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ABSTRACT
Unbiased and precise mass calibration of galaxy clusters is crucial to fully exploit galaxy clusters as cosmological probes.
Stacking of weak lensing (WL) signal allows us to measure observable–mass relations down to less massive haloes without
extrapolation. We propose a Bayesian inference method to constrain the intrinsic scatter of the mass proxy in stacked analyses.
The scatter of the stacked data is rescaled with respect to the individual scatter based on the number of binned clusters. We apply
this method to the galaxy clusters detected with the AMICO (Adaptive Matched Identifier of Clustered Objects) algorithm in the
third data release of the Kilo-Degree Survey. The results confirm the optical richness as a low-scatter mass proxy. Based on the
optical richness and the calibrated WL mass–richness relation, mass of individual objects down to ∼1013 M� can be estimated
with a precision of ∼20 per cent.
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1 I N T RO D U C T I O N

Studies of number counts of galaxy clusters can put significant
constraints on cosmological parameters (Vikhlinin et al. 2009; Mantz
et al. 2015; Pacaud et al. 2018; Costanzi et al. 2019). Detection
methods can recover large numbers of galaxy clusters with high
levels of purity and completeness from optical bands (Rykoff et al.
2014; Oguri et al. 2018; Maturi et al. 2019), X-ray data (Pierre et al.
2016), or observations of the Sunyaev–Zeldovich effect (Bleem et al.
2015; Planck Collaboration XXVII 2016a). The constraining power
of cluster abundance is strongly enhanced if the mass calibration
is well understood and the mass–observable relation well known
(Sartoris et al. 2016). An accurate and precise cosmological analysis
requires the knowledge of both scaling parameters and intrinsic
scatter, but recent efforts exploiting data from large surveys have
been inconclusive (Planck Collaboration XXIV 2016b; DES Collab-
oration 2020), the suspect culprit being a biased knowledge of the
observable–mass scaling relation.

The practical difficulties confront with a solid theoretical under-
standing of the main processes behind the scaling relations. In the
self-similar scenario of structure virialization (Kaiser 1986; Giodini
et al. 2013; Ettori 2015), the mass is the driving property that informs
every other halo property. Tight scaling relations in form of power
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laws relate the cluster properties but non-gravitational processes or
deviation from equilibrium can affect the scalings and introduce an
intrinsic scatter, such that clusters with the same mass can have
somewhat different optical richness or X-ray luminosity. Numerical
simulations (Stanek et al. 2010; Fabjan et al. 2011; Angulo et al.
2012; Truong et al. 2018) and observations (Maughan 2014; Mantz
et al. 2016; Sereno et al. 2020) show that the intrinsic scatter is
approximately lognormal.

One of the main problems in cosmological analyses is the
selection of a complete sample of galaxy clusters with well-
measured masses. Weak lensing (WL) masses are regarded as reliable
measurements but analyses of individual haloes are challenging
due to low signal-to-noise detections. Accurate and precise results
can be available only for either heterogeneous or small samples
of massive objects (Applegate et al. 2014; Umetsu et al. 2014;
Okabe & Smith 2016; Melchior et al. 2017; Sereno et al. 2017).
Even with high-quality data, the analysis of small groups suf-
fers from very large statistical uncertainties (Sereno et al. 2020;
Umetsu et al. 2020). Furthermore, projection effects, triaxiality,
and prominent substructures can bias the mass measurement (Rasia
et al. 2012).

The signal of different galaxy clusters at fixed observables can
be coherently added. This stacking technique allows to significantly
enhance the signal of less massive haloes and to measure their average
mass in a range that is out of reach for analyses of individual clusters
(Johnston et al. 2007; Mandelbaum & Seljak 2007; Rozo, Wu &

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

http://orcid.org/0000-0003-0302-0325
http://orcid.org/0000-0003-4117-8617
http://orcid.org/0000-0002-8850-0303
http://orcid.org/0000-0002-3473-6716
http://orcid.org/0000-0002-3585-866X
http://orcid.org/0000-0001-9587-7822
mailto:mauro.sereno@inaf.it


CoMaLit – VI. 895

Schmidt 2011; Melchior et al. 2017; Simet et al. 2017). Results
are very solid. Stacked WL masses and optical richnesses show tight
correlations (Bellagamba et al. 2019; McClintock et al. 2019; Murata
et al. 2019). However, the picture is still not complete, since most
stacking analyses do not return the estimate of the intrinsic scatter,
which is usually assumed to be negligible. Whereas the intrinsic
scatter of stacked quantities can be negligible, the scatter of individual
haloes is not and we need to know it for cosmological inference based
on number counts.

