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ABSTRACT
The connections among galaxies, the dark matter haloes where they form and the properties of
the large-scale Cosmic Web still need to be completely disentangled. We use the cosmological
hydrodynamical simulation TNG100 of the IllustrisTNG suite to quantify the effects played
by the large-scale density field and the Cosmic Web morphology on the relation between
halo mass and galaxy stellar mass. We select objects with total dynamical mass in the range
≥6.3 × 1010 h−1 M� up to a few 1014 h−1 M� between redshift z = 4 and redshift z = 0. A
Cosmic Web class (knot, filament, sheet, void) is assigned to each region of the volume using
a density field deformation tensor-based method. We find that galaxy stellar mass strongly
correlates with total dynamical mass and formation time, and more weakly with large-scale
overdensity and Cosmic Web class. The latter two quantities correlate with each other, but
are not entirely degenerate. Furthermore, we find that at fixed halo mass, galaxies with stellar
mass lower than the median value are more likely to be found in voids and sheets, whereas
galaxies with stellar mass higher than the median are more likely to be found in filaments and
knots. Finally, we find that the dependence on environment is stronger for satellites than for
centrals, and discuss the physical implications of these results.
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1 I N T RO D U C T I O N

The current theoretical scenario for cosmic structure formation
postulates that galaxies form from baryon reservoirs within dark
matter haloes (White & Rees 1978). On the other hand, the
formation of dark matter haloes is determined by the evolution
of small perturbations in the primordial density field growing due
to self-gravity and eventually decoupling from the Hubble flow
(Bardeen 1980; Kodama & Sasaki 1984). The connection between
dark matter halo and observed galaxies has been the subject of
numerous studies during the last 50 yr, a field that has been recently
summarized in an excellent review by Wechsler & Tinker (2018).

The fully non-linear evolution of cosmic dark matter den-
sity fields, their baryonic counterpart, and galaxy formation in
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statistically representative volumes of the Universe can now be
studied with cosmological hydrodynamical numerical simulations
(Vogelsberger et al. 2014a; Schaye et al. 2015; Dubois et al. 2016;
Pillepich et al. 2018b), or semi-analytical and empirical models
built upon dark matter cosmological simulations (Somerville &
Davé 2015; Behroozi et al. 2018). These methods can be used to
model the mean relation between the stellar mass of galaxies and
the mass of their host haloes, the abundance of galaxies and 2-point
galaxy clustering.

Despite the multiple successes of these approaches to study
galaxy formation, several details of the connection of galaxies,
haloes, and the large-scale density field still have to be understood.
In fact, many galaxy properties, such as stellar masses, stellar ages,
metallicities, quantitative measures of morphology, star formation
rates, etc., exhibit a large scatter at fixed mass scale whose origin
and connection to the dark matter halo and the large-scale structure
still needs to be disentangled. For instance, simulations show that,
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at fixed halo mass, the clustering of dark matter haloes depends on
secondary properties (such as formation time, concentration, and
spin), a phenomenon called halo assembly bias (Wechsler 2001;
Gao, Springel & White 2005; Croton, Gao & White 2007; Gao &
White 2007). The concept of assembly bias has been also extended
to galaxies and is still being studied (Zentner, Hearin & van den
Bosch 2014).

From an observational viewpoint, it was established that galaxy
properties correlate with their local environment (Hashimoto et al.
1998; Hogg et al. 2003; Balogh et al. 2004; Blanton et al. 2005;
Cooper et al. 2005; Boselli & Gavazzi 2006; Blanton & Berlind
2007; Cooper et al. 2008). More recent work based on broad galaxy
surveys has allowed multiple groups to begin investigating the
correlation of galaxy properties with their large-scale environment
(Carollo et al. 2013; Scoville et al. 2013; Eardley et al. 2015;
Luparello et al. 2015; Etherington et al. 2017; Pandey & Sarkar
2017; Wei, Wang & Dai 2017; Papovich et al. 2018; Sun et al.
2018). The main lesson learned from these studies is that the role
of environment needs to also be taken into account in theoretical
models that aim to connect galaxy to halo properties.

The last decade witnessed a huge development of the branch
of numerical cosmology that studies the connection between the
large-scale Cosmic Web produced by the growth of primordial
perturbations, dark matter haloes that form within this Web, and
galaxies. A series of studies focused on identifying the properties
of haloes that are related to the morphology of the local Cosmic
Web (Pichon et al. 2011; Libeskind et al. 2012; Forero-Romero,
Contreras & Padilla 2014; Joachimi et al. 2015; Musso et al. 2018;
Goh et al. 2019). This work was quickly followed by papers focusing
on the general connection between galaxies and the Cosmic Web
(Metuki et al. 2015; Aragon-Calvo, Neyrinck & Silk 2016; Gheller
et al. 2016; Codis, Pogosyan & Pichon 2018; Kraljic et al. 2018),
with particular emphasis placed on explaining the origin of the
alignment of galaxy/halo spins with cosmic filaments (Codis et al.
2012; Dubois et al. 2014; Welker et al. 2014; Chisari et al. 2015;
Codis et al. 2015; Chisari et al. 2017; Kraljic et al. 2019; Krolewski
et al. 2019). However, this field is young and investigation of the
effects of large-scale environment on galaxy populations is still
incomplete.

Cosmological hydrodynamical simulations for galaxy physics
are one of the most powerful tools to study the combination of
assembly bias and large-scale environmental effects on the forma-
tion and evolution of galaxies, because they naturally reproduce the
emergence of both haloes and galaxies from the large-scale scale
density field. Therefore, assembly bias and environmental effects
naturally emerge from cosmological hydrodynamical simulations.
In the best possible scenario, the results of simulations can be used
to make predictions for unknown effects to be measured in the real
Universe.

