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Scrambling in random unitary circuits: Exact results
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We study the scrambling of quantum information in local random unitary circuits by focusing on the tripartite
information proposed by Hosur et al. We provide exact results for the averaged Rényi-2 tripartite information in
two cases: (i) the local gates are Haar random and (ii) the local gates are dual-unitary and randomly sampled from
a single-site Haar-invariant measure. We show that the latter case defines a one-parameter family of circuits, and
prove that for a “maximally chaotic” subset of this family quantum information is scrambled faster than in the
Haar-random case. Our approach is based on a standard mapping onto an averaged folded tensor network, that
can be studied by means of appropriate recurrence relations. By means of the same method, we also revisit the
computation of out-of-time-ordered correlation functions, rederiving known formulas for Haar-random unitary
circuits, and presenting an exact result for maximally chaotic random dual-unitary gates.
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I. INTRODUCTION

Characterising chaos and dynamical complexity in quan-
tum many-body physics is a long standing problem. While
these concepts can be defined very precisely in classical
mechanics [1–4], the extension to the quantum theory is far
from straightforward. In the past decades, a large body of
the literature has focused on quantum Hamiltonians with a
well-defined semiclassical limit, aiming at understanding the
features that give rise to classical chaotic behavior when
h̄ → 0 [5]. Unfortunately, this approach is inadequate to
analyze many-body systems such as quantum spin-1/2 chains,
where there is no obvious semiclassical limit and the problem
appears even harder [6].

Recently, a renewed interest in quantum chaos came from
the study of black hole physics, also due to the discovery
of interesting connections to the phenomenon of scrambling
of quantum information [7,8]. In this context, an important
realization was that several aspects of quantum chaos and
scrambling are encoded in how the support of local observ-
ables increases during the quantum dynamics, as computed by
the out-of-time-ordered correlation (OTOC) functions [9–16].
The latter are expected to be complementary to other mea-
sures quantifying fingerprints of quantum chaos, such as the
operator-space entanglement entropy (OSEE) [17–25] of local
operators.

The appeal to characterize chaos in terms of the dynamics
of local operators lies in the fact that one does not need
to work in a semiclassical regime, and that quantities such
as OTOCs can be computed (and, in principle, measured)
directly for any many-body quantum system [26–42]. In prac-
tice, however, the calculation of OTOCs represents a major
challenge, which has provided an increasing motivation to
find simplified models for the chaotic dynamics where these

objects could be studied in some detail [43–61]. In particular,
a lot of attention has been devoted to different kinds of
random unitary quantum circuits, both with local [20,45–
53,62–76] and nonlocal gates [54–61]. At the same time,
interesting classes of nondisordered, dual unitary quantum
circuits have been introduced [43,77] and studied [23,24,78–
83], displaying the unique property of being both chaotic
and analytically tractable. In fact, apart from representing a
convenient idealization of the generic quantum many-body
dynamics, these systems can also be realized in practice using
arrays of superconducting qubits [84].

We note that, despite being very useful probes for the oper-
ator growth, some aspects of OTOCs are still not completely
understood. For instance, in lattice models with a finite lo-
cal Hilbert-space dimension, the semiclassical justification of
OTOCs appears problematic [30]. Furthermore, it is presently
debated which of their features, if any, would be able to
distinguish a typical local Hamiltonian dynamics from an
interacting integrable one [85]. For these reasons, it is still of
great interest to consider other possible measures of quantum
chaos and scrambling, and study their behavior in different
models.

A relevant example in this direction is given by the (neg-
ative) tripartite information (TI) of the evolution operator
introduced in Ref. [86]. This was suggested as a valuable
tool to quantify the scrambling power of a quantum channel,
namely its ability to delocalize information provided as an
input. Differently from OTOCs, this quantity is not defined
in terms of the dynamics of local operators, but is rather a
property of the time-evolution operator itself. Although very
appealing, the TI turned out to be very difficult to compute.
So far, it has only been obtained numerically in nonlocal
random circuits [56] and for small systems without disorder
[86,87], while analytic results could be derived exclusively
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for “perfect tensor” circuits [86], defined by gates that remain
unitary under arbitrary permutation of their indices (see also
Refs. [88–90], where the tripartite information of given states,
and not of the channel, was considered). More recently, an
asymptotic formula for the tripartite mutual information in
Haar-random circuits and for large local dimension d was
also obtained in Ref. [91], where the same quantity was also
computed numerically for Clifford circuits. Clearly, it would
be highly desirable to study the TI in more generic situations,
to further explore its general features.

In this work, we address this issue by computing exactly
the TI in local random unitary circuits. In particular, we
consider its averaged-purity version, and focus on two relevant
cases: (i) the local gates are Haar random and (ii) the local
gates are dual-unitary and randomly sampled from a single-
site Haar-invariant probability distribution. We also formulate
a conjecture for the behavior of the TI in completely chaotic
[23] clean dual-unitary circuits.

Our approach is based on a standard mapping of averages
of relevant physical quantities to “folded” tensor networks,
which are studied by deriving and solving appropriate re-
currence equations. We note that similar recurrence relations
appeared recently in the literature of quantum circuits (not
necessary random) [62,92], resulting from a mapping to a
classical spin model.

As a further application of this method, we also revisit the
computation of OTOCs. We will show that our recurrence re-
lations can be solved exactly for Haar-random unitary circuits,
rederiving the formulas first obtained in Refs. [46,47], by
means of a the aforementioned spin-model mapping [62,92].
Finally, we also present an exact result for random dual-
unitary gates.

The rest of this paper is organized as follows. In Sec. II,
we introduce the unitary circuits studied in this work and lay
out the formalism that we will employ for our calculations.
Section III is devoted to the computation of the tripartite
information, while in Sec. IV we tackle OTOCs. Finally, our
conclusions are reported in Sec. V, while the most technical
parts of our work are consigned to several appendices.

II. FORMALISM

We consider a chain of d-level systems (qudits), described
by a local Hilbert space H j � Cd with basis vectors | j〉 , j =
0, . . . , d − 1. We are interested in local unitary quantum
circuits where the dynamics is implemented by subsequent
discrete applications of the evolution operator

U =
⊗
x ∈Z

Ux,x+1/2

⊗
x∈Z+1/2

Ux,x+1/2. (1)

Here, Ux,y ∈ End(Cd ⊗ Cd ) are two-qudit gates acting on the
local spaces labeled by x and y. The quantum circuit dynamics
is conveniently represented in terms of “brick-wall” diagrams
which are reminiscent of the traditional notation of tensor-
network theory. In particular, in this language matrix elements
of local operators are denoted by boxes with a number of
incoming and outgoing legs. To each leg corresponds an index
associated with one of the local spaces on which the local
operator acts on. For instance, the two-qudit unitary gates U

and U † are written as

(2)

When legs of different operators are joined together a sum
over the index of the corresponding local space is understood.
Note that we added a mark to stress that U and U † are
generically not symmetric under space reflection (left to right
flip) and time reversal (up to down flip, transposition of U ).
The time direction runs from bottom to top, hence lower legs
correspond to incoming indices (matrix row) and upper legs to
outgoing indices (matrix column). Finally, an explicit label for
the legs can be omitted when it does not generate confusion.

In this work, we will be interested in two classes of models,
where the two-site gates (2) are drawn out of an appropriate
ensemble.

A. Haar-random quantum circuits

The first class we consider is that of Haar-random local
quantum circuits [45], where the two-qudit unitaries are cho-
sen by sampling the unitary group U (d2) from a uniform Haar
probability distribution.

Haar-random local quantum circuits have been extensively
studied over the past few years. One of the main reasons lies
in the fact that Haar-averages make the computation of several
physical quantities within the reach of analytic inspection,
providing tractable models for the chaotic dynamics and al-
lowing, for instance, for the derivation of remarkable results
on entanglement spreading [45,62–67,69–72] and the growth
of local operators [46–49].

In the following, we will denote Haar averages of physical
quantities by EHaar[. . .], where the subscript will be omitted
when it does not generate confusion.

B. Dual-unitary quantum circuits

As a second class of models, we will consider dual-unitary
quantum circuits, focusing in particular on two-site qubit gates
(d = 2) sampled from a single-site Haar-invariant measure, as
we explain below.

Dual-unitary quantum circuits have been recently intro-
duced in Ref. [77], as analytically tractable nondisordered
models for the chaotic quantum dynamics. The defining prop-
erty of a dual unitary gate U is that it remains unitary after a
given reshuffling of indices. More precisely, defining Ũ by

〈k|〈l|Ũ |i〉| j〉 = 〈 j|〈l|U |i〉|k〉, (3)

we say that U is dual-unitary if the operator Ũ is also unitary.
We note that both the unitarity and dual-unitarity condi-

tions can be expressed in a simple way by means of the graph-
ical notation introduced in Eq. (2). In particular, unitarity is
represented as

(4)
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while dual-unitarity reads

(5)

Here continuous solid lines represent the identity operator.
In the case of qubits, i.e., circuits with local dimension

d = 2, dual-unitary gates can be completely classified [77].
In particular, an arbitrary member of this family can be
parameterized as

U = eiφ (u+ ⊗ u−) · V [J] · (v− ⊗ v+), (6)

where φ, J ∈ R, u±, v± ∈ SU(2) and

V [J] = exp
[
−i
(π

4
σ x ⊗ σ x + π

4
σ y ⊗ σ y + Jσ z ⊗ σ z

)]
.

(7)

Some examples of dual unitarity gates for local dimension
d > 2 have been constructed in Refs. [81,82], although no
complete parametrization is known in these cases.

Several studies have now shown that the dual-unitarity
condition allows for the derivation of exact results for in-
teresting physical quantities such as dynamical correlation
functions [77], the dynamics of entanglement and correla-
tions after a quench [78,80], and the spectral statistics [43].
Up to now, however, the computation of dynamical chaos
indicators (such as local-operator entanglement or OTOCs)
in the chaotic regime has been achieved only by formulating
suitable conjectures [23,83]. Here we follow a different route,
showing that exact statements can be made by sampling dual-
unitary gates from an appropriate probability distribution and
considering the averaged results. From the structure of the
two-qubit gates (6), it is natural to consider an ensemble
where the matrix V [J] is fixed, while the operator u±, v±
are drawn from a Haar-invariant distribution over the group
U(2), and independently at different time steps. This defines a
single-site Haar-invariant measure for the two-site gates. This
means that the average of physical quantities is not affected
by transformations of the form

Ui ↔ (w1 ⊗ w2)Ui(w3 ⊗ w4) (8)

for arbitrary choices of wi ∈ U(2) (a similar random
ensemble—not involving dual-unitary matrices—was consid-
ered in Ref. [52]). We stress that the family of random dual-
unitary circuits defined above depends on one free parameter
J . In other words, this single-site Haar-invariant measure is
more constrained that the one adopted in Haar-random circuits
and, as a consequence, the averaged gate (see Sec. II C for its
definition and Eq. (81) for its explicit expression) has more
structure in this case.

