YMTHE, Volume 28

Supplemental Information

Correction of Three Prominent Mutations

in Mouse and Human Models of Duchenne

Muscular Dystrophy by Single-Cut Genome Editing

Yi-Li Min, Francesco Chemello, Hui Li, Cristina Rodriguez-Caycedo, Efrain Sanchez-Ortiz, Alex A. Mireault, John R. McAnally, John M. Shelton, Yu Zhang, Rhonda Bassel-Duby, and Eric N. Olson

Supplemental Information

Supplementary Figures

Figure S1. Gene editing strategy and location of mouse and human exon 53 sgRNAs for Δ 52 DMD models. (A) Diagram for exon 53 targeting strategy and potential products after editing. Shapes of intron-exon junctions indicate complementarity that maintains the open reading frame upon splicing. (B) Mouse sgRNA location targeting the 5' region of exon 53. The sgRNAs targeting exon 53 before the stop codon in Δ 52 mice are candidates for exon skipping or 3n+1 reframing. sgRNA sequences are listed in Table S2. mE53g2, the sgRNA selected for further analyses is bordered in red. (C) Indel analysis of sgRNAs that target exon 53 was performed in N2a mouse cells. Red arrow indicates the most efficient sgRNA which was used for further analyses. mCTRL51 and mCTRL45 are positive validated sgRNA controls targeting mouse exon 51 and exon 45, respectively^{18, 19} (n = 3 biological replicates). (D) Human sgRNA location for targeting the 5' region of exon 53. The sgRNAs targeting exon 53 before the stop codon in human $\Delta 52$ iPSCs are candidates for exon skipping or 3n+1 reframing. sgRNA sequences are listed in Table S2. hE53h10, the sgRNA selected for further analyses is bordered in red. (E) Indel analysis of sgRNAs that target exon 53 was performed in 293T human cells. Red arrow indicates the most efficient sgRNA used for further analyses. hCTRL51 and hCTRL45 are positive validated sgRNA controls targeting human exon 51 and exon 45, respectively^{18, 19} (n = 3 biological replicates). Data are presented as means ± SEM.

Figure S2. Correction events of mouse and human models after editing of exon 53 in mouse and human Δ 52 DMD models. (A) Pie chart showing percentage of events detected in mouse TA muscle at exon 53 after ssAAV-Cas9 and scAAV-mE53g2 treatment using TIDE analysis of the RT-PCR sequences (n=3). RT-PCR products were divided into four groups: Not edited (NE), exon 53 skipped (SK), exon 53 reframed (RF), and out of frame (OF). (B) INDEL genomic analysis of hE53g10 targeting exon 53 in human Δ 52 DMD iPSCs (n=3). 3n+1 reframing (RF) events restore the correct open reading frame. Data are presented as means ± SEM

Figure S3. Intramuscular AAV9 delivery of gene editing components rescues dystrophin expression in $\Delta 52$ DMD mice. (A) Dystrophin immunohistochemistry of TA muscle in corrected $\Delta 52$ DMD mice 3 weeks after ssAAV-Cas9 and scAAV-mE53g2 intramuscular injection (5 × 10¹⁰ vg/leg of ssAAV9-Cas9 and 5 × 10¹⁰ vg/leg of scAAV-mE53g2). Dystrophin is shown in green. Nuclei are marked by DAPI stain in blue. Tile scan (10X) of the entire TA muscle. Scale bar is 500 µm. (B) H&E staining of TA in WT, $\Delta 52$ DMD, and corrected $\Delta 52$ DMD mice 3 weeks after ssAAV-Cas9 and scAAV-mE53g2 intramuscular injection (5 × 10¹⁰ vg/leg of ssAAV9-Cas9 and 5 × 10¹⁰ vg/leg of scAAV-mE53g2). Scale bar is 100 µm. (C) Whole muscle scanning of H&E staining of TA of WT, $\Delta 52$ DMD and corrected $\Delta 52$. Tile scan (4X) of the entire muscle. Scale bar is 500 µm.