In recent years, the origin of the scatter in the relationship
between the stellar mass of galaxies and that of their host dark
matter haloes was investigated by multiple groups using numerical
simulations. Matthee et al. (2017) showed that this scatter cannot be
entirely explained by invoking halo formation time or concentration
as secondary assembly bias parameters. Feldmann et al. (2019)
explored the role of halo growth rate as a measure of assembly
history, and showed that at fixed halo mass (< 1012 M�) quickly
growing haloes have lower stellar masses than slowly growing
haloes. Zehavi et al. (2018) and Bose et al. (2019) showed that
also environment has an effect on the scatter of the relationship
between halo mass and galaxy stellar stellar mass. In this paper,
we extend previous work and quantify the role played by both

assembly history and Cosmic Web environment on the halo mass
versus galaxy stellar mass relation.

Our results are based on the IllustrisTNG cosmological hydrody-
namical simulations which were recently publicly released (Nelson
et al. 2019). Our results rely on the Cosmic Web classification
based on the density field deformation tensor that we recently
performed (Martizzi et al. 2019, Paper I hereafter). Our methods
are described in Section 2. The results of the analysis are reported
in Section 3. Finally, Section 4 provides a summary and discussion
of our findings.

2 M E T H O D S

2.1 IllustrisTNG simulations

We analyse the galaxy population in the TNG100 simulation which
is part of the IllustrisTNG suite (Marinacci et al. 2018; Naiman
et al. 2018; Nelson et al. 2018; Pillepich et al. 2018a,b; Springel
et al. 2018). The IllustrisTNG simulations have been performed
with an updated version of the methods used for the Illustris
simulations (Vogelsberger et al. 2013; Genel et al. 2014; Torrey
et al. 2014; Vogelsberger et al. 2014a,b; Sijacki et al. 2015). The
IllustrisTNG model for galaxy formation (Weinberger et al. 2017;
Pillepich et al. 2018a) includes prescriptions for star formation,
stellar evolution, chemical enrichment, primordial and metal-line
cooling of the gas, stellar feedback with galactic outflows, black
hole formation, growth and multimode feedback. Data from the
IllustrisTNG simulations are currently publicly available (Nelson
et al. 2019).

A series of papers have shown that the IllustrisTNG simulations
are generally successful at reproducing observed demographics and
structural properties of galaxies, at least within the statistical and
systematic uncertainties of the observational results: e.g. the galaxy
mass function at multiple redshifts (Pillepich et al. 2018a), the
stellar mass content of massive haloes (Pillepich et al. 2018b),
galaxy sizes at redshift 0 ≤ z ≤ 2 (Genel et al. 2018), the galaxy
colour bi-modality (Nelson et al. 2018), the galaxy mass–metallicity
relation (Torrey et al. 2019), low-redshift galaxy star formation rates
(Donnari et al. 2019), and the detailed properties of unusual galaxies
(Zhu et al. 2018; Yun et al. 2019). In this paper, we re-visit the stellar
masses of galaxies in TNG100 and analyse them in connection to
the properties of the Cosmic Web.

2.2 Cosmic Web classification

In Paper I, we analysed the Cosmic Web in the TNG100 simulations
and measured the mass fraction of all gas phases from redshift
z = 8 to redshift z = 0. These results were based on our own
Cosmic Web classification tool based on the deformation tensor of
the density field (i.e. its Hessian matrix; Aragón-Calvo et al. 2007;
Hahn et al. 2007; Forero-Romero et al. 2009; Sousbie, Colombi
& Pichon 2009; Zhu & Feng 2017; Cui et al. 2018). This method
assigns a physically based web class to each region of the simulation
at each redshift. First, the total density field is computed via cloud-
in-cell interpolation into a regular 5123 Cartesian grid. Then, the
density field is smoothed with a Gaussian smoothing kernel of radius
RG = 8 h−1Mpc. The deformation tensor of the density field is
computed at each node of the Cartesian grid and then diagonalized.
Based on the eigenvalues of the deformation tensor it is possible
to assign a Cosmic Web class to each region of the volume: knots
are gravitationally collapsed structures along 3 axes and have 3
eigenvalues larger than λth = 0.3; filaments are gravitationally
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collapsed structures along 2 axes and have 2 eigenvalues larger than
λth = 0.3; sheets are gravitationally collapsed structures along 1
axis and have 1 eigenvalue larger than λth = 0.3; voids are regions
that did not undergo gravitational collapse and do not have any
eigenvalue larger than λth = 0.3. The threshold value λth = 0.3 has
been chosen to provide results consistent with previous literature:
details and tests are reported in Paper I.

The Cosmic Web classification method we adopt is ideal to study
the role of environment on scales larger than the smoothing scale
RG = 8 h−1Mpc, i.e. at cosmological scales. The structure of the
Cosmic Web at smaller scales is smoothed out, so that we can
focus on the effect of environment at linear and marginally non-
linear scales. This is intentional, because we want to separate
environmental effects taking place inside and near dark matter
haloes from those induced by cosmological evolution in the large-
scale Cosmic Web.

2.3 Galaxy selection and merger trees

Due to finite numerical resolution, not all the galaxies in the simula-
tion volume can be resolved with a large number of particles/cells.
The dark matter particle mass of TNG100 is mdm = 7.46 × 106 M�,
whereas the initial baryonic mass particle is mbar = 1.39 × 106 M�.
As the gaseous component was evolved on a moving mesh, the code
kept the gas mass resolution within a factor of 2 from this initial
value. The spatial resolution is ∼1 h−1 kpc (see appendix of Nelson
et al. 2019).