In the following, we will denote averages of physical
quantities over the above random ensemble by Ed.u.[. . .],
where the subscript will be omitted when it does not generate
confusion. As in the case of Haar-random quantum circuits,
the averaged results are expected to be representative of the
individual dual-unitary realizations in the ensemble.

aj

aj

ak

→−�

FIG. 1. Pictorial representation of the folding procedure for the
two-point function defined in Eq. (9) by means of the graphical
notation introduced in Eq. (2) (left diagram). It is understood that
lower and upper open lines are joined together. By “folding” the
picture, each operator U † ends up lying on top of the corresponding
gate U T , leading to an evolution dictated by the doubled gates U † ⊗
U T . Note that white circles correspond to the boundary conditions
induced by the trace in Eq. (9), cf. Sec. II C.

C. The folded picture

In this work, we will make use of the so-called folded
picture, which is by now a standard tool in tensor-network
theory [93,94], and have been used extensively in the recent
literature of both clean [23,24,92] and random quantum cir-
cuits [20,46,47,62].

In essence, the folded picture consists in a way to represent
diagrammatically quantities involving products of operators
U and U†. The basic idea is easily explained by considering
the two-point correlation function on the infinite temperature
state

C j,k (t ) = 1

d2L
tr[a j (t )ak], (9)

where a j (t ) = [U†]t
a jU t , with a j an operator acting non-

trivially only on the local space j and 2L is the length of
the qudit chain. Eq. (9) can be represented by means of
the graphical notation introduced in Eq. (2), as reported in
Fig. 1. We can now imagine to “fold” the picture, so that,
after folding, each operator U † ends up lying on top of the
corresponding gate U T ((·)T denotes the transposition). This
leads to a representation where the evolution is dictated by
the “doubled” gates U † ⊗ U T , acting on a pair of “doubled”
qudits, each one associated with a local space H j ⊗ H j .

The advantage of the folded picture lies in the fact that
the building blocks U † ⊗ U T can be averaged independently
from one another. Furthermore, depending on the probability
distribution chosen, the disorder-averaged gates E[U † ⊗ U T ]
might display a relatively simple structure.

In this work, we will be interested in quantities that involve
two copies of the time evolution operator U and two of its
conjugate U†, so that we will need to repeat the folding
procedure two times. The building block associated with this
picture is U † ⊗ U T ⊗ U † ⊗ U T , for which we introduce the
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graphical notation

. (10)

The folded local gate W acts on End(Cd4 ⊗ Cd4
), namely the

thick legs are now d4-dimensional. For both Haar-random
[46] and random dual-unitary quantum circuits, W can be
computed exactly. In particular, as we will explicitly show
later, in both cases W acts nontrivially on a proper subspace
of Cd4 ⊗ Cd4

, leading to a lower effective local dimension for
the dynamics in the folded picture.

Before leaving this section, we introduce a last piece of
notation which we will use extensively in the next sections. In
particular, we define the following two states in the fourfold
local Hilbert space H⊗4

j

|©〉 = 1

d

⎛⎝d−1∑
j=0

| j〉1 | j〉2

⎞⎠⊗
⎛⎝d−1∑

j=0

| j〉3 | j〉4

⎞⎠, (11)

|�〉 = 1

d

⎛⎝d−1∑
j=0

| j〉1 | j〉4

⎞⎠⊗
⎛⎝d−1∑

j=0

| j〉2 | j〉3

⎞⎠, (12)

which are products of maximally entangled qudits between
different pairs of the four local copies of H j . Note that
〈©|©〉 = 〈�|�〉 = 1, and

〈©|�〉 = 1

d
. (13)

We chose to label these states by |©〉 and |�〉 to make direct
contact with the graphical notation that we use to denote them,
i.e., a circle and a square, respectively. Using this notation, we
can rewrite Eqs. (11) and (12) as

(14)

The notation introduced in Eq. (14) is particularly convenient,
because it allows us to write down in a simple way several
identities stemming from unitarity and dual unitarity. For
example, it is a simple exercise to verify that for unitary gates

(15)

(16)

We stress that similar notations and identities were also used,
e.g., in Ref. [46,62,92].

Finally, we introduce the two bases for the fourfold local
Hilbert space H⊗4

j

(17)

(18)

C
inputoutput

BD A

FIG. 2. Pictorial representation of the state |U〉〉 defined in
Eq. (21). The operator U is denoted by a box, while its legs corre-
spond to the local Hilbert spaces H j , with the input legs being “bent.”
Both the input and output sets of qudits have been partitioned into
two regions: A, B, and C, D respectively.

where

(19)

and . Here {aα}d2−1
α=0 is a Hilbert-Schmidt-

orthonormal basis of local operators on Cd , namely
tr[(aα )†aβ] = δα,β , with a0 = 1/

√
d .

III. RÉNYI-2 TRIPARTITE INFORMATION

A. General definition

As anticipated in the introduction, the main object of
study of this work is the tripartite information introduced
in Ref. [86], which represents a very intuitive measure to
quantify the notion of scrambling of quantum information. We
briefly define it here, following the discussion of Ref. [56].

For the moment, we consider a finite system of 2L qudits
(we will take the limit L → ∞ at the end), associated with
a Hilbert space H1,...,2L. In order to study the scrambling
properties of the unitary operator U (which can be, for in-
stance, a quantum circuit), we first promote it to be a state
in a suitable space. To this end, it is convenient to follow a
different procedure with respect to the “folding” discussed
in the previous section. We introduce a copy of the original
Hilbert space H′

1,...,2L, and define the maximally entangled
state |I〉 ∈ H1,...,2L ⊗ H′

1,...,2L as

|I〉 = 1

dL

∑
{ j}

|{ j}〉 ⊗ |{ j}〉, (20)

were |{ j}〉 are a set of basis vectors for H1,...,2L. Now, the
operator U can be interpreted as a state in H1,...,2L ⊗ H′

1,...,2L
through the Choi-Jamiolkowski mapping

U → |U〉〉 = (1 ⊗ U )|I〉, (21)

as pictorially reported in Fig. 2.
Given |U〉〉, we can compute the entanglement entropy be-

tween different spatial regions in the input and output qudits.
We consider in particular bipartitions into the complementary
subsystems A, B and C, D respectively, as reported in Fig. 2.
Finally, given a pair of bipartitions (A, B) and (C, D), we
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define the tripartite information as [86]

I3(A : C : D) = I (A : C) + I (A : D) − I (A : CD), (22)

where CD denotes the union of the regions C and D. Here,
I (X : Y ) is the mutual information between the regions X
and Y

I (X : Y ) = SX + SY − SXY , (23)

where SX is the von Neumann entropy of the reduced density
matrix ρX , namely, SX = −trρX ln ρX . Note that, even if this is
not apparent from the definition (22), the tripartite information
is symmetric under all permutations of its arguments [86].

From Eq. (22), we can appreciate that −I3(A : C : D) quan-
tifies the amount of information on the input region A that can
be recovered by global measurements in C ∪ D, but can not
be obtained by probing C and D individually. Thus, if −I3(A :
C : D) is large the information localized in a subsystem A of
the input state can be recovered only by global measurements
in the output state, signaling efficient scrambling of quantum
information. Accordingly, we define U to be a good scrambler
if for any bipartition of the sets of input and output qudits,
I3(A : C : D) is negative with an absolute value close to the
maximum possible value allowed by the geometry [86].

At this point, we note that the computation of the tripartite
information (22) is a very difficult task in random quantum
circuits. Indeed, computing the von Neumann entanglement
entropies is notoriously hard. For this reason, we study a
simpler but closely related quantity, which is obtained from
I3(A :C :D) by considering Rényi entropies

I (2)
3 (A : C : D) = I (2)(A : C) + I (2)(A : D) − I (2)(A : CD),

(24)
where

I (2)(X : Y ) = S(2)
X + S(2)

Y − S(2)
XY (25)

and

S(2)
X = − ln E

[
tr
(
ρ2

X

)]
. (26)

We stress that, strictly speaking, S(2)
X is not the averaged Rényi

entropy of order 2, as the disorder average is taken inside
the logarithm. However, for large subsystems one expects
the effect of fluctuations in the disorder to be small, so that
S(2)

X can be considered a good approximation for the Rényi-2
entropy. This has been tested by studying quench problems
in Haar-random circuits: it was shown that the two quantities
show the same qualitative behavior up to small corrections to
the slope [47,62].

B. The folded tensor network

In this section, we show how the Rényi-2 tripartite informa-
tion (24) can be written in terms of folded tensor networks. As
a starting point, we note that Eq. (24) can be simply rewritten
as

I (2)
3 (A,C, D) = 2L ln d − S(2)

AC − S(2)
AD, (27)

where S(2)
AC and S(2)

AD are the Rényi-2 operator entanglement en-
tropies of the time evolving operator referring to the partitions
depicted in Fig. 3. More precisely, we have

S(2)
I = − ln tr E

[
ρ2

I

]
, I = {AC, AD}, (28)

FIG. 3. Pictorial representation of the bipartition considered
in this work. The input qudits are divided into the sets A =
(−∞, 0], B = (0,+∞), while for the bipartition of output qudits we
choose C = (−∞, x], D = (x, +∞).

where the disorder average is taken as in Eq. (26), while the
density matrices are defined by their matrix elements

[ρAC]sAsC

s′
As′

C
= 1

d2L

∑
|r〉 ∈ CB

|r′〉 ∈ CD

[U t ]sAr
sC r′[U−t ]s′

C r′

s′
Ar , (29)

[ρAD]sAsD

s′
As′

D
= 1

d2L

∑
|r〉 ∈ CB

|r′〉 ∈ CC

[U t ]sAr
r′sD

[U−t ]r′s′
D

s′
Ar , (30)

where CX is an orthonormal basis of C|X |.
Equation (27) can be further simplified, by taking the

“thermodynamic limit” L → ∞, and by restricting to a special
class of bipartitions of the input and output qudits. In particu-
lar, in the rest of this work we choose

A = (−∞, 0], B = (0,+∞), (31a)

C = (−∞, x], D = (x,+∞), (31b)

where |x| � t (I (2)
3 vanishes if this condition is violated). We

note that, while this choice is not the most general (it only
involves connected intervals), it is the most natural one to
consider in the thermodynamic limit L → ∞ [86].