Figure S4. Gene editing strategy and location of mouse and human exon 44 sgRNAs for $\Delta 43$ and $\Delta 45$ DMD models. (A) Diagram for exon 44 targeting strategy and potential products after editing in $\Delta 43$ and $\Delta 45$ DMD models. Shapes of intron-exon junctions indicate complementarity that maintains the open reading frame upon splicing. (B) Mouse sgRNAs targeting the 3' region of exon 44. The sgRNAs targeting exon 44 are candidates for exon skipping (in $\Delta 43$ DMD mice) or exon skipping and 3n+1 reframing (in Δ 45 DMD). sgRNA sequences are listed in Table S2. mE44g7, the sgRNA selected for further analyses is bordered in red. (C) Indel analysis of sgRNAs that target exon 44 was performed in N2a mouse cells. Red arrow indicates the most efficient sgRNA which was used for further analyses. mCTRL51 and mCTRL45 are positive validated sgRNA controls targeting, respectively, mouse exon 51 and exon $45^{18, 19}$ (n = 3 biological replicates). (D) Human sgRNA location for targeting the 3'region of exon 44. The sgRNAs targeting exon 44 are candidates for exon skipping (in human Δ 43 DMD) or exon skipping and 3n+1 reframing (in human $\Delta 45$ DMD). sgRNA sequences are listed in Table S2. hE44g4, the sgRNA selected for further analyses is bordered in red. (E) Indel analysis of sgRNAs that target exon 44 was performed in 293T human cells. Red arrow indicates the most efficient sgRNA used for the further analyses. hCTRL51 and hCTRL45 are positive validated sgRNA controls targeting, respectively, human exon 51 and exon 45^{18, 19} (n = 3 biological replicates). Data are presented as means ± SEM

Figure S5. Correction events after gene editing of exon 44 in mouse and human Δ43 and Δ45 DMD models. (A, C) Pie charts showing percentage of events detected in Δ43 and Δ45 DMD mouse TA muscles after ssAAV-Cas9 and scAAV-mE44g7 treatment using TIDE analysis of the RT-PCR sequences (A: n=3; C: n=2). RT-PCR products were divided into four groups: Not edited (NE), exon 44 skipped (SK), exon 44 reframed (RF), and out of frame (OF). (B, D) INDEL genomic analysis of hE44g4 targeting exon 44 in human Δ43 and Δ45 DMD iPSCs (n=3). Exon 44 skipping (SK) restores the correct open reading frame in human Δ43 DMD. 3n-1 reframing (RF) events restore the correct open reading frame in Δ45. Data are presented as means ± SEM

Figure S6. Intramuscular AAV9 delivery of gene editing components restores dystrophin expression in Δ 43 DMD mice. (A) Dystrophin immunohistochemistry of TA muscle in corrected Δ 43 DMD mice 3 weeks after ssAAV-Cas9 and scAAV-mE44g7 intramuscular injection (5 × 10¹⁰ vg/leg of ssAAV9-Cas9 and 5 × 10¹⁰ vg/leg of scAAV-mE44g7). Dystrophin is shown in green. Nuclei are marked by DAPI stain in blue. Tile scan (10X) of the entire TA muscle. Scale bar is 500 µm. (B) H&E staining of TA muscles in WT, Δ 43 DMD, and corrected Δ 43 mice 3 weeks after ssAAV-Cas9 and 5 × 10¹⁰ vg/leg of scAAV-mE44g7 intramuscular injection (5 × 10¹⁰ vg/leg of ssAAV9-Cas9 and 5 × 10¹⁰ vg/leg of scAAV-mE44g7). Scale bar is 100 µm. (C) Whole muscle scanning of H&E staining of TA of corrected m Δ 43. Tile scan (4X) of the entire muscle. Scale bar is 500 µm.

Figure S7. Intramuscular AAV9 delivery of gene editing components restores dystrophin expression in Δ45 DMD mice. (A) Dystrophin immunohistochemistry of TA muscle in corrected Δ45 DMD mice 3 weeks after ssAAV-Cas9 and scAAV-mE44g7 intramuscular injection (5×10^{10} vg/leg of ssAAV9-Cas9 and 5×10^{10} vg/leg of scAAVmE44g7). Dystrophin is shown in green. Nuclei are marked by DAPI stain in blue. Tile scan (10X) of the entire TA muscle. Scale bar is 500 µm. (B) H&E staining of TA in WT, Δ45 DMD, and corrected DMD mice 3 weeks after ssAAV-Cas9 and scAAV-mE44g7 intramuscular injection (5×10^{10} vg/leg of ssAAV9-Cas9 and 5×10^{10} vg/leg of scAAVmE44g7). Scale bar is 100 µm. (**C**) Whole muscle scanning of H&E staining of TA muscles of corrected Δ45 DMD mice. Tile scan (4X) of the entire muscle. Scale bar is 500 µm.