In this paper, we focus on the relation between total halo mass
and stellar mass, and its scatter. Throughout the paper, instead of
using the face value of the total halo mass computed by the SUBFIND

algorithm, we use Mpeak, the peak (maximum) mass reached by a
gravitationally bound object across during past history, computed
by including all matter components: dark matter, gas, and stars.
This can be interpreted as the dynamical mass of a self-gravitating
(sub)halo or galaxy, and it is robust against environment-related
events that may cause the (sub)halo mass of satellites to decrease,
e.g. stripping processes (e.g. Chaves-Montero et al. 2016; Matthee
et al. 2017).

For a given halo mass, one typically finds a range of stellar
masses. To make sure that our results are not influenced by the finite
numerical resolution, we make sure that the halo mass versus stellar
mass is thoroughly sampled. At each redshift, we use the SUBFIND

group catalogues available for TNG100 (Springel et al. 2005). We
only select objects whose total dynamical mass is Mpeak ≥ 6.3 ×
1010 h−1M�. For total masses below this threshold, the median
stellar mass expected is M∗ < 0.001 Mpeak � 60 mbar (e.g. Behroozi
et al. 2018), but can be as low as M∗ < 0.0005 Mpeak � 10 mbar, i.e.
the regime in which galaxies are not well numerically resolved.
In what follows, we consider both central as well as satellite
gravitationally bound haloes/galaxies.

For each object selected at redshift zsel, we use the SUBLINK

merger trees available for TNG100 (Rodriguez-Gomez et al. 2015)
to identify its formation redshift zform, i.e. the redshift at which the
total mass was half of the maximum mass of the object along the
main branch of the merger tree. This choice allows us to generalize
the definition of formation redshift from central to satellite galaxies,
which can experience significant mass reduction due to stripping
processes. In particular, for satellite galaxies, the halo formation
time is by construction larger than the infall time. For each object,
we also identify whether they are centrals or satellites embedded
in a larger halo, using the information contained in the SUBFIND

catalogues.

Finally, at each selected redshift, we use the 5123 Cartesian
grid with Cosmic Web classes produced by our classification code
(Section 2.2) to assign a class W to each galaxy in the simulation
volume, according to its location: (i) galaxies in knots receive
W = 3, (ii) galaxies in filaments receive W = 2, (iii) galaxies in
sheets receive W = 1, and (iv) galaxies in voids receive W = 0.
Furthermore, we store the large-scale total matter overdensity
value δ8 = ρ/ρ̄ − 1 (smoothed with a Gaussian kernel of radius
RG = 8 h−1Mpc) at the galaxy position and at the selection redshift,
by accounting for all matter in the box i.e. dark matter, gas, stars,
and black holes.

Equipped with formation redshift zform, large-scale overdensity
δ8, Cosmic Web class W, and central versus satellite indicator for
each galaxy selected at redshift zsel, we analyse how the properties
of the total mass versus stellar mass relation are influenced by these
variables.

3 RESULTS

3.1 The total mass versus stellar mass relation and the Cosmic
Web

We begin our discussion of the results by showing the total mass
versus stellar mass relation at redshifts z = 0, 1, 2, and 4 in a novel
way in Fig. 1. The left-hand panels are 2D histograms in the
log10Mpeak − log10M∗ plane that show the median Cosmic Web
class in each bin (not the galaxy counts). These plots reveal that in
all considered snapshots the position of galaxies in the log10Mpeak

− log10M∗ depends on the Cosmic Web class W, i.e. on the galaxy
location in the Cosmic Web. At each given total mass, the most
massive galaxies tend to be in knots and filaments. Conversely,
lower mass galaxies tend to be in sheets and voids.

The correlation of galaxy properties with the large-scale density
field has been recently quantified (Eardley et al. 2015; Luparello
et al. 2015; Etherington et al. 2017; Pandey & Sarkar 2017; Wei
et al. 2017; Papovich et al. 2018; Sun et al. 2018). Such correlation is
also found in TNG100, as shown by the right-hand panels of Fig. 1,
which are similar to the left-hand panels, but show the median
log10(1 + δ8) in each log10Mpeak − log10M∗ bin. These plots show
that at fixed total mass, the most massive galaxies tend to be in high
density large-scale environments, whereas low-mass galaxies tend
to be in lower density environments.

Fig. 1 does not provide quantitative information on whether
stellar masses correlate more strongly with Cosmic Web class W or
large-scale overdensity δ8. In principle, W and δ8 could be partially
degenerate, because W contains information about the local shape
of the density field. For this reason, before drawing conclusions, we
need to quantitatively assess whether the two variables really have
any predictive power on the position of galaxies in the log10Mpeak

− log10M∗ plane.
In principle, even the tiniest residual correlation of stellar mass

with Cosmic Web location would not be trivial, because it would
suggest a connection between galaxy properties and the large-
scale deformation tensor of the density field, i.e. the large-scale
morphology of the Cosmic Web region where the galaxy lies.