We now represent (29) and (30) diagrammatically and fold
the circuit two times as described in Sec. II C (see Appendix A
for the detailed procedure) to find

S(2)
AC = − lnE[Z1(x+, x−)], (32)

S(2)
AD = (2L − x+ − x−) ln d − lnE[Z2(x+, x−)], (33)

where we introduced the light-cone coordinates

x+ ≡ t + �x�, x− ≡ t − �x�, (34)

with �x�, �x� denoting the floor and ceiling functions re-
spectively [95]. Here {Zj (x, y)}2

j=1 are partition functions

064305-5



BRUNO BERTINI AND LORENZO PIROLI PHYSICAL REVIEW B 102, 064305 (2020)

admitting the graphical representation

(35)

and

(36)

The green rectangles denote the folded gates introduced in
Eq. (10), while we made use of the notation in Eq. (14) for
the boundary states. Next, plugging Eqs. (32) and (33) into
(27) we arrive at [96]

lim
L→∞

I (2)
3 (x, t ) = ln(d (x++x− )E[Z1(x+, x−)])

+ lnE[Z2(x+, x−)]. (37)

We see that the tensor networks (35) and (36) differ only
for the boundary conditions. In Sec. IV we will see that also
the OTOCs can be expressed in terms of very similar partition
functions (again, with different boundary conditions). As dis-
cussed in Ref. [92], this is a generic feature of all scrambling
measures. More precisely, considering a measure involving
n copies of the time evolution operator and n copies of its
Hermitian conjugate (for example, the tripartite information
(27) defined with Rényi entropies of order n or the local oper-
ator entanglement measured with Rényi entropies of order n/2
[23]) one can again write it in terms of partition functions like
Z1(x, y) or Z2(x, y) with two main differences. First, the local
gate is obtained by “piling up” 2n gates (n copies of U T and n
copies of U †), second the legs correspond to d2n dimensional
local spaces. In this respect, (27) represents a minimal case:
it is a measure of scrambling obtained by piling up the lowest
number of local gates.

The discussion carried out so far is general, and applies for
arbitrary ensembles of random quantum circuits. In the two
following subsections we will show how (37) can be com-

puted explicitly in the minimal settings discussed in the in-
troduction, namely, Haar-random unitary circuits and random
dual-unitary circuits. Our approach is based on writing down
suitable recurrence relations fulfilled by the tensor networks
(35) and (36). These equations will be solved exactly for Haar
random circuits while for random dual-unitary circuits they
will be truncated to provide strict bounds. In the Haar-random
case, this approach can be thought of as an alternative point
of view with respect to the one put forward in Refs. [62,92]
(see also Refs. [45–47]). While the latter references exploit a
mapping between averaged tensor networks like (35) and (36)
and classical spin models in 2d here we will work directly
with the tensor network.

C. Tripartite information in Haar random unitary circuits

Our goal is to evaluate the averages in Eqs. (35), (36),
when the gate U [cf. Eqs. (2), (10)] is Haar-random and
independently distributed at each site and half-time step. In
this case, the average of W can be evaluated using simple
group theoretical arguments, see, e.g., Refs. [46,62,92]. In our
notation the result reads as

(38)

where w(©,©) = w(�,�) = 1 and w(©,�) =
w(�,©) = −1/d2, and were we denoted the averaged
gate by a gray rectangle. The operator (38) projects onto a
two-dimensional Hilbert space spanned by the basis

B = {|©©〉 , |�©〉, |©�〉, |��〉}. (39)

Note that this basis is not orthogonal as 〈©|�〉 = 1/d [cf.
Eq. (14)]. The action of the averaged gate on this nonorthog-
onal basis is defined by the relations (15), coming from
unitarity, together with

(40)

(41)

which can be verified by a direct calculation.
These identities can be used to write down some recursive

equations for EHaar[Z1(x, y)] and EHaarZ2(x, y)] that uniquely
specify them. Let us consider, for instance, the averaged
partition function EHaar[Z1(x, y)], where Z1(x, y) is defined
in Eq. (35): using Eq. (41) for the bottom right corner, it
is immediate to derive the following equation, expressed in
graphical notation

(42)
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Now, making repeated use of the second identity in Eq. (15),
we can “pull” to the left the rightmost white square in the last
line of the first term in Eq. (42). By doing this, the diagram
is cast into a rectangular lattice. Analogously, we can use the
first identity in Eq. (15), to get rid of the rightmost column in
the second term of Eq. (42). Putting all together, we obtain

E[Z1(x, y)] = d

d2 + 1
E[Z1(x − 1, y)]

+ d

d2 + 1
E[Z1(x, y − 1)], (43)

where we omitted the subscript specifying the type of av-
erage and in the final step we used 〈©|©〉 = 〈�|�〉 = 1.
Equation (43) is a recurrence relation for the averaged par-
tition function, and completely specifies it once the initial
“boundary” conditions are assigned, namely once the func-
tions E[Z1(x, 0)] and E[Z1(0, y)] are known. We stress that
similar recurrence relations appeared elsewhere in the recent
literature (see, e.g., the recurrence equation for the Rényi-2
entropy for the state entanglement in Ref. [45]).

The boundary conditions for (43) can be determined
exactly, by repeating the same graphical derivation for
E[Z1(x, 1)] and E[Z1(1, y)]. This is straightforward: in the
first case it leads to the equation

E[Z1(x, 1)] = d

d2 + 1
E[Z1(x − 1, 1)] + d1−x

d2 + 1
. (44)

We note that this is of the form (43), provided that we make
the identification

E[Z1(x, 0)] = d−x. (45)

Analogously, we can repeat the graphical derivation in
Eq. (42) for the averaged partition function E[Z1(1, y)]. Fol-
lowing the same steps this yields

E[Z1(0, y)] = d−y. (46)

Equations (45) and (46) provide the initial conditions for the
recurrence relation (43), which thus completely determines
E[Z1(x, y)] for all x, y > 1.

A very similar derivation can be carried out, up to minor
modifications, for the averaged partition function E[Z2(x, y)].
In particular, using 〈©|�〉 = 〈�|©〉 = 1/d , we find the re-
currence relation

E[Z2(x, y)] = 1

d2 + 1
E[Z2(x − 1, y)]

+ 1

d2 + 1
E[Z2(x, y − 1)], (47)

where now the boundary conditions are

E[Z2(x, 0)] = E[Z2(0, y)] = 1. (48)

The recurrence relations (43) and (47), with boundary condi-
tions (45), (46), and (48) can be solved by elementary methods
(see Appendix D), and their solution reads

E[Z1(x, y)] = 1

dx−y
− dx+y f (x, y), (49)

E[Z2(x, y)] = 1

d2y
+ f (x, y), (50)

with

f (x, y) = d−2xg(x + y − 1, y − 1, p)

− d−2yg(x + y − 1, y − 1, 1 − p), (51)

where we introduced the function

g(n, a, s) =
a∑

k=0

(
n

k

)
sk (1 − s)n−k (52)

and defined

p = 1

d2 + 1
. (53)

Plugging the solutions (49) and (50) into Eq. (37) we find an
exact expression for I (2)

3 (x, t ), which is analyzed in the rest of
this section. Specifically, choosing for simplicity x ∈ Z+ (i.e.
x positive integer), it reads as

lim
L→∞

eI (2)
3 (x,t ) = 1 + (d2t−2x − d2x+2t ) f (x+, x−)

− d4t f (x+, x−)2. (54)

First, we focus on the asymptotic rate at which the negative tri-
partite information −I (2)

3 (x, t ) grows at large times (for a fixed
value of x), which quantifies how fast quantum information is
scrambled by the circuit. To this end, we note that for large
values of t the second term in Eq. (51) becomes negligible
and we can write

f (x+, x−) � 1

d2t+2x

t−x−1∑
k=0

(
2t − 1

k

)
pk (1 − p)2t−1−k . (55)

At large times, this function takes the following asymptotic
form, as can be proven by a simple application of the Stirling
formula

f (x+, x−) � 1

d2t+2x
− 1

d2t+2x
22t−1 pt−x(1 − p)t+x−1. (56)

Plugging Eq. (56) into Eq. (54) and retaining only the leading
terms, we finally arrive at

I (2)
3 (x, t ) = −2t ln

(
d2 + 1

2d

)
+ O(1). (57)

We have tested this formula against numerical evaluation
of Eq. (54) for different values of x and d , finding perfect
agreement. This is shown in Fig. 4, displaying our numerical
results for 	I (2)

3 (x, t )/t where

	I (2)
3 (x, t ) = ∣∣I (2)

3 (x, t ) + 2t ln[(d2 + 1)/2d]
∣∣. (58)

It is interesting to note that the growth rate for the tripartite
information coincides with the purity speed vP computed in
Ref. [46]. The latter was defined as the rate at which the
Rényi-2 entropy increases after a quench from any product
state. This result is not at all obvious, since Rényi mutual
information and entropy are two distinct quantities. For in-
stance, for a circuit made of swap gates, cf. Sec. III D, the
Rényi-2 entropy can have maximal growth for particular prod-
uct states made of Bell pairs [80], but the tripartite information
remains zero at all times for any bipartition of the output [86].

Next, we address the variation of the tripartite information
as a function of x, defined as in Fig. 3 (we assume again
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FIG. 4. Large-time limit of I (2)
3 (x, t ). Main panel: the plot shows

	I (2)
3 (x, t )/t where 	I (2)

3 (x, t ) is defined in Eq. (58), where we chose
x = 0, and increasing local dimension d . (Inset) Log-log plot for the
same quantity and d = 2.

x ∈ Z+). For a given time t , the tripartite information will
be zero for x � t , since quantum information on the region
A has not yet propagated into D. On the other hand, for
x � t Eq. (57) holds, and the tripartite information becomes
negative with large absolute value. We are interested in the
intermediate transient regime. Based on physical intuition, we
expect I (2)

3 (x, t ) to develop a front, which propagates at a given
velocity and possibly broadens with time, in analogy with the
picture established for the operator spreading in Haar-random
circuits [46,47].

We can make this intuition precise by focusing on eI (2)
3 (x,t ),

which admits a coarse-grained description at large times.
Specifically, in the large-time regime the leading behavior of
eI (2)

3 (x,t ) is captured by taking a continuous limit approximation
in the right-hand side of Eq. (55), namely,

f (x+, x−) � 1

d2t+2x



(
vBt − x

σ (t )

)
, (59)

where we defined


(y) = 1√
2π

∫ y

−∞
e−s2/2ds (60)

and introduced

vB = d2 − 1

d2 + 1
, σ (t ) = d

√
2t

d2 + 1
. (61)

Plugging (59) into (54) and considering the leading-order
contribution, we find

lim
L→∞

eI (2)
3 (x,t ) � 1 − 


(
vBt − x

σ (t )

)
. (62)

From this equation we see that eI (2)
3 (x,t ) changes from one to

zero over a region that moves with “butterfly velocity” vB, and
which broadens over a region σ (t ). This is displayed in Fig. 5,
where we compare the exact numerical data with the coarse-
grained description.