Supplementary Tables

	Table S1. List of sgRNAs used to	generate DMD mouse models and pr	imers.
--	----------------------------------	----------------------------------	--------

DMD model generation				
Purpose of the primers	ID	Sequence (5'-3')		
Primers for saRNA	mDmd-Ex43-N2-Top	CaccgTTATTAGTACTAACTCAGAA		
targeting Dmd exon 43 to	mDmd-Ex43-N2-Bottom	aaacTTCTGAGTTAGTACTAATAAc		
generate the $\Delta Ex43$	mDmd-Ex43-C2-Top	CACCGGTAAATATCAACTTCTAAAT		
DMD model	mDmd-Ex43-C2-Bottom	aaacATTTAGAAGTTGATATTTACc		
Primers for saRNA	mDmd-Exon45-5-G1-top	CACCGaactaatatatccaaatact		
targeting Dmd exon 45 to	mDmd-Exon45-5-G1-bot	AAACAGTATTTGGATATATTAGTT C		
generate the $\Delta Ex45$	mDmd-Exon45-3-G4-top	CACCGagtttgtgctaaaaatcatg		
DMD model	mDmd-Exon45-3-G4-bot	AAACCATGATTTTTAGCACAAACT C		
Primers for saRNA	mDmd-Ex52-N1-Top	CACCGatatatcttaaatgatgtat		
targeting Dmd exon 52 to	mDmd-Ex52-N1-bottom	AAACATACATCATTTAAGATATATC		
generate the $\Delta Ex52$	mDmd-Ex52-C3-Top	caccgccaagttaatcaaattgttc		
DMD model	mDmd-Ex52-C3-Bottom	aaacGAACAATTTGATTAACTTGGc		
	PCR, RT-PCR and TIDE a	nalysis		
For mouse dE43,	mDmd-dE43-E4146-RT-R2	CTGCTGCTCATCTCCAAGTG		
skipping exon 44	mDmd-dE43-E4246-RT-F3	AGTGACGACTGAAGATATGCCT		
For mouse dE45,	mDmd-E4347-RT-F2	AGGTGAAAGTACAGGAAGCCGT		
skipping/reframing exon44	mDmd-E4347-RT-R2	CTTCTGGCCTTATGGGAGCACT		
For mouse dE52,	mDmd-E5054-RT-R1	TGACGGAGGTCTTTGGCCAA		
53	mDmd-E5155-RT-F1	TTGGAGGTACCTGCACTGGC		
For human dE43,	hEx42-RT-F	GCCCTATTAGAAGTGGAACAAC		
skipping exon 44	hEx46-RT-R	GGTTCAAGTGGGATACTAGC		
For human dE45,	hEx42-RT-F	GCCCTATTAGAAGTGGAACAAC		
exon44	hEx46-RT-R	GGTTCAAGTGGGATACTAGC		
For human dE52,	hEx51-RT-F	GAAACTGCCATCTCCAAACTAGAAA		
53	hEx54-RT-R	TCATGTGGACTTTTCTGGTATCATC		
For editing mouse Dmd exon 44	mE44-T7E1-F1	agggagaagatgctaattatcctaag		
	mE44-T7E1-R1	caaaacagtcatagcacaattttcag		
For editing mouse Dmd exon 46	mDmd-sE46-T7E1-F2	tcttcacaagccccctctta		
	mDmd-sE46-T7E1-R1	Caactggtaggcagtttgcat		
For editing mouse Dmd	mDmd-sE53-T7E1-F2	TGCCCACAAGTAAGTGCTGA		
exon 53	mDmd-sE53-T7E1-R1	TTGTCTCAAaaccaaccaacc		
	hDMD-sE53-T7E1-F1	gggaaatcaggctgatgggt		

For editing human exon 53	hDMD-sE53-T7E1-R1	GTCTACTGTTCATTTCAGC	
For editing human exon 44	hDMD-sE44-T7E1-F2	GCAGGAAACTATCAGAGTG	
	hDMD-sE44-T7E1-R2	ACACCTTGCTGTTACGAT	
For editing human exon 46	hDMD-sE46-T7E1-F1	ccaccaaacctggcaaat	
	hDMD-sE46-T7E1-R1	GAACTATGAATAACCTAATGGGCAG	

 Table S2. Sequence of sgRNAs.