3.2 Quantitative analysis of the residuals in total mass versus
stellar mass relation

To perform a quantitative analysis of our results, we group the
selected galaxies/haloes in logarithmic bins in total mass of size
�log10Mpeak/M� = 0.5. In each total mass bin, we compute
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Figure 1. TNG100 simulation: total mass versus galaxy stellar mass at redshift z = 0, 1, 2, 4 going from top to bottom. The total mass of each halo has been
calculated using the SUBFIND algorithm. The colour scale represents the median Cosmic Web class (left-hand panels) and large-scale overdensity (right-hand
panels) in each log10Mpeak − log10M∗ bin. A colour is assigned to each pixel only when at least one galaxy falls into it. The yellow solid line represents
the median stellar mass versus total mass relation for the whole population at each redshift, whereas the dashed yellow lines represents running 5 and 95
percentiles, respectively. The red dashed-line represents the cut we apply in the selection of galaxies/haloes in our quantitative analysis. The scatter in the total
mass versus stellar mass relation depends on the location in the Cosmic Web (left panels) and the large-scale overdensity δ8 (right-hand panels).
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Table 1. The normalized covariance matrix between total mass log10Mpeak,
halo formation time log10(1 + zform), large-scale overdensity log10(1 +
δ8), and Cosmic Web class W at multiple redshifts. Values close to 1 or
−1 indicate a higher correlation between the variables. The large-scale
overdensity δ8 and the Cosmic Web class are not entirely correlated and the
correlation strength decreases from low to high redshift.

Covariance matrix of halo properties
log10Mpeak log10(1 + zform) log10(1 + δ8) W

Redshift z = 0.0
log10Mpeak 1.0000 − 0.0987 0.2307 0.2000
log10(1 + zform) − 0.0987 1.0000 0.2495 0.2168
log10(1 + δ8) 0.2307 0.2495 1.0000 0.8460
W 0.2000 0.2168 0.8460 1.0000

Redshift z = 1.0
log10Mpeak 1.0000 − 0.1426 0.1990 0.2039
log10(1 + zform) − 0.1426 1.0000 0.1081 0.1268
log10(1 + δ8) 0.1990 0.1081 1.0000 0.7145
W 0.2039 0.1268 0.7145 1.0000

Redshift z = 2.0
log10Mpeak 1.0000 − 0.1019 0.1854 0.1987
log10(1 + zform) − 0.1019 1.0000 0.0492 0.0737
log10(1 + δ8) 0.1854 0.0492 1.0000 0.6606
W 0.1987 0.0737 0.6606 1.0000

Redshift z = 4.0
log10Mpeak 1.0000 − 0.0914 0.1205 0.1906
log10(1 + zform) − 0.0914 1.0000 − 0.0355 0.0042
log10(1 + δ8) 0.1205 − 0.0355 1.0000 0.4140
W 0.1906 0.0042 0.4140 1.0000

the median log10M∗, which we indicate as 〈log10M∗|log10Mpeak〉.
The median trends at each redshift are shown as yellow lines in
Fig. 1. These lines are produced by interpolating the values in the
logarithmic total mass bins. Then, for each galaxy/halo we compute
the logarithmic offset of its stellar mass with respect to the average
relation 〈log10Mpeak|log10M∗〉:

�∗ = log10 M∗
〈log10 M∗| log10 Mpeak〉 − 1. (1)

In practice, �∗ quantifies how much the stellar mass deviates from
the typical stellar mass expected for galaxies in an object of a
given total mass. This definition decouples the median, non-linear
relation between total mass and stellar mass from its scatter, which
can then be separately analysed. The scatter in the total mass versus
stellar mass decreases with increasing total mass (Fig. 1; see also
fig. 11 of Pillepich et al. 2018b), which suggests that �∗ might
also depend on log10Mpeak. Furthermore, Fig. 1 suggests that �∗
may depend on the large-scale overdensity δ8 and on the location
in the Cosmic Web, quantified by the class W. A dependence of
�∗ on δ8 and W encapsulates all the environmental effects that can
influence a galaxy stellar mass throughout its evolution. Finally,
the stellar mass of a galaxy may also depend on the processes that
determine the formation of its main progenitor at higher redshift.
We parametrize this dependence with the formation redshift zform. In
our preliminary analysis, we have also tested whether �∗ depends
on the galaxy star formation rate, but we did not find evidence that
this is the case.

The first quantitative inspection of our sample of simulated
galaxies is summarized in Table 1, which shows the covariance
matrix between log10Mpeak, log10(1 + zform), log10(1 + δ8), and W
at multiple redshifts. Most of these variables exhibit relatively weak
correlation with each other, with the exclusion of log10(1 + δ8) and

W whose covariance is ∼0.8 (∼0.4) at redshift z = 0 (z = 4).
As discussed in Section 3.1, these two variables partially correlate
because they carry information about the density field. However,
log10(1 + δ8) and W are not entirely degenerate and the strength
of the correlation quickly decreases from low to high redshift. This
point is quite important for our purpose, because we want to use
log10Mpeak, log10(1 + zform), log10(1 + δ8), and W as explanatory
variables for the stellar mass offset �∗.

We perform a quantitative analysis of the dependence of �∗
on log10Mpeak, log10(1 + zform), log10(1 + δ8), and W by using
linear regression analysis at each redshift. First, we perform linear
regression of �∗ as a function of all the explanatory variables:

�∗(Lall) = �all + Lall,

Lall = aM
log10 Mpeak

15
+ aform log10(1 + zform)

+ aδ log10(1 + δ8) + aWW. (2)

To assess the predictive power of each explanatory variable, we
also consider linear models that only include a sub-set of them. We
always include log10Mpeak, and perform the following regressions:

�∗(Lform) = �form + Lform,

Lform = bM
log10 Mpeak

15
+ bform log10(1 + zform), (3)

�∗(Lδ) = �δ + Lδ,

Lδ = cM
log10 Mpeak

15
+ cδ log10(1 + δ8), (4)

�∗(LW) = �W + Lδ,

LW = dM
log10 Mpeak

15
+ dWW. (5)