We stress that vB and σ (t ) are exactly the same as the
corresponding quantities appearing in the growth of local
operators [46], see also Sec. IV A (note that in our conventions

0 25 50 75 100 125 150
x

0.0

0.2

0.4

0.6

0.8

1.0

eI
(2

)
3

(x
,t
)

t = 40

t = 80

t = 120

t = 160

FIG. 5. Exponential tripartite information eI (2)
3 (x,t ) at different

times, as a function of x ∈ Z+. The exponential of the tripartite infor-
mation develops a front which propagates with butterfly velocity vB,
and broadens diffusively in time, cf. the main text. Lines correspond
to the exact result (54), while dots are obtained using the analytic
function in Eq. (59).

time t and space x are rescaled with respect to Ref. [46] by
a factor 1/2, which causes σ (t ) to have an additional factor
1/

√
2). This could be expected based on the close connection

between the OTOCs and the tripartite information established
in Ref. [86].

D. Tripartite information in dual unitary circuits

Let us now focus on the tripartite information for dual-
unitary quantum circuits. In this case, the folded tensor (10)
inherits additional properties from the dual-unitarity condi-
tions (15)–(16), which read

(63)

(64)

These relations allow us to immediately simplify the partition
function Z1(x, y) in Eq. (33). Indeed, by multiple use of, say,
the second of (64) from the bottom-left corner of Eq. (36) we
have

Z1(x, y) = 〈©|�〉x+y = d−(x+y), (65)

so that, from Eq. (37), we find

lim
L→∞

eI (2)
3 (x,t ) = E[Z2(t + �x�, t − �x�)]. (66)

Before embarking in the full calculation for random dual-
unitary circuits, let us discuss a few general properties of
Eq. (66), holding also in the nonrandom case.
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1. Nonrandom case: A conjecture

First, we note that for the SWAP gate

(67)

we can immediately compute

Z2(x+, x−)
∣∣
SWAP = 〈�|�〉x− 〈©|©〉x+ = 1. (68)

This means that I (2)
3 (x, t )|SWAP = 0, i.e., the SWAP gate does

not scramble, as already noted in Ref. [86].
Second we observe that the partition function Z2(x, y) can

be expressed in terms of row and column transfer matrices as
follows:

Z2(x, y) = 〈© . . . ©︸ ︷︷ ︸
x

|(T ��
x )y| © . . . ©〉

= 〈� . . .�︸ ︷︷ ︸
y

|(T ©©
y )x|� . . .�〉, (69)

where we introduced

(70)

(71)

These matrices fulfill the following two properties. (a) They
are contracting, i.e. their eigenvalues lie within the unit cir-
cle in the complex plane [97]. (b) The state ⊗x

i |©〉i is an
eigenvector of T ©©

x with eigenvalue one, while ⊗x
i |�〉i is an

eigenvector of T ��
x with eigenvalue one. This can be shown

by repeated use of the graphical identities in Eqs. (15) and
(16).

Therefore, if the gate U is such that the matrices T ©©
x and

T ��
x have no other eigenvectors with eigenvalue 1 except for

⊗x
i |©〉 and ⊗x

i |�〉 (the class of gates with this property have
been termed “completely chaotic” in Ref. [23]) one finds

lim
x→∞ Z2(x, y) = 〈�|©〉2y = d−2y, (72)

lim
y→∞ Z2(x, y) = 〈�|©〉2x = d−2x. (73)

Using this result one can formulate the following conjecture
for the leading order in time of the partition function:

Z2(x+, x−) ≈ Z2(x+,∞) + Z2(∞, x−)

≈ d−2x+ + d−2x− , (74)

where we neglected subleading terms. This conjecture for
the Rényi-2 Tripartite Information is analogous to the one
put forward in Ref. [23] for the Rényi-n Local Operator
Entanglement Entropies, and corresponds to assume that the
leading configurations in the partition sum Z2(x, y) are those
having unit weight (which is the maximal one) in the bulk and
are suppressed only at the boundary.

Restricting now for simplicity to x ∈ Z, the conjecture (74)
gives us the following result for the tripartite information:

lim
L→∞

eI (2)
3 (x,t ) t�1≈

{
d−2t−2x + d−2t+2x |x| � t
1 |x| > t

. (75)

First we note that, since (d2 + 1)/(2d ) < d for d > 1,
Eq. (75) predicts that completely chaotic dual-unitary circuits
scramble faster than random ones. In particular, they display,
asymptotically, the maximal possible growth rate for the
negative tripartite information, which is the same of perfect
tensors [86]. We stress, however, that in the latter case such
rate is exact also at short times, while for dual-unitary circuits
it is expected to generically emerge only asymptotically.

Second, we see that for x ∼ t � 1 we find

lim
L→∞

eI (2)
3 (x,t ) � d−2 max[t−x,0]. (76)

This expression is again showing that eI (2)
3 (x,t ) changes from

one to zero as we approach the center of the light cone.
However, it features two main differences with respect to (62).
First we see that in this case vB = 1 (in accordance with recent
results for OTOCs [83]), and second the region over which the
transition happens is now independent of time. In other words,
dual unitary circuits show no diffusive broadening of the front.

In the next section, we will prove the conjecture in Eq. (75)
for random dual-unitary circuits with d = 2.

2. Random case: An exact result

We consider quantum dual-unitary circuits with local
Hilbert space of dimension d = 2. The elementary gates were
introduced in Eq. (7), while random averages are taken as
discussed in Sec. II B. By direct calculation, we find that the
effective dimension of the local Hilbert space in the folded
picture is reduced, after averaging, from 24 to 2, analogously
to the case of Haar-random unitaries. In particular, the nontriv-
ial subspace is again spanned by the nonorthogonal basis (39).
Thus, recalling the definition of Z2(x, y) given in Eq. (36), we
denote Ed.u.[Z2(x, y)] by

(77)
where we omitted the subscript “d.u.,” while we used the
notation in Eq. (14) for the boundary states. Finally, orange
squares represent the folded dual-unitary gates averaged from
the single-site Haar invariant probability distribution.

In the following, it will be more convenient to express the
averaged gate in an orthogonal basis. We find that two suitable
choices are

B1 = {|©©〉 , | ©〉 , |© 〉 , | 〉}, (78)

B2 = {|��〉 , |��〉 , |��〉 , |��〉}, (79)
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where we introduced

| 〉 = 2 |�〉 − |©〉√
3

, |�〉 = 2 |©〉 − |�〉√
3

. (80)

After a simple calculation, we find that the local gate Ed.u.[W ]
takes the following form in both the basis B1 and B2:

(81)

where

a = a(J ) := 1 − 2
3 cos(2J )2, (82)

and where J is the free parameter introduced in Eq. (7). Even
if the matrix in Eq. (81) is not unitary, it is straightforward
to see that the properties (15), (16) and (63), (64) still hold,
namely,

(83)

(84)

(85)

(86)

First, note that a(J ) ∈ [1/3, 1] and that for a(J ) = 1 the
gate becomes the SWAP gate. This means that

E[Z2(x+, x−)]|a=1 = 1. (87)

This result tells us that if a(J ) = 1, then the circuit does not
scramble, despite taking disorder average. This can be easily
understood by looking at Eq. (7). Indeed, it is straightforward
to see that in this case the evolution consists in a SWAP circuit
followed by a single layer of single-site unitary operators.
Clearly, we do not expect for such a circuit to scramble
quantum information.

In the following, we thus consider a < 1. Our main result
consists in proving that there exist a finite value a∗, with
0.683013 < a∗ � 1, such that

lim
t→∞ 4tE[Z2(x+, x−)]|a<a∗ = 4−x + 4x, (88)

where we assumed for simplicity x ∈ Z. We will prove this
limit by providing strict bounds for the partition function in
Eq. (77). This will be done by writing a set of recursive
relations fulfilled by E[Z2(x, y)] and appropriately truncating
them.

We begin by defining the following transfer matrices, that
are obtained by taking the single-site Haar average of the
operators in Eqs. (70) and (71)

(89)

(90)

Since Ed.u.[W ] has the same form in the basis B1 and B2 [cf.
(78) and (79)] and it is real and symmetric, the two matrices
are the same up to a basis transformation, namely,

T̄ ��
x =

[
x⊗
i

R̄†

]
T̄ ©©

x

[
x⊗
i

R̄

]
, (91)

where

R̄ = 1

2

(
1

√
3√

3 −1

)
, (92)

so from now on we will consider only one of them, say T̄ ��
x .

To find recursive relations for E[Z2(x, y)] we first note that,
taking the average of (69), one can view the partition function
as the expectation value of (T̄ ��

x )y on the “boundary state”
|© . . . ©〉. Next, we employ the following useful identity
(proven in Appendix B).

Property 1. The transfer matrix T̄ ��
x acts as follows on the

boundary state |© . . . ©〉

T̄ ��
x |© . . . ©〉 = 1

4
|© . . . ©〉 + 3

4
|©′ . . . ©′〉, (93)

where we introduced

|©′〉 = a |©〉 + 1 − a√
3

| 〉 = 1

2
|�〉 +

√
3

2

4a − 1

3
|�〉. (94)

Note that for a = 1/4

|©′〉 = 1

2
|�〉 (95)

and property 1 allows one to find an exact expression for
E[Z2(x, y)]|

a= 1
4

. Indeed, using (93) we immediately find the

following recursion equation:

E[Z2(x, y)]]|
a= 1

4
= 1

4
E[Z2(x, y − 1)]|

a= 1
4

+ 3

4x+1
, (96)

with initial condition E[Z2(x, 0)]|a=1/4 = 〈©|©〉x = 1. This
relation is directly solved by

E[Z2(x, y)]|
a= 1

4
= 1

4x
+ 1

4y
− 1

4x+y
. (97)

The value a = 1/4, however, is “unphysical” because Eq. (82)
implies a ∈ [1/3, 1] for J real.

When a is generic, instead, the recurrence equation reads
as

E[Z2(x, y)] = 1
4E[Z2(x, y − 1)] + 3

4E[Z3(x, y − 1)], (98)
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where we introduced

(99)

Note the symbol ©′ refers to the state (94) and that
E[Z3(x, 0)] = 〈©|©′〉x = ax. These relations are comple-
mented by

E[Z3(x, y)] = 1
4E[Z3(x, y − 1)] + 3

4E[Z4(x, y − 1)], (100)

where we introduced

(101)
fulfilling E[Z4(x, 0)] = 〈©′|©′〉x = (a2 + (a − 1)2/3)x. The
inductive relation (100) is found by using property 1 for bra
states.

Since the recurrence relations (98) and (100) do not form
a complete set, one would need to find a third independent
equation in order to solve them. This, however, is not possible
only using the dual-unitary conditions (83)–(86). Instead, we
will find suitable lower and upper bounds for E[Z4(x, y)]. We
will see that for small enough a these bounds give the same
leading order in time.