Here, we tackle the problem of how to reconstruct the full
information on scaling relations and intrinsic scatter from stacked
data. As a study case, we apply the method to the galaxy clusters
detected with the algorithm AMICO (Adaptive Matched Identifier
of Clustered Objects; Bellagamba et al. 2018; Maturi et al. 2019) in
Kilo-Degree Survey Data Release 3 (KiDS DR3; de Jong et al. 2013;
Kuijken et al. 2015), a WL survey in the Southern hemisphere. This is
the sixth in the CoMaLit (COmparing MAsses in LITerature) series
of papers, wherein we have been applying Bayesian hierarchical
procedures to studies of masses and scaling relations. The method
can deal with heteroscedastic and possibly correlated measurement
errors, intrinsic scatter, upper and lower limits, systematic errors,
missing data, forecasting, time evolution, and selection effects. In
the first paper of the series (CoMaLit-I; Sereno & Ettori 2015a), we
considered the calibration of scaling relations and we assessed the
level of intrinsic scatters in WL or X-ray mass proxies. In the second
paper of the series (CoMaLit-II; Sereno, Ettori & Moscardini 2015),
we introduced the Bayesian method to infer scaling relations and
we applied it to WL clusters with measured SZ flux. The third paper
of the series (CoMaLit-III; Sereno 2015) presented the literature
catalogues of weak lensing clusters of galaxies, meta-catalogues of
WL clusters. The fourth paper of the series (CoMaLit-IV; Sereno &
Ettori 2015b) dealt with redshift evolution and completeness. The
scalings of optical richness, X-ray luminosity, and galaxy velocity
dispersion with mass were considered. In the fifth paper of the series
(CoMaLit-V; Sereno & Ettori 2017), we dealt with efficient mass
forecasting. The method was extended to multidimensional analyses
in Sereno et al. (2019).

The paper is as follows. In Section 2, we discuss proxies,
intrinsic scatters, and degeneracies that affect parameter recovery.
The stacking technique is introduced in the framework of a Bayesian
model in Section 3. The method to recover the intrinsic scaling
relation from stacked data is presented in Section 4. In Section 5, we
consider the optically detected clusters in the AMICO-KiDS-DR3
catalogue (Maturi et al. 2019). In Section 6, we review some results
from the literature. Section 7 is devoted to some final considerations.
In Appendix A, we present alternative expressions for the bivariate
normal distribution of two scattered proxies. In Appendix B, we
detail how systematic uncertainties are dealt with in the CoMaLit
approach. In Appendix C, we provide information to reproduce the
paper results.

1.1 Notation and conventions

As reference cosmological model, we assume a flat lambda cold dark
matter universe with matter density parameter �M = 0.3 and Hubble
constant H0 = 70 km s−1 Mpc−1.

The notation ‘log’ represents the logarithm to base 10 and ‘ln’
is the natural logarithm. Scatters in natural logarithm can be quoted
as per cents. Throughout the paper, unless otherwise noted, we denote
σ as the intrinsic scatter in log (decimal) quantities and use δ to
represent log (decimal) measurement uncertainty.

Unless stated otherwise, central values and dispersions of the
parameter distributions are computed using the biweighted statistics
(Beers, Flynn & Gebhardt 1990) of the marginalized posterior
distributions.

Computations were performed with the R package lira(LInear
Regression in Astronomy).1 As baseline, we consider the standard
priors used throughout the CoMaLit series (see e.g. CoMaLit-IV).