The linear regressions are performed with the SCIKIT-LEARN PYTHON

library, which also returns a score R2 = 1 − u/v, where u =∑
(�∗,true

−�∗,model)2 is the sum of residuals, v =∑
(�∗,true −〈�∗,true〉)2 is the

sum of squares, and 〈�∗,true〉 is the mean of the true values of �∗. u
quantifies the accuracy of the linear model, whereas v is proportional
to the variance in the data that the model should reproduce. A perfect
linear model will have u = 0 (zero residuals), score R2 = 1, and
will fully reproduce the variance observed in �∗,true as a function
of the explanatory variables. Any imperfect model will have u 
=
0, and yield partially inaccurate prediction which produce artificial
variance in the predicted values �∗,model. This spurious variance
can be quantified by the ratio u/v. On the other hand, the fraction of
the variance in �∗,true that can be correctly captured by the model is
given by the linear correlation score R2 = 1 − u/v. Low values of R2

imply that the model is inaccurate (very large residual), or that �∗
depends weakly on the explanatory variable, leaving a large fraction
of the variance unexplained by the model. All the linear regressions
were performed by assigning an equal weight to each galaxy. The
consequences of this choice are discussed in Subsection 3.4.

To assess the predicting power of each explanatory variable
we compare the scores for each regression at each redshift. The
coefficients of the linear models measured via linear regression are
reported in Table 2, whereas the values of the scores are reported in
Fig. 2.

Fig. 2 shows the results of our linear regressions at z =
0, 1, 2, and 4. The score of the full linear regression �∗ versus Lall in
equation (2) is usually the best, and a linear model appears to provide
excellent fits to the simulations data at all examined redshifts. The
linear regression �∗ versus Lform provides an excellent, but slightly
worse fit to the simulation data (lower R2 score) at all redshifts.
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Table 2. Linear regression coefficients for the scaling of the logarithmic
offset of galaxy stellar masses �∗ as a function of (normalized) total
mass (log10Mpeak)/15, halo formation redshift log10(1 + zform), large-scale
overdensity log10(1 + δ8), and Cosmic Web class W at multiple redshifts.
See equations (2)–(5).

Linear model coefficients for �∗
Parameter z = 0 z = 1 z = 2 z = 4

Model �∗(Lall)
�all − 0.2763 − 0.4173 − 0.4693 − 0.6447
aM 0.2586 0.3233 0.2451 0.1952
aform 0.2115 0.3338 0.4620 0.6456
aδ 0.0223 0.0054 0.0015 − 0.0006
aW 0.0039 0.0157 0.0111 0.0012

Model �∗(Lform)
�form − 0.3351 − 0.4539 − 0.4878 − 0.6465
bM 0.3418 0.3776 0.2747 0.1975
bform 0.2366 0.3472 0.4673 0.6459

Model �∗(Lδ)
�δ − 0.1157 − 0.1399 − 0.0982 − 0.0617
cM 0.1351 0.1768 0.1238 0.0871
cδ 0.0409 0.0186 0.0098 − 0.0025

Model �∗(LW)
�W − 0.1469 − 0.1439 − 0.0927 − 0.0571
dM 0.1664 0.1683 0.1091 0.0754
dW 0.0522 0.0388 0.0235 0.0030

This implies that �∗ most strongly depends on the total mass
and on the formation redshift. This might indicate that the final
mass of a galaxy is strongly determined by the conditions of the
environment where it formed, and to internal processes that are
directly or indirectly related to the total mass (e.g. shock heating of
the gas, stellar feedback, or AGN feedback).

Fig. 2 also shows that total mass and formation redshift are
sufficient to explain ∼55–60 per cent of the measured variance in
�∗ measured among TNG100 galaxies at redshift z > 2. However,
this is not the end of the story: at redshift z < 2 we clearly see
an increase in the relevance of the large-scale overdensity δ8 and
of the Cosmic Web class W, quantified by the higher R2 scores for
the �∗ versus Lδ and �∗ versus LW regressions, respectively. This
evolution can perhaps be better appreciated by looking at Fig. 3,
which summarizes the scores R2 for all the linear regressions we
performed in this paper. The combination of large-scale overdensity
and Cosmic Web class is able to explain �20 per cent of the total
variance in �∗ at redshift z = 0, a fraction that decreases to
�5 per cent at z = 2. Fig. 3 also shows that large-scale overdensity
and Cosmic Web class have a very similar impact on �∗, with
differences that do not appear to be significant.

Our results seem to also suggest that a significant fraction (∼45–
60 per cent) of the scatter in the total mass versus stellar mass
relation is unexplained by the linear models considered in this paper
at redshift z ≤ 2. This fact could be the effect of non-linearity, as well
as dependence on other stochastic effects that were not considered
in our analysis. Non-linearity is also observed in the trend of �∗
at the highest values of Lδ and LW, which correspond to the most
massive haloes and the highest large-scale overdensities. Further
investigation beyond the scope of this paper will be required to
identify the sources of these effects.

To summarize, we conclude that information on the large-scale
density field can be important when trying to explain the scatter

in the total mass versus stellar mass relation, but its magnitude
correlates more strongly with halo formation redshift.

3.3 Central versus satellite galaxies

We have so far discussed the analysis of the whole population
of galaxies. However, galaxies that survive at the centre of dark
matter haloes typically have very different histories compared to
their satellites. On average, centrals selected at low redshift formed
earlier, are more massive and have undergone multiple major and
minor mergers. On the other end, on average, satellites form and are
accreted on to a larger dark matter halo later in cosmic history, and
they undergo multiple environmental effects, such as stripping of
their dark matter, gaseous and stellar content. For this reason, one
should expect centrals and satellites to have different dependencies
on the properties of their halo, and on environmental variables such
as local large-scale overdensity of Cosmic Web class.