First of all we note that, as shown in Appendix D,
Eqs. (98)and (100) are formally solved by

E[Z2(x, y)] = 1

4y
+ 3

4y

y−1∑
k=0

4kE[Z3(x, k)], (102)

E[Z3(x, y)] = ax

4y
+ 3

4y

y−1∑
k=0

4kE[Z4(x, k)]. (103)

These relations can be used to eliminate E[Z3(x, y)]: indeed,
plugging the second equation into the first one, we obtain

E[Z2(x, y)] = 1

4y
+ 3yax

4y
+ 9

4y

y−1∑
k=0

k−1∑
h=0

4hE[Z4(x, h)].

(104)

Now, we note that E[Z4(x, y)] can be written as an expectation
value of (T̄ ��

x )y as follows:

E[Z4(x, y)] = 〈©′ . . . ©′ |(T̄ ��
x )y| ©′ . . . ©′〉 . (105)

This object can be bounded by finding the first largest
eigenvalues of T ��

x (and the relative eigenvectors). This is
achieved by using the following property, which is proven in
Appendix C.

Property 2. The matrix T̄ ��
x is positive definite and has

the following spectral decomposition

T̄ ��
x =P�

0 +a
x∑

k=1

P�
k +
[

a2+ (a − 1)2

3

] x∑
k=2

Q�
k +R�

x , (106)

where we defined

P�
k := |� . . .��︸ ︷︷ ︸

k

� . . .�〉〈� . . .��︸ ︷︷ ︸
k

� . . .�|, (107)

Q�
k := |� . . .���︸ ︷︷ ︸

k

� . . .�〉〈� . . .���︸ ︷︷ ︸
k

� . . .�|, (108)

and the “reminder” R�
x —nonzero only in the subspace defined

by 1 −∑x
k=0 P�

k −∑x
k=2 Q�

k —has operator norm

|R�
x | �

[
a2 + (a − 1)2

3

]
. (109)

Note that for 1/4 < a < 1

a > a2 + (a − 1)2

3
. (110)

so that property 2 gives the 2x largest eigenvalues of T̄ ��
x and

the corresponding eigenvectors.
By means of the above property, we see that performing

the replacement

T̄ ��
x → P�

0 + a
x∑

k=1

P�
k (111)

in Eq. (105) we obtain a lower bound for E[Z4(x, y)]. This is
true because T̄ ��

x is positive definite and yields

E[Z4(x, y)] � 1

4x
+ 3ayx

4x
. (112)

An upper bound can instead be found by replacing R�
x with

[a2 + (a − 1)2/3]1 in (106) and leads to

E[Z4(x, y)] � 1

4x
+ 3ayx

4x
+
[

a2 + (a − 1)2

3

]y

〈� ′|� ′〉 ,

(113)
where we defined

|� ′〉 =
[
1 − P�

0 −
x∑

k=1

P�
k

]
|©′ . . . ©′〉. (114)

We note that

〈� ′|� ′〉 =
([

a2 + (a − 1)2

3

]x

− 1

4x
− (4a − 1)2

3 · 4x

)
∼
[

a2 + (a − 1)2

3

]x

, (115)

Finally, retaining only the leading terms, we arrive at the final
result

E[Z2(x+, x−)] � 1

4x+
+ 1

4x−
, (116)
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FIG. 6. Numerical results for the averaged partition function
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are obtained by numerical contraction of the tensor network (77), by
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to the maximal rate −2 ln 2.

E[Z2(x+, x−)]

� 1

4x+
+ 1

4x−
+ 81

(4a − 1)4

[
a2 + (a − 1)2

3

]x++x−

. (117)

Therefore Eq. (88) holds as long as[
a2 + (1 − a)2

3

]2

� 1

4
, (118)

which, as anticipated, gives a < 0.683013.
As discussed before this result implies that for a < a∗,

with 0.683013 < a∗ � 1, the Rényi-2 tripartite information
decreases with the maximal slope. An interesting question
concerns the exact value of a∗, or, better whether it is equal to
one or smaller. Indeed, a value strictly smaller than one would
imply a nontrivial gate-dependence on the rate of growth
(we remind the reader that the latter vanishes at a = 1). This
kind of behavior has been recently observed in the local
operator entanglement [23]. In the current case, however, we
find evidence that this does not happen, as we explain below.
Accordingly, we conjecture that a∗ = 1.

First we remark that a direct consequence of property 2 is
that the average gate (81) is completely chaotic for any a �= 1,
namely,

lim
x±→∞ 4x∓E[Z2(x+, x−)] = 1, ∀a < 1. (119)

This means that in our case Conjecture (74) gives a∗ = 1,
while the very same conjecture revealed the gate dependence
of the operator entanglement’s slope in Ref. [23].

Second, our numerical experiments are consistent with
a∗ = 1. We see that for each fixed t lnE[Z2(x+, x−)]/t de-
creases with a, approaching a plateau at small a. The region of
a corresponding to the plateau grows with time and—although
we are limited to fairly small times—seems to approach
[1/3, 1] (i.e., the whole allowed range) in the infinite time
limit. As a representative example, we report in Fig. 6 numeri-
cal results obtained by direct contraction of the tensor network

in Eq. (77) for x = 0, corresponding to x− = x+ = t , and
increasing values of time. This was done using the ITENSOR

library [98].

IV. OUT-OF-TIME-ORDER CORRELATORS

The approach developed in the last section is adequate to
study a large variety of quantities involving four copies of
the evolution operator U . As a further nontrivial example,
in this section we revisit the computation of the OTOCs,
which has been considered both for Haar-random [46,47] and
dual-unitary circuits [83].

Let us denote by {aα
x } a Hilbert-Schmidt orthonormal basis

of local operators at site x cf. (19). The OTOCs are defined as

Oαβ (x̃+, x̃−) = 1

dL
tr
[
aα

0U
−t aβ

x U
t aα

0U
−t aβ

x U
t
]
. (120)

Here, in order to make direct contact with other works in the
literature, we use slightly different “light cone” coordinates

x̃+ = t + 1 + �x�, x̃− = t − �x�. (121)

We can now apply the folding procedure, as explained in
Appendix II C, and represent Oαβ (x, y) in terms of a partition
function. In particular, using the usual “folded” notation, we
have

(122)
where we used the notation (14) for the boundary states, while

and were defined in Eq. (19). Here, we assumed
x ∈ ZL. In the case where x ∈ ZL + 1/2, the graphical rep-
resentation (122) should be modified by flipping the states at
the top left corner.

Performing the average of (120) we see that the operator
dependence is drastically simplified. Specifically we find

E[Oαβ (1, 0)] = 1

d
tr
[
aα

0 aβ

0 aα
0 aβ

0

]
, (123)

E[Oαβ (x � 1, 0)] = E[Oαβ (0, y � 0)] = 1, (124)

E[Oαβ (x � 1, y � 1)] = E[O(x, y)], (125)
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where we defined

(126)

Here we introduced the states | 〉 and |�〉 by generalising the
definition (80) to any d as follows

| 〉 = d |�〉 − |©〉√
d2 − 1

, |�〉 = d |©〉 − |�〉√
d2 − 1

. (127)

The partition function (126) can be analyzed using the method
developed in the previous section. As before, we treat sep-
arately the cases of Haar-random circuits and random dual-
unitary circuits.

A. OTOCs in random unitary circuits

In Refs. [46,47], the OTOCs for Haar-random circuits
were computed by mapping the folded tensor network onto a
partition function of a 2D Ising model (see also Refs. [62,92]).
In this section, we show that one can arrive at the same result
by deriving a set of recurrence relations starting directly from
the average of the partition function (126).

First we observe that, using the definition (127) and the
identities (15) and (16), the average of the partition function
(126) can be written as

E[O(x, y)]= dx+y+2

(d2 − 1)2
Wx−1(x, y)− (2d2 − 1)

(d2 − 1)2
, (128)

where we introduced the function Wk (x, y) which admits the
graphical representation

(129)

where, once again, we denoted the Haar-averaged folded gate
by a grey square.

Now, using Eqs. (40) and (41), and following the graphical
derivation of Eq. (43), it is easy to write down a recurrence
relation for the partition functions {Wk (x, y)}x

k=0. For instance,
one can start from the bottom right corner and use (40) to
simplify the gate. Then the recurrence relations are found by

multiple use of the first of (15), to “pull up” the squares, and
of the second of (15), to “pull left” the circles. The final result
reads as

Wk (x, y) = 1

d2 + 1
Wk (x − 1, y) + W0(x, y − 1)

[
d

d2 + 1

]k+1

+ 1

d

k−1∑
r=0

Wk−r (x, y − 1)

[
d

d2 + 1

]r+2

, (130)

with boundary conditions Wk (x, 0) = 1/d |k−1| and Wk (k, y) =
1/d |y+k−1| [99].

This recurrence relation is more involved than the one
for the tripartite information because it features x functions
instead of just one [100]. Still, it can still be solved exactly.
A particularly elegant solution is obtained by means of the
so-called kernel method [101–104]. Specifically, this method
allows one to write down directly the generating function
for the coefficients Wx−1(x, y) [directly related to the OTOCs
via Eq. (128)]. The details of the calculation are relegated
to Appendix E, while here we only report the final result.
Defining

G(z,w) =
∞∑

m,n=0

Wm(m + 1, n)zmwn, (131)

we find G(z,w) = G̃(z/d,w/d ), where

G̃(z,w) = bz(d2z − 1)

2ad3(1 − z)(−pw − qz + 1)

− b2z
√

p2q2(z − w)2 − 2pq(z + w) + 1

2d3(−pw − qz + 1)(−pz − qw + 1)

+ bqz(z − d2)

2d3(1 − z)(−pz − qw + 1)

+ d

(1 − z)(1 − w)
− 2ab, (132)

with a = d2 + 1, b = d2 − 1, while p was defined in Eq. (53)
and q = 1 − p.

The expression for the OTOCs can be recovered by de-
riving G(z,w) with respect to z and w (respectively x − 1
and y times) and plugging the result into (128). The final
expression agrees with that reported in Eq. (73) of Ref. [46]
and, in particular, takes the following asymptotic form for
t � 1

Oαβ (x̃+, x̃−) ≈ 1 − 1

4



(
x − vBt

σ (t )

)



(
x + vBt

σ (t )

)
, (133)

where vB and σ (t ) were defined in Eq. (61).

B. OTOCs in random dual-unitary circuits

Let us now move to consider the calculation of OTOCs in
dual-unitary circuits. This problem has been recently consid-
ered in Ref. [83] where the authors presented exact results
for a noninteracting dual-unitary circuit (the self-dual kicked
Ising model in zero longitudinal field) and computed the
asymptotic limits x̃± → ∞ in the class of completely chaotic
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dual-unitary circuits, where x̃± is defined in Eq. (121). The
latter result allows one to obtain the asymptotic behavior of
OTOCs at a finite distance from the light-cone edge. Here we
show that, by using our approach, we can go beyond these
results in the case of random dual-unitary circuits. Indeed, as
we now see, the introduction of single-site averages introduces
key simplifications.