2 PROXI ES AND I NTRI NSI C SCATTER

In most astrophysical analyses, we have to deal with scattered proxies
of an underlying property. Here, we reconsider what is already
discussed in Eddington (1913, 1940), Malmquist (1922), Jeffreys
(1938), Akritas & Bershady (1996), Kelly (2007), Andreon & Bergé
(2012), Sereno & Ettori (2015a), and references therein. In this
section, we neglect measurement uncertainties for simplicity.

Let us consider linear relations. We denote the intrinsic property
as Z and its scattered proxy as X. For a given Z, the expected value
of X is

〈X|Z〉 = αX|Z + βX|ZZ, (1)

where αX|Z and βX|Z are the normalization and the slope of the X–Z
scaling relation, respectively. The intrinsic normal scatter is indicated
as σ X|Z.

Let Y be a second proxy related to Z similarly to equation (1).
Here, we take for simplicity the intrinsic scatter of Y given Z, σ Y|Z,
to be uncorrelated from X.

If the variable Z is normally distributed with mean μZ and standard
deviation σ Z, the total probability distribution can be written as

p(X, Y , Z) = N (Z|μZ, σZ)N (X|αX|Z + βX|ZZ, σX|Z)

×N (Y |αY |Z + βY |ZZ, σY |Z), (2)

where N (x|μ, σ ) is the Gaussian distribution of the variable x with
mean μ and variance σ 2. In this basic picture, the distribution of Z
depends on the selection criteria and how we assembled the sample.
On the other hand, the scalings between Y–Z or X–Z express the
physical relationships between the cluster observables and can be
seen as intrinsic. We expect to see the same scaling between Y and
Z independently on how Z was chosen. This picture is simplified
since the scaling parameters and the scatter affecting the relation
Y–Z might depend on Z, and, consequently, on the selection criteria.
Scaling parameters may depend on redshift and mass. For example,
the relation between the gas and the total mass in galaxy clusters
is steeper at the low-mass end and the scatter is usually smaller for
relaxed clusters (Mantz et al. 2016; Lovisari et al. 2020; Sereno et al.
2020).

In a standard observational set-up, we do not have direct access
to Z (e.g. the true mass), but we can measure X (e.g. the optical
richness) and Y (e.g. the WL mass), which are distributed as a
bivariate Gaussian (see Appendix A),

p(X, Y ) = N (2)({X, Y } | {μX,μY } , �XY ), (3)

where N (2) is the bivariate Gaussian distribution and �XY is the
scatter covariance matrix. The degree of correlation between X and
Y, ρXY, depends on how much the distribution in Z is spread with
respect to the intrinsic scatters. The broader the distribution, the less

1The package lira is publicly available from the Comprehensive R
Archive Network at https://cran.r-project.org/web/packages/lira/index.html.
For further details, see Sereno (2016).
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Figure 1. Conditional scaling relations for scattered proxies in arbitrary
units. Z (turquoise) is the latent variable, which Y and X (orange) are scattered
proxies of. Due to scatter, the distribution of X is more extended than Z (lower
panel) and the scaling relation tracing the mean probability of Y given X,
〈Y |X〉, is flatter than 〈Y |Z〉 (upper panel).

(relatively) important the effect of the intrinsic scatters, and the more
correlated X and Y are. The distribution of the pair {Y, Z} is compared
to the distribution of {Y, X} in Fig. 1 for the case of sizeable intrinsic
scatters σ X|Z and σ Y|Z with respect to dispersion of the Z distribution,
σ Z.

Alternatively, the probability of X and Y can be expressed in terms
of the conditional probability of Y given X (see Fig. 1). This is
practical when we forecast the unknown value of Y for a given known
value of X. As showed in Appendix A,

p(X, Y ) = N (Y |αY |X + βY |XX, σY |X)N (X|μX, σX). (4)

Whereas the relation between X and Z (or Y and Z) depends on the
involved physics only, the relation between X and Y is not universal
and depends on the sample of Z that we are considering through the
parameters μZ and σ Z. The mean μZ affects the normalization αY|X;
the scatter σ Z affects the normalization αY|X, the slope βY|X, and the
conditional scatter σ Y|X (see equations A9–A11).