Driven by these arguments, we separate the sample of galaxies
selected at redshift z = 0 in centrals versus satellites, then we repeat
the linear regression analysis we discussed above. The TNG100
halo catalogues provide a list of friends-of-friends (FOF) groups
and a separate list of SUBFIND objects, which are contained within
the FOF groups. Here, centrals are defined as galaxies that sit at the
centre of a host FOF group. Satellites are galaxies that belong to the
same FOF group, but are not central.

Fig. 4 presents the result of this analysis. This figure shows that
the stellar mass offset �∗ correlates more strongly with the linear
combination of all explanatory variables Lall for centrals than for
the whole sample. The correlation strength of �∗ with large-scale
overdensity and Cosmic Web class, quantified by the score R2, is
somewhat weaker than that of the whole sample. However, the
stellar mass offset �∗ correlates more strongly with halo formation
time in centrals than in the whole sample. These results indicate
that centrals ‘carry a strong memory’ of the formation site/epoch,
whereas they are more weakly influenced by external effects related
to the large-scale environment.

Fig. 4 shows that the stellar offset �∗ of satellites behaves
differently than for centrals. First of all, the relation between �∗ and
the linear combination of all explanatory variables Lall appears to be
non-linear. If this relation is fitted with a linear model, the correlation
score R2 is a few per cent smaller than for the whole sample. The
non-linearity of the relation is accentuated if large-scale overdensity
and Cosmic Web class are excluded from the fit. The non-linearity
appears as a strong downturn of �∗ at high Lall/Lform, which is
associated with objects with high total mass and high formation
redshift (zform > 0.5). None the less, the stellar mass offset of
satellites �∗ appears to have a stronger correlation with large-scale
overdensity and Cosmic Web class than for centrals. We interpret
this result as evidence that environmental effects are able to partially
‘erase a galaxy’s memory’ of its formation site/epoch. This is not
surprising, considering that many satellites may experience drastic
changes of environment and environmental processes throughout
their evolution.

In summary, the stellar mass offset �∗ is more strongly correlated
with the properties and history of the underlying halo for centrals
than for satellites. However, the correlation of the stellar mass offset
with large-scale Cosmic Web properties is stronger for satellites than
for centrals. With the use of the IllustrisTNG simulations, Engler,
Lisker & Pillepich (2018) and Engler et al. (in preparation) further
quantify the deviation of the stellar to halo mass relation for satellites
in groups and clusters in comparison to centrals. In agreement with,
and expanding upon, the results of this work for the case of knot
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Figure 2. Logarithmic offset �∗ of log10M∗ with respect to the median measured at fixed total mass 〈log10M∗|log10Mpeak〉. �∗ is plotted as a function of the
linear variables Lall, Lform, Lδ , LW defined in equations (2), (3), (4), (5), respectively. The black points with error bars represent data from TNG100 (mean �∗
and 1σ scatter within each bin). The red lines represent results of linear regressions of �∗ with respect to the linear explanatory variables reported on the x-axes.
Each row represents a different redshift, z = 0, 1, 2, 4 going from the top row to the bottom row, respectively. The linear regression score R2 is reported in each
panel. At all redshifts the combination of total mass Mpeak and formation redshift zform is the strongest predictor for �∗. The role of environmental variables
related to the Cosmic Web (large-scale overdensity δ8 and Cosmic Web class W) emerges at z < 2, and becomes somewhat stronger as redshift decreases.
None the less, the large-scale overdensity δ8 and the Cosmic Web class W are weaker predictors of �∗ than the formation redshift zform.
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Figure 3. Linear correlation scores R2 for the fits to the TNG100 data shown
in Fig. 2. This score quantifies the fraction of the variance in �∗ that can
be explained by each given linear model achieved by linear regression. Our
linear models for �∗ are excellent fits to the TNG100 simulation data, but
become increasingly less predictive from high to low redshift (black line).
The variance in �∗ can be described well by only including total mass and
formation time, but this incomplete model accounts for less than 40 per cent
of the variance at redshift z ≤ 1 (red line). Large-scale overdensity and
Cosmic Web class account for �5 per cent of the variance in �∗ at redshift
z = 2, a fraction that increases to �20 per cent at redshift z = 0 (green and
blue lines).

galaxies, they find that satellite galaxies appear to have, at fixed
dynamical or total mass, enhanced stellar mass in comparison to
their central counterparts.

3.4 Low-mass versus high-mass haloes

In the analysis of �∗ presented in the previous sub-sections, linear
regressions performed by assigning equal weights to each halo were
used. Since low-mass haloes are more abundant than high-mass
haloes, the fitting procedure is more sensitive to the former than
the latter. In this sub-section, we discuss how the weighting scheme
influences our results.

We split the simulated galaxy sample at redshift z = 0 in two sub-
samples, one containing low-mass haloes (Mpeak < 1012 M�) and
one containing high-mass haloes (Mpeak ≥ 1012 M�), respectively.
We repeat the linear regression procedure for each sub-sample
in order to assess the robustness of our results. Fig. 5 shows the
outcome of this test. The general conclusions of Subsection 3.2 are
valid for the low-mass halo sub-sample. However, high-mass haloes
exhibit a very weak correlation between �∗, total mass, formation
time, large-scale overdensity, and Cosmic Web class. The reason
for this behaviour is that very massive haloes all form very early,
typically end up in knots at redshift z = 0, and have a very small
scatter in stellar mass (Fig. 1).