First, property 2 provides a rigorous proof that all random
dual-unitary gates (81) are completely chaotic as long as
a �= 1 [105]. This means that we explicitly determined a class
of circuits for which the findings of Ref. [83] are exact.
In particular, since taking the limits x̃± → ∞ corresponds
to projecting onto the eigenspace associated to the maximal
eigenvalue (which is 1/2 by property 2), we have

lim
x̃−→∞

Ō(x̃+, x̃−) = 2x̃+

3
〈 © . . . ©︸ ︷︷ ︸

x̃+−1

|
x̃+∑

k=0

P�
k |� . . .��〉 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2

3
〈 |�〉 = −1

3
x̃+ = 1

2x̃+

3
〈

x̃+−1︷ ︸︸ ︷
© · · · © |

x̃+−1︷ ︸︸ ︷
� · · ·��〉 = 0 x̃+ > 1

(134)

and

lim
x̃+→∞

Ō(x̃+, x̃−) = 4

9

x̃−∑
j=1

(
4 〈©|(M̄�) j |�〉 − 〈©|(M̄�) j−1|�〉

)(〈 |(M̄©)x̃−− j |�〉 − 〈 |(M̄©)x̃−− j+1|�〉)
+ 4

3
〈©|�〉 〈 |(M̄©)x̃−|�〉 = (4a − 1)(1 − a)

x̃−ax̃−

3a
+ ax̃− . (135)

Here we introduced the 1-qubit maps

(136)

As discussed in Ref. [83] these maps can be expressed
in terms of those determining the correlation functions of
one-site observables [77,80]. The fact that these “correlation
maps” determine the light-cone behavior of scrambling mea-
sures appear to be quite general, indeed the same has been
observed for the operator entanglement [23].

The results (134) and (135) are interesting but somewhat
limited as they only give information on the “edges of the light
cone” of the out-of-time-ordered correlators. In other words
they only describe the case when the OTOC is evaluated at
|x| ≈ vmaxt (the symbol ≈ denotes equal up to corrections
scaling like tη with η < 1). Using our method we can go
beyond these results and find the leading behavior of the
OTOCs for x ≈ ξ t , for all “rays” ξ ∈ [ξ ∗(a), 1] with

ξ �ξ ∗
a ≡ ln[a/A(a)B(a)]

ln[a]−sgn[a−A(a)B(a)]ln[A(a)/B(a)] (137)

and

A(a) := 1 − 4
3 (a − 1)2, B(a) := 2a2 + 2

3 (a − 1)2. (138)

The function ξ ∗
a is monotonically increasing in a and its

boundary values are ξ ∗
1/3 ≈ −0.532 and ξ ∗

1 = 1 (see Fig. 7).
The idea is again to write some recursive relations for the

average of the partition function in (126) and truncate them to
obtain useful bounds. Specifically, following the calculations
detailed in Appendix F arrive at

E[O(x, y)] =
[

ay + (4a − 1)(1 − a)
yay

3a

]
(1 − δx,1)

− 1

3
δx,1 + r(x, y), (139)

where the “reminder” r(x, y) fulfils the following bound

|r(x, y)| � CA(a)max(x,y)B(a)min(x,y), (140)

where C is an appropriate constant.
Equation (139) implies that the leading contribution to the

OTOC (120) for t � 1 and fixed ξ = x/t ∈ [ξ ∗
a , 1] is given by

E[O(x̃+, x̃−)] ≈ at (1−ξ )

[
1+t (4a − 1)(1−a)

(1 − ξ )

3a

]
. (141)

a

ξ∗a

1/3 12/3

1

0.5

-1

-0.532

FIG. 7. Plot of the transition ray ξ ∗
a , after which the OTOC

follows the asymptotic form (141), as a function of a.
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This is because for ξ � ξ ∗
a

a1−ξ > A(a)B(a)

(A(a)

B(a)

)|ξ |
(142)

and, therefore, the reminder gives a sub-leading contribution
to (139). This relation also implies that

E
[
O(x̃+, x̃−)

]
< at (1−|ξ |)

[
1 + t (4a − 1)(1 − a)

(1 − |ξ |)
3a

]
,

(143)

for ξ ∈ [−1,−ξ ∗
a [. Finally we note that, since A(a) � 1 for

all a ∈ [1/3, 1], the reminder vanishes in the limit x− → ∞
and the expression (139) reproduces (134).

V. CONCLUSIONS

We have studied the scrambling of quantum information in
random unitary circuits, focusing on two cases: (i) the local
gates are Haar random and (ii) the local gates are dual-unitary
and randomly sampled from a single-site Haar-invariant mea-
sure.

We characterized the scrambling through the Rényi-2 tri-
partite information introduced in Ref. [86], which can be
thought of as a minimal chaos indicator. When nonzero, its
(negative) slope signals dynamical chaos, while it is con-
structed with the minimal number (n = 4) of replicated copies
of the time-evolution operator (two evolving forward and two
backward). This is arguably the simplest nontrivial measure of
quantum chaos in systems with random time evolution, where
there is no well-defined spectrum and one cannot detect chaos
by studying spectral correlations.

We computed exactly the Rényi-2 tripartite information for
both Haar random circuits and random dual-unitary circuits
and proved rigorously that there exists a “maximally chaotic”
subset of gates for which the Rényi-2 tripartite information
grows at the maximal speed, which is strictly larger than one
observed in the Haar-random case.

To find these results we employed a standard mapping onto
a folded tensor network that we then studied by means of
simple recurrence relations. As such, this approach can be
viewed as an alternative formulation (at least in the Haar-
random case) of the one developed in Refs. [62,92], which
is based on a mapping onto a classical spin system.

Our approach is adequate to study also other quantities
involving four copies of the time-evolution operator. As an
example, here we also considered OTOCs. We recovered
the exact results of Refs. [46,47] for the Haar random case,
and presented an exact expression for random dual-unitary
circuits, extending recent findings of Ref. [83]. The same ap-
proach can be used to study growth of the Rényi-2 entropy of
finite connected regions after a quench, and gives a promising
starting point to tackle the calculation of the same quantity
for disjoint intervals. This is particularly interesting in con-
nection to the mutual information of disjoint regions, which
was recently studied in the context of quantum scrambling
[106–112].

Finally, it is natural to wonder whether the perspective
adopted in this work can give some useful insights into the
calculation of quantities involving n > 4 copies of the time

evolution operators, giving access to the average of higher
Rényi entropies and to the averaged operator space entan-
glement. The findings of Ref. [62], however, reveal that this
problem is far from straightforward.
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APPENDIX A: THE 2D FOLDED TENSOR NETWORK

In this Appendix, we describe how to obtain a diagram-
matic representation of Eq. (27) in terms of the “folded” gate
(10). We illustrate the procedure in the case of S(2)

AD as the
one for S(2)

AC is completely analogous. Representing ρAD [cf.

tr[ρ2
AD] =

1
d4L

FIG. 8. Pictorial representation of the purity tr[ρ2
AD], where ρAD

was defined in Eq. (A1).
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Eq. (30)] diagrammatically, we find

(A1)
where we considered open boundary conditions. From
Eq. (30), it is straightforward to obtain the graphical repre-
sentation for the purity tr[ρ2

AD], which is reported in Fig. 8. We

can proceed by folding the rectangles of gates representing U t

(red gates) and U−t (blue gates) according to the following
procedure. First number them from 1 (bottom-most) to 4
(top-most). Then fold each rectangle underneath the previous
one. The resulting figure features rectangles piled up in the
order 1,2,3,4. At this point, using the definitions (10)–(12),
we find

(A2)

Considering now the partition (31) with L > |x| + t and using
the “unitarity rules” (4), we can simplify the above diagram,
obtaining

tr
[
ρ2

AD

] = Z2(t + �x�, t − �x�)d2L−(x++x− ), (A3)

where Z2(x, y) is defined in Eq. (36).

APPENDIX B: PROOF OF PROPERTY 1

The identity (93) can be established by decomposing T̄ ��
x as follows:

(B1)

where we defined

(B2)

and analogously

(B3)

Using the graphical rules (83)–(86) it is then straightforward to verify that

(B4)

Finally to evaluate T̄x |© . . . ©〉 we proceed iteratively. Inserting the identity in the form 1 = |©〉〈©| + | 〉〈 | in the first
“auxiliary” leg, we have

(B5)

where we used that the contribution of |©〉〈©| is zero by (84). Telescoping we find

(B6)
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The identity (93) follows by evaluating explicitly

(B7)

APPENDIX C: PROOF OF PROPERTY 2

To prove property 2 it is useful to introduce the transfer matrix

(C1)

and make use of the following inductive relations for T̄ ��
x and T̄ ©�

x :

T̄ ��
x = |�〉〈�| ⊗ T̄ ��

x−1 + |�〉〈�| ⊗
(

4a − 1

3
T̄ ��

x−1 + 2(1 − a)

3
T̄ ©�

x−1

)
, (C2)

T̄ ©�
x = |©〉〈©| ⊗ T̄ ©�

x−1 + | 〉〈 | ⊗
(

2(1 − a)

3
T̄ ��

x−1 + 4a − 1

3
T̄ ©�

x−1

)
, (C3)

which are obtained by writing down explicitly the sum over the basis vectors corresponding to the first “auxiliary” leg from the
right. In particular, we chose the basis (17) for (C2) and the basis (18) for (C3).

Equipped with (C2) and (C3) we now proceed to prove the statement of property 2 by induction in x. Computing the matrices
for x = 1 and x = 2, we have

T̄ ��
1 = |�〉〈�| + a|�〉〈�| , (C4)

T̄ ©�
1 = 1

2
|�〉〈�| + 1

2
|�〉 〈�|, (C5)

T̄ ��
2 = |��〉〈��| + a |��〉〈��| + a |��〉〈��| +

(
a2 + (a − 1)2

3

)
|��〉 〈��|, (C6)

T̄ ©�
2 = 1

2
|��〉〈��| + 1

2
| �〉〈 �| + 1

2
|© 〉〈© | +

(
1

2
− 2

3
(a − 1)2

)
| �〉 〈 �|. (C7)

We see that the property holds for x = 2. To conclude we show that if it holds for x − 1 it holds for x.
First we note that, due to the block structure of (C2) and (C3), to prove that T̄ ��

x and T̄ ©�
x are positive definite it is sufficient

to prove that the property holds for each separate block. This follows directly from the inductive hypothesis (T̄ ��
x−1 and T̄ ©�

x−1
positive definite) and (4a − 1)/3, 2(1 − a)/3 > 0 (the same holds also if one of the two coefficients vanishes as long as the other
is positive).

