

𝑧0

𝑒0

𝑒1

𝑒2

𝑦0 ⇝ ↦→ ∃𝑧0.
©«
𝑥0 + 𝑥1

𝑑0
= 𝑧0

𝑧0
𝑒0
=𝑦0

0

𝑒1
=𝑦0

𝑧0
𝑒2
= 0

ª®®®®¬
The core of theReduction Strategy are steps 2 and 3. The former isolates an existentially quantified

variable 𝑧 on the LHS of an equation 𝑒 , and step 3 substitutes any occurrence for that variable with

its RHS, simultaneously eliminating 𝑧 and 𝑒 . Applying this procedure to the diagram above yields

the -reduced form in (63)

0

1

0

1

⇝

0

10 0 0

⇝ ⇝

0

1 0

2 3 6

Since everything in IB and the Reduction Strategy is colour-symmetric, we can use the same

strategy to compute the analogous reduced forms. To do so, we first pre- and post-compose with

colour changers to obtain a graph with an interface consisting entirely of nodes, then apply the

Reduction Strategy with the colours reversed. Applying this to example (63) yields
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0

1

⇝
0

∗

0

0

1

This again gives a canonical representation of a sub-space 𝑆 (called the span form), but this time as

a basis for 𝑆 itself, rather than 𝑆⊥ [Zan15]. nodes correspond to basis vectors, where the presence

of an edge indicates a 1 in the corresponding position. The final diagram in the rewrite sequence

above represents 𝑆 as span{((1, 1), (0))} ⊆ Z2
2
× Z2, which is indeed the space of solutions to the

system given in (63).

Note that we have focused on the case of IB and Z2-linear equations because it is the simplest. It

was shown in [BSZ17b] that this system generalises straightforwardly to a system IB𝐹 that has as

its PROP LinRel(𝐹 ) for an arbitrary field 𝐹 . In that case, we introduce a family of generators for

each 𝑎 ∈ 𝐹\{0, 1} that give weights to edges. By modifying the Reduction Strategy to account

for these weights, we can still obtain a (slightly more elaborate) procedure for removing internal

nodes. This then gives the graphical analogue to quantifier elimination over an arbitrary field 𝐹 .

Interestingly, this graphical version of quantifier elimination is inherently compositional. It is
possible to introduce generators and relations, breaking the semantic connection with LinRel(𝐹 ),
while using Reduction Strategy on sub-diagrams in the IB𝐹 fragment. This technique can exploit

the fact that the ZX-calculus contains IB to perform peephole optimisations on quantum circuits,

even though the latter have a more complex semantics than LinRel(Z2).
For yet another perspective, recall that IB enjoys a modular characterisation in terms of dis-

tributive laws of PROPs [BSZ14a], which prescribes that each diagram can be turned into cospan
form and span form. As observed, these correspond to -reduced and -reduced forms respectively:

thus our result provides algorithmic means to reach them, which were lacking in the abstract

picture. It also fills the main gap in formulating the realisability procedure for signal flow graphs

[BSZ15, BSZ17a] entirely as a diagram rewriting procedure.

8 CONCLUSIONS
Increasingly, string diagrams are establishing themselves as the yardstick formalism to reason

compositionally about graphical models of computation across different fields. These developments

demand a mathematical foundation of how to compute with equational theories of string diagrams,

seen as rewriting systems. In this work, we laid out such foundations, in the form of a sound and

complete interpretation of string diagram rewriting as double-pushout rewriting on a suitable

domain of hypergraphs. One fundamental aspect of this modelling is the presence of interfaces:
the compositional nature that is intrinsic to string diagrams has to be adequately mirrored in the

hypergraph interpretation, which we achieved by resorting to the theory of cospans, graphs with

interfaces and the associated notion of rewriting.

From the viewpoint of string diagrams, the key advantage of working under the hypergraph

interpretation is that the structural laws usually imposed on the diagrammatic syntax get absorbed

in the combinatorial representation. In this way, instead of having to deal with the subtleties of

rewriting modulo those structural laws, one may use double-pushout rewriting “on-the-nose” on

the corresponding hypergraphs.

Furthermore, we saw how absorbing all the structural laws becomes way subtler once there are

more than one Frobenius structure at stake. In that situation, we were able to come up with an



String Diagram Rewrite Theory I: Rewriting with Frobenius Structure 55

adequate interpretation by imposing extra structure to distinguish the different Frobenius algebras,

which was suitably normalised during the rewriting procedure.

We concluded the paper with an extended example, in which we proposed a terminating rewriting

strategy for the theory of Interacting Bialgebras. This is a well-studied diagrammatic calculus with

cross-disciplinary applications. The richness of the calculus, featuring two bialgebras and two

Frobenius algebras, had previously made it very difficult and unwieldy to study its rewriting

properties. Using our interpretation, the two Frobenius algebra structures get absorbed, leaving

only the bialgebra rules as non-trivial rewrites, which drastically simplifies its study. This led us to

a representation theorem, a reduction strategy, and a semantical view of such strategy as quantifier

elimination.

The work presented in this paper is only the first part of the story: we have presented a characteri-

sation of string diagram rewriting modulo Frobenius algebras, and showed that it matches naturally

double-pushout rewriting of hypergraphs with interfaces. But what about equational theories that

do not feature any Frobenius algebra? Building on the framework developed so far, in the sequel of

this paper we show how also these theories, in which rewriting just happens modulo the laws of

symmetric monoidal categories, without any additional structure, can be characterised in terms of

double-pushout rewriting. Next, we complete our framework by investigating confluence in the

context of string diagram rewriting.
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