Since the results for the low-mass halo sub-sample are the most
similar to those of the total population, we conclude that low-
mass haloes contain the critical information to study the connection
between �∗ and the other properties considered in this paper. For
this reason, we conclude that performing linear regressions with

equal weighting for all galaxies does not introduce a bias that
undermines the robustness of our conclusions.

3.5 Varying the halo mass definition

The analysis of the scatter of the relationship between halo masses
and stellar masses presented above relies on a specific halo mass
definition, the peak mass reached by any given halo throughout its
evolution. Although this quantity is of great theoretical relevance,
it is not measurable. For this reason, the analysis was repeated by
adopting an alternative definition of the halo mass that is similar
to total masses determined from observations: Msub, the mass of a
gravitationally bound object as identified by SUBFIND and including
a priori all matter components: dark matter, gas, and stars. The
‘sub’ subscript refers to the fact that we use masses computed by
SUBFIND. This can be intended as the dynamical mass of a self-
gravitating (sub)halo or galaxy at a given time.

Fig. 6 shows the result of the linear regressions of
�∗ = log10M∗/〈log10M∗|log10Msub〉 − 1 against the explanatory
variables Lall, Lform, Lδ , and LW (equations 2–5), where Mpeak

was replaced with Msub. Choosing this alternative mass definition
worsens the quality of the linear fits, and R2 is a few per cent smaller
than in the fiducial case. This difference is likely caused by the fact
that the value of Msub is influenced by the non-linear and stochastic
history of environmental and stripping processes experienced by
satellite haloes, which is not the case when using Mpeak. Apart from
this minor difference, the results are in qualitative agreement with
those found in the fiducial analysis, and the interpretation is the
same as the one discussed in Subsections 3.2–3.4. This conclusion
is also confirmed by noting the similarity of the coefficients of the
alternative linear regression models summarized in Table 3 with the
ones of the fiducial models in Table 2.

4 D I S C U S S I O N A N D C O N C L U S I O N S

In this paper, we have studied the connection among stellar mass,
total mass, halo formation time, and the location in the large-scale
Cosmic Web of galaxies using the data from the TNG100 large-
volume cosmological hydrodynamical simulation. The analysis is
based on the Cosmic Web classification method we already used
in Martizzi et al. (2019), which uses the deformation tensor of
the total matter density field smoothed with a Gaussian kernel of
radius RG = 8 h−1Mpc. This classification separates the large-scale
cosmological Cosmic Web from structure at smaller scales, such as
haloes, which are identified with the SUBFIND algorithm. We select
objects with total dynamical mass ≥6.3 × 1010 h−1 M� and up to a
few 1014 h−1 M� between redshift z = 4 and redshift z = 0. For each
redshift and for each object in the IllustrisTNG group catalogues, we
measure its total mass, formation redshift, value of the local large-
scale overdensity, and Cosmic Web class (knot, filament, sheet,
and void). We show that the local large-scale overdensity and the
Cosmic Web class are not entirely degenerate variables, because
the latter includes information about the density field morphology
which is not contained in the former.

We confirm that galaxy stellar mass strongly correlates with
total mass and formation time, and we uncover that it correlates
more weakly with large-scale overdensity and Cosmic Web class.
In particular, we find that the scatter in the total mass versus
stellar mass relation correlates with both the large-scale overdensity
and with the Cosmic Web class. Our quantitative analysis of
simulation data shows that this is not a small effect, and that up
to ∼20 per cent of this scatter at redshift z = 0 can be explained
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Figure 4. Logarithmic offset �∗ of log10M∗ with respect to the median measured at fixed total mass 〈log10M∗|log10Mpeak〉. �∗ is plotted as a function of the
linear variables Lall, Lform, Lδ , LW defined in equations (2), (3), (4), (5), respectively. The black points with error bars represent data from TNG100 (mean �∗
and 1σ scatter within each bin). The red lines represent results of linear regressions of �∗ with respect to the linear explanatory variables reported on the x-axes.
The results are shown for central galaxies selected at redshift z = 0 (top row) and satellite galaxies selected at redshift z = 0 (bottom row). If only centrals
are selected, the correlation of the stellar mass offset with the explanatory variables is stronger than for the whole population (top left panel). If only satellites
are selected, this correlation is weaker and non-linear (bottom left panel). In particular, centrals have a stronger correlation with formation time than satellites.
However, the non-linear correlation of the stellar mass offset with overdensity and Cosmic Web class is stronger for satellites than for centrals, probably as a
result of environmental effects.

with a deterministic linear combination of total mass, overdensity
and Cosmic Web class as variables. If formation redshift is included
as a variable of the model, the latter can explain up to ∼40 per cent
of the scatter. Similar conclusions apply to higher redshift, but the
role of overdensity and Cosmic Web class becomes weaker (only
∼5 per cent of the scatter).

These results suggest that on average the earlier an overdensity
develops, the earlier haloes/galaxies will form within it, and the
more time these haloes/galaxies will have to fall into a knot or
filament, and to assemble a higher-than-average stellar mass. In
lower density regions such as sheets and voids, haloes/galaxies on
average form later, and have less time to accumulate dark matter
and form stars. The correlations found in this work are mostly
determined by central galaxies. Indeed, the fact that the correlation
between stellar mass, halo mass, formation time, and large-scale
environment is not perfect, implies that this simplistic scenario
may have exceptions. For instance, satellites may form late in a
sheet or void, then migrate to a knot and lose part of their mass
due to stripping processes (see Engler et al. in preparation). The
fact that these exceptions exist, is supported by our finding that
Cosmic Web class/large-scale overdensity have a weak correlation
with formation time (see Table 1).