Let us now find the 2x largest eigenvalues of T̄ ��
x (the case of T̄ ©�

x is totally analogous). Since |� . . .�〉x−1 (we added the
subscript to stress that it is defined on x − 1 sites) is a common eigenvector of T̄ ��

x−1 and T̄ ©�
x−1 we can write T̄ ��

x as the direct
sum of three blocks

T̄ ��
x = |�〉〈�| ⊗ T ��

x−1 + a |�� . . .�〉 〈�� . . .�| + |�〉〈�| ⊗
[

4a − 1

3
T̄ �� ′

x−1 + 2(1 − a)

3
T̄ ©� ′

x−1

]
, (C8)

where defined

T̄ �� ′
x := T̄ ��

x − |� . . .�〉x 〈� . . .�| , T̄ ©� ′
x := T̄ ©�

x − 1

2
|� . . .�〉x 〈� . . .�| (C9)

and used [
4a − 1

3
T̄ ��

x−1 + 2(1 − a)

3
T̄ ©�

x−1

]
|� . . .�〉x−1 = a|� . . .�〉x−1. (C10)

By inductive hypothesis, we have that the 2x − 1 largest eigenvalues of the first two blocks are⎧⎪⎪⎨⎪⎪⎩1, a, . . . , a︸ ︷︷ ︸
x

, a2 + (a − 1)2

3
, . . . , a2 + (a − 1)2

3︸ ︷︷ ︸
x−2

⎫⎪⎪⎬⎪⎪⎭. (C11)
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To conclude we now bound the largest eigenvalue of the third block. Since the matrices are positive definite we have

〈ψ |4a − 1

3
T̄ �� ′

x−1 + 2(1 − a)

3
T̄ ©� ′

x−1 |ψ〉 � (4a − 1)a

3
+ (1 − a)

3
= a2 + (1 − a)2

3
, (C12)

where we used that by inductive hypothesis the maximal eigenvalues of T̄ �� ′
x−1 and T̄ ©� ′

x−1 are respectively a and 1/2. Note that
for

|ψ〉 = |�� . . .�〉x−1, (C13)

the bound is saturated, so there is at least an eigenvalue a2 + (1 − a)2/3. We then conclude that the 2x largest eigenvalues of
T̄ ��

x are ⎧⎪⎪⎨⎪⎪⎩1, a, . . . , a︸ ︷︷ ︸
x

, a2 + (a − 1)2

3
, . . . , a2 + (a − 1)2

3︸ ︷︷ ︸
x−1

⎫⎪⎪⎬⎪⎪⎭. (C14)

These eigenvalues correspond to the eigenvectors⎧⎨⎩|� . . .�〉 ,

x︷ ︸︸ ︷
|� . . .�︸ ︷︷ ︸

x−1

�〉 , |� . . .�︸ ︷︷ ︸
x−2

��〉 , . . . , |�� . . .�︸ ︷︷ ︸
x−1

〉,
x−1︷ ︸︸ ︷

|� . . .�︸ ︷︷ ︸
x−2

��〉 , |� . . .�︸ ︷︷ ︸
x−3

���〉 , . . . , |��� . . .�︸ ︷︷ ︸
x−2

〉
⎫⎬⎭, (C15)

as can be seen by direct application of the graphical rules (83)–(86). This concludes the proof.

APPENDIX D: SOLVING RECURRENCE RELATIONS

Let us consider Z (x, y) fulfilling a generic inhomogeneous linear recurrence relation of the form

Z (x, y) = aZ (x − 1, y) + bZ (x, y − 1) + k(x, y), (D1)

with boundary conditions Z (x, 0) = f (x) and Z (0, y) = g(y). Defining the rescaled function

Z̃ (x, y) := b−yZ (x, y) − b−yg(y), (D2)

we see that it fulfils

Z̃ (x, y) − Z̃ (x, y − 1) = aZ̃ (x − 1, y) + k(x, y)b−y + (a − 1)b−yg(y) + b−y+1g(y − 1), (D3)

with boundary conditions Z̃ (x, 0) = f (x) − g(0), Z̃ (0, y) = 0. Summing over y we find

Z̃ (x, y) = a
y∑

k=1

Z̃ (x − 1, k) + G(x, y), (D4)

where we defined

G(x, y) :=
y∑

k=1

k(x, k)b−k + (a − 1)
y∑

k=1

b−kg(k) +
y∑

k=1

b−k+1g(k − 1) + f (x) − g(0). (D5)

The relation (D4) is solved by

Z̃ (x, y) =
x−1∑
j=0

a jG( j)(x − j, y), (D6)

where we defined

G( j)(x, y) =

j︷ ︸︸ ︷
y∑

k1=1

k1∑
k2=1

. . .

k j−1∑
k j=1

G(x, k j ). (D7)

Putting all together, we find

Z (x, y) = g(y) + by
x−1∑
j=0

a jG( j)(x − j, y). (D8)
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Substituting the specific functions f (x), g(y), and k(x, y), this relation provides a solution to all recurrence equations appearing
in the main text. This is reported explicitly in the following subsections with the exception of Eq. (130). Indeed, even if one
could apply the general solution (D8) also to Eq. (130) this would not directly lead to a closed-form solution. This is because
for any given integer r, the driving k(x, y) depends on all Wr′ (x, y), with r′ < r. In fact, in this case, the solution is more easily
achieved by means of the more sophisticated kernel method described in Appendix E.

1. Solution of Eq. (43)

To find the solution to (43) we make the following replacement:

a, b → d

d2 + 1
, f (x) → d−x, g(x) → d−x, k(x, y) → 0. (D9)

This gives

G(x, y) = (d − 1)

(
d2 + 1

d2

)y

+ d−x − d, (D10)

from which we find

G( j)(x, y) = (d − 1)

(
d2 + 1

d2

)y

(d2 + 1) j + (d−x − d )

(
y + j − 1

j

)
− (d − 1)

j−1∑
k=0

(d2 + 1) j−k

(
y + k − 1

k

)
. (D11)

This finally yields

Z (x, y) = d−y +
(

d

d2 + 1

)y x−1∑
j=0

(
d

d2 + 1

) j

G( j)(x − j, y) = 1

dx−y
− dx+y f (x, y), (D12)

where f (x, y) is defined in (51). The last step is achieved by using standard identities among binomial coefficients.

2. Solution of Eq. (47)

With the replacements

a, b → 1

d2 + 1
, f (x) → 1, g(x) → 1, k(x, y) → 0, (D13)

(D8) gives the solution to Eq. (47). In particular, in this case, we find

G(x, y) =
(

1 − 1

d2

)(
1 − (d2 + 1)y

)
, (D14)

and

G( j)(x, y) =
(

1 − 1

d2

)(
y + j − 1

j

)
−
(

1 − 1

d2

)(
d2 + 1

)y(d2 + 1

d2

) j

+
(

1 − 1

d2

) j−1∑
k=0

(
d2 + 1

d2

) j−k(
y + k − 1

k

)
. (D15)

Substituting back in (D8) we finally arrive at Z (x, y) = d−2y + f (x, y), where f (x, y) is defined in (51).

3. Solution of Eqs. (98) and (100)

The general equation (D1) specializes to (98) and (100) with the replacements

a → 0, b → 1
4 , f (x) → 1, g(x) → 1, k(x, y) → 3

4 Z̄3(x, y − 1), (D16)

and

a → 0, b → 1
4 , f (x) → 1, g(x) → ax, k(x, y) → 3

4 Z̄4(x, y − 1), (D17)

respectively. Since a = 0 the value of g(x) is not needed, indeed in this case the general solution (D8) reads as

Z (x, y) = by f (x) + by
y∑

k=1

k(x, k)b−k . (D18)

Plugging the above values we find (102) and (103).
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4. Solution of Eqs. (F6) and (F7)

The general equation (D1) specializes to (F6) and (F7) with the replacements

a → 0, b → a, f (x) → 1 − 4
3δx,1, k(x, y) → (1 − a)E[O3(x, y − 1)], (D19)

and

a → 0, b → a, f (x) → 4a − 1

3
, k(x, y) → (1 − a)E[O3(x, y − 1)], (D20)

respectively. As explained in Appendix D 3, since a = 0 we do not need to specify g(x). Plugging into the general solution (D8),
we find

E
[
O(x, y)

] =
(

1 − 4

3
δx,1

)
ay + ay

(
1 − a

a

) y−1∑
k=0

a−kE[O2(x, k)], (D21)

E
[
O2(x, y)

] = 4a − 1

3
ay + ay

(
1 − a

a

) y−1∑
k=0

a−kE[O3(x, k)]. (D22)

Combining them we obtain (F11).

APPENDIX E: SOLUTION TO THE RECURRENCE EQUATION (130)

In this Appendix, we detail a strategy to find a closed form solution to the recurrence relation (130). This strategy is based on
the application of the so-called kernel method, which is a very powerful and elegant approach to solve certain discrete recurrence
relations. We refer the reader to Refs. [101–104] for further details and applications of the method.

We start by considering Eq. (130) for k − 1 (and k > 1). Multiplying the latter by d/(d2 + 1), and subtracting it from
Eq. (130) for k, we obtain

Wk (m, n) = 1

d2 + 1
Wk (m − 1, n) + 1

d
Wk (m, n − 1)

[
d

d + 1

]2

+ d

d2 + 1
Wk−1(m, n) − d

(d2 + 1)2
Wk−1(m − 1, n). (E1)

This equation is defined for m, n � 1 and 2 � k � m − 1. On the other hand, setting k = 1 in (130), we obtain

W1(m, n) = 1

d2 + 1
W1(m − 1, n) + 1

d
W1(m, n − 1)

[
d

d2 + 1

]2

+ W0(m, n − 1)

[
d

d2 + 1

]2

. (E2)

Now, since W0(m, n) satisfies W0(m, n) = 1
(d2+1)W0(m − 1, n) + W0(m, n − 1)[ d

d2+1 ], we see from Eq. (E2) that (E1) actually
holds also for k = 1. Next, define

Zk (m, n) = (d2 + 1)2k+m+2n

dk+n
Wk (m + k, n). (E3)

This function satisfies the simple recurrence relation

Zk (m, n) = Zk (m − 1, n) + Zk (m, n − 1) + Zk−1(m + 1, n) − Zk−1(m, n), (E4)

for m, n � 1, and 1 � k � m − 1, with boundary conditions

Zk (m, 0) = (d2 + 1)2k+m

dk+|k−1| , Zk (0, n) = (d2 + 1)2k+2n

dk+n+|k+n−1| . (E5)

Note that we have also Z0(m, n) = Z0(m − 1, n) + (d2 + 1)Z0(m, n − 1).
Finally, define the generating function

F (x, y, z) =
∞∑

m,n,k=0

Zk (m, n)xmynzk . (E6)

Our strategy is to write down a functional equation for F (x, y, z). To this end, wee first evaluate the following power series,
whose computation is straightforward based on the knowledge of the initial conditions (E5)

α(x) =
∞∑

m=0

Z0(m, 0)xm = 1

d

1

1 − ax
, β(y) =

∞∑
n=0

Z0(0, n)yn = a2(d2 − 1)y + d2

d3 − a2dy
, (E7)

γ (z) =
∞∑

k=0

Zk (0, 0)zk = a2dz

d2 − a2z
+ 1

d
, A(x, z) =

∞∑
m,k=0

Zk (m, 0)xmzk = a2z − d2(a2z + 1)

d (ax − 1)(d2 − a2z)
, (E8)

B(y, z) =
∞∑

m,n=0

Zk (0, n)ynzk = d5(
d2 − a2y

)(
d2 − a2z

) − d + 1

d
, (E9)
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where we introduced a = d2 + 1. In the following, we will also need to compute

C(x, y) =
∞∑

m,n=0

Z0(m, n)xmyn. (E10)

This can be obtained by proving the simple identity

(1 − x − ay)C(x, y) = (1 − ay)β(y) + (1 − x)α(x) − Z0(0, 0), (E11)

leading to

C(x, y) = (1 − ay)β(y) + (1 − x)α(x) − 1/d

1 − x − ay
. (E12)

Equation (E11) is obtained by writing the right-hand side as a sum of power series, and regrouping the terms that are multiplied
by the same monomials.