2.1 Parameter degeneracies

Let us consider observations of galaxy clusters. The true mass can
play the role of Z, as a latent variable we do not have direct access
to. We can estimate the X-ray mass assuming equilibrium or the WL
mass, and we can measure some other properties, e.g. the optical

richness or the X-ray luminosity. These are all scattered proxies of
the true mass and can play the role of X or Y.

The inversion problem of determining P(X, Y, Z) from P(X, Y)
is severely underconstrained. For Gaussian distributions, we want
to determine eight parameters, i.e. αX|Z, βX|Z, σ X|Z, αY|Z, βY|Z, σ Y|Z,
and μZ and σ Z (see equation 2), from the measurements of five
observables, i.e. αY|X, βY|X, σ Y|X, μX, and σ X (see equation 4).

The Y–Z and X–Z scalings cannot be unambiguously determined.
Even in the very favourable case of negligible intrinsic scatter (σ X|Z
� σ Z), we can only measure the ratio of the slopes with respect to Z
and a renormalized difference between the intercepts,

βY |X � βY |Z
βX|Z

, (5)

αY |X � αY |Z − αX|Z
βY |Z
βX|Z

. (6)

In practical cases, we can often assume that one scaling, i.e. between
X and Z, is known. For example, if we are studying a randomly
oriented sample of relaxed clusters, the WL mass (X) is an unbiased
proxy of the true mass (Z), with βX|Z = 1 and αX|Z = 0. Under this
condition, μX = μZ. Only the intrinsic scatter σ X|Z has still to be
measured. In the following, we will assume that βX|Z = 1 and αX|Z =
0 if not otherwise stated.

Even if the scaling between X and Z is fixed, residual degeneracies
still hamper the inversion problem. When the conditional intrinsic
scatter is sizeable with respect to the dispersion in Z (σ X|Z ∼
σ Z), as can be the case when we study scaling relations for the
optical properties of clusters selected in a narrow mass range, the
Y–X relation can be significantly flatter than the Y–Z relation (see
Fig. 1). This is a result of the magnitude-dependent Malmquist bias
(Eddington 1913; Malmquist 1922; Jeffreys 1938; Eddington 1940;
Butkevich, Berdyugin & Teerikorpi 2005; Sereno & Ettori 2017).
Due to the scatter between X and Z, the marginalized distribution in
X, P(X), has a larger dispersion than P(Z),

σ 2
X = σ 2

Z + σ 2
X|Z, (7)

which flattens the slope of the Y–X relation. The larger the scatter
σ X|Z, the flatter the Y–X relation,

βY |X = βY |Z

(
1 − σ 2

X|Z
σ 2

X

)
. (8)

A degeneracy between the slope βY|Z and the scatter σ X|Z then
persists.

When we consider samples on a more extended range, e.g.
spanning from the group scale to the more massive haloes, the Y–X
relation is steeper with a larger absolute value of βY|X than for limited
samples in narrow Z ranges. According to our simplified picture, the
relation Y–Z is universal, whereas the relation Y–X depends on the
properties of the sample.

There can also be a remaining degeneracy between the slope βY|Z
and the normalization αY|Z,

αY |X = αY |Z + (βY |Z − βY |X)μX. (9)

This degeneracy can be reduced with convenient unit of measure-
ments for X such that μX ∼ 0.

We may want to study the scatter and the properties of the
measurable quantities X and Y with respect to the latent Z (e.g.
the true mass, which is hidden to observations). This problem can be
tackled with suitable priors or assumptions but, if we cannot directly
measure Z and σ Z, the determination of the intrinsic scatters, σ Y|Z
and σ X|Z, is underconstrained; see Fig. 2, where we are considering
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Figure 2. Degeneracy problem in measuring the intrinsic scatters of two
variables X and Y, with respect to a third, hidden variable Z. The parametric
plot shows σ X|Z (in units of the observable σX) and σ Y|Z (in units of the
observable σ Y|X) for σ Z spanning the range from 0 to σX. The contours are
for values of σ Y|X/σX from 0.1 to 0.9 in steps of 0.2. Here, we are considering
βY|Z = βX|Z = 1. Smaller values of σ X|Z/σX correspond to larger values of
σZ/σX = (1 − σ 2

X|Z/σ 2
X)1/2.

the simplified case with βY|Z = βX|Z = 1. From the analysis of the
distribution of X and Y, we can constrain two independent standard
deviations, e.g. σ Y|X and σ X, but not all the three quantities that we
are interested in, i.e. σ Z, σ Y|Z, and σ X|Z.