Purpose	ID	Sequence	PAM
	hE53g1	ATTTATTTTTCCTTTTATTC	TAG
	hE53g2	TTTCCTTTTATTCTAGTTGA	AAG
	hE53g3	TGATTCTGAATTCTTTCAAC	TAG
	hE53g7	TGAAAGAATTCAGAATCAGT	GGG
	hE53g8	ACTGTTGCCTCCGGTTCTGA	AGG
	hE53g9	TACAAGAACACCTTCAGAAC	CGG
	hE53g10	AAGAACACCTTCAGAACCGG	AGG
	hE53g11	TTTCATTCAACTGTTGCCTC	CGG
Human sgRNA	hE53g14	AATTCAGAATCAGTGGGATG	AAG
	hE53g15	TTGAAAGAATTCAGAATCAG	TGG
	hE53g17	ACCTTCAGAACCGGAGGCAA	CAG
	hE53g18	AATTCTTTCAActagaataa	AAG
	hE53g19	ttattctagTTGAAAGAATT	CAG
	hE53g20	tagTTGAAAGAATTCAGAAT	CAG
	hE53g21	ATGAAGTACAAGAACACCTT	CAG
	hE53g22	AACTGTTGCCTCCGGTTCTG	AAG
	hE53g23	CAAGAACACCTTCAGAACCG	GAG
	hE44g4	TAAATACAAATGGTATCTTA	AGG
	hE44g7	TTAGCATGTTCCCAATTCTC	AGG
	hE44g8	GGGAACATGCTAAATACAAA	TGG
	hE44g10	AGACACAAATTCCTGAGAAT	TGG
	hE44g11	GACACAAATTCCTGAGAATT	GGG
	hE44g15	ATTTAATCAGTGGCTAACAG	AAG
Human sgRNA targeting exon 44 Control sgRNAs	hE44g16	AGAAACTGTTCAGCTTCTGT	TAG
	hE44g17	AGTGGCTAACAGAAGCTGAA	CAG
	hE44g18	AAGCTGAACAGTTTCTCAGA	AAG
	hE44g19	TTTAGCATGTTCCCAATTCT	CAG
	hE44g20	CTTAAGATACCATTTGTATT	TAG
	hE44g21	CTAAATACAAATGGTATCTT	AAG
	hE44g22	TACAAATGGTATCTTAAGgt	aag
	hE44g23	acaaatcaaagacttacCTT	AAG
	hE44g24	TGTCTTTCTGAGAAACTGTT	CAG
	hCTRL1	CACCAGAGTAACAGTCTGAG	TAG
	hCTRL2	ATCTTACAGGAACTCCAGGA	TGG
	mCTRL1	CACTAGAGTAACAGTCTGAC	TGG
	mCTRL2	GGCTTACAGGAACTCCAGGA	TGG
Mouse sgRNA	mE53g1	TGAAAGAATTCAGATTCAGT	GGG
targeting exon 53	mE53g2	AATTCAGATTCAGTGGGATG	AGG

	mE53g3	TTCAAGAACAGCTGCAGAAC	AGG
	mE53g8	TTGAAAGAATTCAGATTCAG	TGG
	mE53g9	AGTGGGATGAGGTTCAAGAA	CAG
	mE53g10	AGCTGCAGAACAGGAGACAA	CAG
	mE53g11	TGAATCTGAATTCTTTCAAC	TGG
	mE53g12	CTTTCAACTGGAATAAAAAT	AAG
	mE53g13	CTTATTTTTATTCCAGTTGA	AAG
	mE53g14	TTATTCCAGTTGAAAGAATT	CAG
	mE53g15	CAGTTGAAAGAATTCAGATT	CAG
	mE53g16	GAATTCAGATTCAGTGGGAT	GAG
	mE53g17	GATTCAGTGGGATGAGGTTC	AAG
	mE53g18	ATGAGGTTCAAGAACAGCTG	CAG
	mE53g19	GTTCAAGAACAGCTGCAGAA	CAG
	mE53g20	AACTGTTGTCTCCTGTTCTG	CAG
	mE53g21	CAAGAACAGCTGCAGAACAG	GAG
Mouse sgRNA targeting exon 44	mE44g3	AGACACAAAATCCTGAAAAC	TGG
	mE44g4	TTAGCATGTTCCCAGTTTTC	AGG
	mE44g5	GACACAAAATCCTGAAAACT	GGG
	mE44g6	GGGAACATGCTAAATACAAA	TGG
	mE44g7	TAAATACAAATGGTATCTTA	AGG
	mE44g10	AAAAACTGTTCAACTTCATT	CAG
	mE44g11	AATGGCTGAATGAAGTTGAA	CAG
	mE44g12	AAGTTGAACAGTTTTTCAAA	AAG
	mE44g13	TTTAGCATGTTCCCAGTTTT	CAG
	mE44g14	CTTAAGATACCATTTGTATT	TAG
	mE44g15	CTAAATACAAATGGTATCTT	AAG
	mE44g16	TACAAATGGTATCTTAAGgt	AAG
	mE44g17	AAATCTCAAAGTCTTACCTT	AAG
sgRNAs with NGG marked in black.	PAM are mar	ked in green and sgRNAs with NAG	PAM are