In the same way, one can straightforwardly verify the identities

F (x, y, z) =
∞∑

m,n,k=1

Zk (m, n)xmynzk + Z0(0, 0) − α(x) − β(y) − γ (z) + A(x, z) + B(y, z) + C(x, y), (E13)

xF (x, y, z) =
∞∑

m,n,k=1

Zk (m − 1, n)xmynzk − xα(x) + x[A(x, z) + C(x, y)], (E14)

yF (x, y, z) =
∞∑

m,n,k=1

Zk (m, n − 1)xmynzk − yβ(y) + y[B(y, z) + C(x, y)], (E15)

zF (x, y, z) =
∞∑

m,n,k=1

Zk−1(m, n)xmynzk − zγ (z) + z[A(x, z) + B(y, z)], (E16)

z

x
F (x, y, z) =

∞∑
m,n,k=1

Zk−1(m + 1, n)xmynzk − azγ (z) + z

x
[A(x, z) + B(y, z) − γ (z)] + zM(y, z), (E17)

where we have introduced the (unknown) function

M(y, z) =
∞∑

n,k=0

Zk (1, n)ynzk . (E18)

Summing Eqs. (E13) and (E17), subtracting Eqs. (E14)–(E16), and finally using Eq. (E4), we get(
1 − x − y − z

x
+ z
)
F (x, y, z) = N (x, y) − zM(y, z), (E19)

where N (x, y) is a function which can be expressed explicitly in terms of α(x), β(y), γ (z), A(x, z), B(y, z) and C(x, y). Since its
form is very unwieldy, we will not report it here. We can now rewrite Eq. (E19) as

F (x, y, z) = x[N (x, y) − zM(y, z)]

(x − x2 − xy − z + xz)
. (E20)

Note that we have expressed the generating function F (x, y, z) in terms of a unknown function M(y, z). At this point comes the
key argument at the core of the kernel method. First, we note that the denominator can be factorized as

(x − x2 − xy − z + xz) = −(x − r1(y, z))(x − r2(y, z)), (E21)

where

r1(y, z) = 1

2
(1 − y + z −

√
(−y + z + 1)2 − 4z), r2(y, z) = 1

2
(1 − y + z +

√
(−y + z + 1)2 − 4z). (E22)

The function r1(y, z) defines a curve ξ (x, y) = (r1(y, z), y, z) ∈ C3 such that limx,y→0 ξ (x, y) = (0, 0, 0). Now, assuming that the
power series F (x, y, z) has a finite radius of convergence (this assumption can be verified a posteriori), we deduce that, inside of
the convergence region, the numerator of Eq. (E20) must be vanishing when evaluated on the curve ξ (x, y). Indeed, if this were
not the case, we would have a point inside of the convergence region where F (x, y, z) diverges, contradicting our assumption.
Then, it must be N (r1(y, z), y) − zM(y, z) = 0, namely

M(y, z) = 1

z
N (r1(y, z), y). (E23)
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The left-hand side is now a known function. At this point, we could plug this into the right-hand side of Eq. (E20) and obtain
a final expression for the generating function F (x, y, z). However, since we are ultimately interested in G(x, y), introduced in
Eq. (131), we actually do not need to do this. Indeed, from the definitions (E3) and (E18) we have

G(y, z) = 1

d2 + 1
M
(

d

d2 + 1
y,

d

d2 + 1
z

)
. (E24)

Using now the explicit expression (E23), and rearranging the terms, we finally obtain G(x, y) = G̃(x/d, y/d ) where G̃(x, y) is
defined in Eq. (132).

APPENDIX F: BOUNDS ON OTOCs FOR RANDOM DUAL-UNITARY CIRCUITS

To arrive at (139), we provide two complementary bounds which are conveniently obtained writing the OTOC in terms
transfer matrices

E[O(x, y)] = 2x+y

3
〈 © . . . ©|(T̄ ©�

x )y|� . . .��〉 = 2x+y

3
〈� . . .�|T̄ ©�

y (T̄ ©�
y )x−2T̄ �

y |© . . . ©〉, (F1)

where the transfer matrix T̄ ©�
x is defined in (C1), while we defined

(F2)

Note that, since the gate (81) is real and symmetric, the orientation is irrelevant.
The first bound is found by considering the first transfer-matrix expression in (F1) and observing that
Property 3. The transfer matrix T̄ ©�

x acts as follows on the boundary states | © . . . ©〉 and 〈� . . .��|

T̄ ©�
x |� . . .��〉= a

2
|� . . .��〉+ 1 − a

2
|�′ . . .�′�〉, (F3)

〈 © . . . ©| T̄ ©�
x = a

2
〈 © . . . ©|+ 1 − a

2
〈 ©′ . . . ©′|, (F4)

where |©′〉 is defined in (94) and we introduced

|�′〉 = a |�〉 + 1 − a√
3

|�〉 = 1

2
|©〉 +

√
3

2

4a − 1

3
| 〉. (F5)

This property is directly proven by using the diagrammatic relations (83)–(86) in analogy with the proof of property 1.
Using (F3) and (F4), we find the following recurrence equations for the partition function E[O(x, y)]

E[O(x, y)] = aE[O(x, y − 1)] + (1 − a)E[O2(x, y − 1)], (F6)

E[O2(x, y)] = aE[O2(x, y − 1)]] + (1 − a)E[O3(x, y − 1)], (F7)

where we introduced

(F8)

fulfilling

E[O2(x, 0)] = 2x

3
〈 |�′〉 〈©|�〉 〈©|�′〉x−2 = 4a − 1

3
, (F9)

and

E[O3(x, 0)] = 2x

3
〈 ©′ . . . ©′|�′ . . .�′�〉 = (4a − 1)2

9

[
1 − 4

3
(a − 1)2

]x−2
. (F10)
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Equations (F6) and (F7) can be formally solved and combined (see Appendix D 4) obtaining

E
[
O(x, y)

] =
[

ay + (4a − 1)(1 − a)
yay

3a

]
(1 − δx,1) − 1

3
δx,1 + (1 − a)2

a2

y−1∑
k=0

k−1∑
h=0

E
[
O′

3(x, h)
]
ay−h, (F11)

where we defined

E[O′
3(x, y)] := 2x+y

3
〈 ©′ . . . ©′|

(
T̄ ©�

x − 1

2

x∑
k=0

P©
k

)y
|�′ . . .�′�〉 = E[O3(x, y)] + 1

3
δx,1. (F12)

E[O′
3(x, y)] can be bound by using the following property, which is proven following the reasoning of Appendix C.

Property 4. The matrix T̄ ©�
x is positive definite and has the following spectral decomposition

T̄ ©�
x = 1

2

x∑
k=0

P©
k +

[
1

2
− 2

3
(a − 1)2

] x∑
k=2

Q©
k + R©

x , (F13)

where we defined

P©
k := |© . . . ©︸ ︷︷ ︸

k

� . . .�〉〈© . . . ©︸ ︷︷ ︸
k

� . . .�|, (F14)

Q©
k := |© . . . © �︸ ︷︷ ︸

k

� . . .�〉〈© . . . © �︸ ︷︷ ︸
k

� . . .�|, (F15)

and the “reminder” R©
x —nonzero only in the subspace defined by 1 −∑x

k=0 P©
k −∑x

k=2 Q©
k —has operator norm

|R©
x | � [ 1

2 − 2
3 (a − 1)2

]
< 1

2 , a ∈ [1/4, 1]. (F16)

Using property 4, we find

|E[O′
3(x, y)]| � 2

3A(a)yB(a)x−1, (F17)

where A(a) and B(a) are defined in Eq. (138). This gives

E[O(x, y)] =
[

ay + (4a − 1)(1 − a)
yay

3a

]
(1 − δx,1) − 1

3
δx,1 + r(x, y), |r(x, y)| < C1A(a)yB(a)x. (F18)

Another bound can be found by considering the right-hand side of (F1) and invoking
Property 5. The transfer matrices T̄ ©�

x and T̄ �
x act as follows on the boundary states 〈© . . . ©| and |� . . .�〉

〈� . . .�| T̄ ©�
x =

√
3

2
〈�′ . . .�′| T̄ �

x |© . . . ©〉 =
√

3

2
|©′ . . . ©′〉, (F19)

where |©′〉 and |�′〉 are respectively defined in (94) and (F5).
Once again, this property is directly proven using (83)–(86). The relations (F19) give

E[O(x, y)] =
[

ay + (4a − 1)(1 − a)
yay

3a

]
(1 − δx,1) − 1

3
δx,1 + E[Õ(x − 2, y)], (F20)

where we introduced

E[Õ(x, y)] := 2x+y 〈�′ . . .�′|
(

T̄ ©�
y − 1

2

y∑
k=0

P©
k

)x
| ©′ . . . ©′〉 . (F21)

Using property 4, we have

|E[Õ(x, y)]| � 2
3A(a)xB(a)y, (F22)

so that

E[O(x, y)] =
[

ay + (4a − 1)(1 − a)
yay

3a

]
(1 − δx,1) − 1

3
δx,1 + r(x, y), |r(x, y)| < C2A(a)xB(a)y. (F23)

Combining the bounds (F18) and (F23) and using B(a) � A(a) for all a ∈ [1/3, 1], we obtain (139).
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