The value of the ratio σ Y|X/σ X can be determined by observations,
and the locus of possible solutions for the intrinsic scatters is then
determined, i.e. one of the lines in Fig. 2, each one corresponding to
a given value of the observable ratio. Each pair of (renormalized)
values of σ Y|Z and σ X|Z that lie along the degeneracy locus is
compatible with observations. Observations can determine the line
where the intrinsic scatters lie in the parameter space shown in Fig. 2
(e.g. the full, dashed, or long-dashed ones), but we cannot break the
degeneracy along the line. The solution is even more complicated if
the scatters in X and Y are correlated.

If the variable X is not scattered (σ X|Z = 0), then σ Z = σ X, and
the scatter σ Y|X is equal to σ Y|Z (top left corner in Fig. 2). This
corresponds to the case of X being an unscattered proxy of Z. If the
Z distribution collapses to the Dirac delta function (σ Z → 0), then
the scatter σ X equals the conditional scatter σ X|Z, and σ Y = σ Y|Z, or
equivalently, σ Y|Z = σ Y|X (top right corner in Fig. 2).

The degeneracy can be partially broken by an optimized set-up. If
we are studying a scaling relation, we are likely studying a convenient
sample where we are confident (based e.g. on external information)
that the intrinsic scatter is smaller than the dispersion of the sample
(σ X|Z < σ X) and that the intrinsic scatter of Y given X (σ Y|X) is of
the same order as, even though a bit smaller than, σ Y|Z, the intrinsic
property we want to infer. In practice, we have to confine ourselves
to the upper left corner of the parametric space shown in Fig. 2 to
better constrain the intrinsic scatters.

Suitable priors can also limit the parameter degeneracies. This can
be the case for non-informative priors too. Priors for positive defined

quantities that are nearly constant in the log space, i.e. Pprior(log σ X|Z)
∼ constant over an extended parameter domain, are regarded as
non-informative since they allow for very large or small scatters.
Nevertheless, these priors slightly favour smaller values of σ Y|Z,
Pprior(σ X|Z) ∼ 1/σ X|Z, and e.g. the left-hand side of Fig. 2. As prior
for the variances, we adopt an inverse Gamma distribution (CoMaLit-
II).

3 STAC K IN G

For most samples of galaxy clusters, we are provided with reliable
measurements of some properties, e.g. position, redshift, luminosity,
but other properties, e.g. the WL mass, cannot be accurately measured
for individual clusters. We then add the signal of the clusters that
are similar with regard to one measured property to estimate the
mean value of the property we cannot individually measure. For
example, we can measure the optical richness of individual optically
selected clusters, but not the WL signal that has to be recovered from
the stacked signal of a subsample of objects with similar values of
richness.

Let X be the proxy we can individually measure and Y the proxy
we want to constrain. We stack the signal produced by all the clusters
with Xmin,i < X ≤ Xmax,i, where Xmin,i and Xmax,i are the lower and
upper boundaries of the ith bin, respectively. We end up with a
sample of known mean values, {X̄i , Ȳi}. Assuming that all clusters
are weighted only by their number,

X̄i =
∫ Xmax,i

Xmin,i
Xp(X)dX∫ Xmax,i

Xmin,i
p(X)dX

, (10)

Ȳi =
∫ +∞

−∞
∫ Xmax,i

Xmin,i
Yp(X,Y )dXdY∫ Xmax,i

Xmin,i
p(X)dX

. (11)

By definition, Ȳi is the expected value for a given bin, i.e. for a given
X̄i . For the normal distributions discussed in Section 2,