Driven by these considerations, we further extended our analysis
to differentiate between central and satellite galaxies. In qualitative
terms, the correlations discussed above also exist for these two
classes. However, the stellar masses of centrals are found to correlate

more strongly with the properties of their haloes than satellites,
whereas satellites appear to have a higher relative correlation
strength with large-scale overdensity and Cosmic Web class. We
interpret this result as a consequence of satellites being perturbed
by environmental effects that are triggered when they transit from
one location of the Cosmic Web to another. A typical example is a
galaxy streaming along a filament until it falls into a knot, and is then
accreted by a large galaxy cluster, where it experiences stripping
processes. Galaxies that manage to survive as centrals of a halo
are shielded by these environmental effects and manage to retain
the dependence on the conditions at the location/epoch where/when
they formed.

The procedure we followed to study the connection between
stellar masses, total dynamical masses, and the large-scale cosmic
density field is robust, but difficult to apply directly to galaxy survey
for a series of reasons. Although motivated by robust theoretical
arguments, the Cosmic Web classification method we use is based
on knowledge of the total large-scale density field, and cannot be
straightforwardly applied to survey data. None the less, a similar
implementation, the DISPERSE code of Sousbie (2011), has been used
by Duckworth et al. (2019) to connect MaNGA galaxy kinematics
to assembly history. An implementation of the deformation tensor
method we used was also recently used on a sample of ∼105

galaxies from the GAMA survey (Eardley et al. 2015; Brouwer
et al. 2016). This analysis leads to the conclusion that the galaxy
mass function does not depend on the deformation tensor, but only
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Figure 5. Equivalent of Fig. 4, but for low-mass haloes (Mpeak < 1012 M�, top row) and high-mass haloes (Mpeak ≥ 1012 M�, bottom row). The relation
among �∗ and the explanatory variables Lall, Lform, Lδ , and LW is preserved for low-mass haloes, but it is very weak for high-mass haloes. This is a consequence
of the fact that high-mass haloes exhibit a small stellar mass scatter (Fig. 1), they typically form very early with and end up in cosmic knots, i.e. they do not
exhibit a broad range of properties. Conversely, low-mass haloes have a broad range of �∗ that correlate with the formation time, large-scale overdensity, and
Cosmic Web class.

Figure 6. Equivalent of Fig. 2, but for a different definition of the halo mass: Msub, the mass of a gravitationally bound object as identified by SUBFIND, which
is similar total masses determined from observations. The principal results of the analysis of the scatter of the relationship between halo masses and stellar
masses are confirmed with this alternative halo mass definition.

on the large-scale overdensity. However, the robustness of these
results is somewhat limited by the size of the sample, and by the
fact that the classification method is directly applied to the galaxy
overdensity field which is biased with respect to the total density
field. An additional limitation to fully measure the effects discussed
in this paper, is the fact that the halo mass of each galaxy should
be also known. In practice, simultaneously obtaining the halo mass
(e.g. from gravitational lensing) and information on the large-scale
density field from galaxy surveys is challenging.

None the less, multiple cutting-edge methods to measure the
Cosmic Web structure directly from surveys have been designed

(Sousbie 2011; Libeskind et al. 2018), and, in principle, it should
be possible to apply them and verify whether some of the effects
we identify are seen in the real Universe. For instance, one could
perform a Cosmic Web classification on a large galaxy redshift
survey, select galaxies in a given stellar mass range, and then
compute the median stellar mass for each Cosmic Web environment.
If our results hold, the median stellar mass should depend on the
Cosmic Web class.

In conclusion, our analysis suggests the existence of non-trivial
connection between galaxies, their haloes and the large-scale envi-
ronment that can be measured in the real Universe, with currently
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Table 3. Linear regression coefficients for the scaling of the logarithmic
offset of galaxy stellar masses �∗ as a function of (normalized) total
mass (log10Msub)/15, halo formation redshift log10(1 + zform), large-scale
overdensity log10(1 + δ8), and Cosmic Web class W at multiple redshifts.
See equations (2)–(5).

Alternative linear model coefficients for �∗
Parameter z = 0 z = 1 z = 2 z = 4

Model �∗(Lall)
�all − 0.0176 − 0.1965 − 0.3264 − 0.5841
aM − 0.0835 0.0372 0.0578 0.1152
aform 0.1798 0.3160 0.4539 0.6427
aδ 0.0282 0.0077 0.0025 − 0.0003
aW 0.0095 0.0203 0.0139 0.0023

Model �∗(Lform)
�form − 0.1098 − 0.2328 − 0.3469 − 0.5874
bM 0.0472 0.0931 0.0917 0.1205
bform 0.2293 0.3335 0.4611 0.6432

Model �∗(Lδ)
�δ 0.1539 0.0928 0.0733 0.0109
cM − 0.2335 − 0.1352 − 0.1077 − 0.0121
cδ 0.0440 0.0217 0.0120 − 0.0016

Model �∗(LW)
�W 0.1180 0.0837 0.0752 0.0167
dM − 0.2080 − 0.1388 − 0.1184 − 0.0254
dW 0.0760 0.0445 0.0274 0.0044

available data, and in the near future. On the theoretical side, there
are a number of ways in which the present analysis can be improved:
the first one is the use of Bayesian methods to study the correlations
we identified in this work (e.g. Trotta 2008), which would allow
us to penalize certain analytical models against others; the second
one is a detailed study of what causes the correlations, which would
involve tracking the flow of dark matter and baryons on a halo-
to-halo basis; the third one is the employment of Cosmic Web
classification tools that can be directly applied to galaxy survey
data, and that are weakly affected by galaxy biasing. We defer these
improvements to future work.
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