X̄i = μX + σ 2
X

N (Xmin,i |μX, σX) − N (Xmax,i |μX, σX)
1
2

[
erf

(
Xmax,i−μX√

σX

)
− erf

(
Xmin,i−μX√

σX

)] ,

Ȳi = αY |X + βY |XX̄i . (12)

We assume that the intrinsic scatter σ Y|X is constant and un-
correlated. Then, Ȳi is affected by an intrinsic scatter σȲ |X̄,i =
σY |X/

√
Nstack,i , where Nstack,i is the number of clusters in the ith

bin.
The sample {X̄i , Ȳi} depends on the binning scheme, i.e. how we

choose the boundaries of the intervals in X. The distribution p(X̄, Ȳ )
can differ from the unbinned p(X, Y). They are equivalent if we
choose the binning in such a way that p(X̄) follows p(X), and, as
a consequence, the relations Ȳ -X̄ and Y–X are equivalent, i.e. for
linearly related proxies, αȲ |X̄ = αY |X and βȲ |X̄ = βY |X . This is the
case if the bin boundaries are quantiles of p(X).

Binning in quantiles can be unpractical if the signal-to-noise ratio
(SNR) in the low-value bins is too small for a precise measurement
of Ȳ . If X is the logarithm of some cluster property, e.g. the optical
richness, and the signal is linear, i.e. it is proportional to 10X, the
SNR of the ith bin can be written as

SNRi ∝ √
Nstack,i〈10X〉i , (13)

where we have assumed that the noise per cluster is constant and
uncorrelated. It can be convenient to stack the data in such a way that
the SNR is constant per bin in order to keep the relative uncertainty
constant too.
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To quantify how much the binning scheme hampers the recovery
of the underlying p(Y|X) distribution, we run 102 simulations, each
one with Ncl = 103 clusters. Here, we distinguish the proxy X from
the result of the measurement process x, which differs from X for
the statistical uncertainty δX. In analogy, we define Y and y. The
measurement results for the stacked quantities X̄ and Ȳ are x̄ and ȳ,
respectively.

We set the underlying distribution of Z as a normal distribution
with μZ = 0 and σ Z = 0.25. The proxy X is randomly distributed
around Z with αX|Z = 0, βX|Z = 1, and σ X|Z = 0.1. The observed x
were randomly distributed around X assuming a constant statistical
uncertainty of δx = 0.1/ln(10). The second proxy y is produced
similarly to x.

Finally, we assume that the statistical uncertainties on the stacked
ȳi are inversely proportional to the bin SNR, and δȳ = 0.1/ ln(10)
when SNR = Stot/Nbin/

√
Ncl/Nbin, where Stot = ∑Ncl

j=1 10x
j .

We stack the data in Nbin = 10 bins defined according to the
measured x. The bins are chosen such that (i) p(x̄) follows p(x),
i.e. the bin boundaries are quantiles of p(x); (ii) the bins are equally
spaced, i.e. 	xi = xmax,i − xmin,i = constant; and (iii) the SNR per
bin is constant.

Results are summarized in Fig. 3. The regression exploits a
Bayesian inference method with non-informative priors; see Ap-
pendix C, where we consider the variable Y as a scattered proxy of
the measured X. Since we are interested in the conditional probability
of Y given X, we fit only two variables (X and Y) and we neglect the
latent Z. In the lira fitting, we identify X as Z, i.e. we put αX|Z =
0, βX|Z = 1, and we neglect the scatter σ X|Z (see Appendix C). The
parameters of the scaling relation between X and Y are well recovered
from the stacked data. This is expected for the properties of the
stacked technique, for which Yi = 〈Y|Xi〉 by design. Moreover, we
find that the intrinsic scatter can be recovered for all binning schemes
without any significant bias. The impact of the binning scheme is then
negligible in most practical cases, and we can optimize the scheme
to increase the statistical accuracy in the measurement of Ȳ .

4 R E C O N S T RU C T I O N

In this section, we describe a three-step procedure to recover
the distribution p(X, Y|Z) of two scattered proxies X and Y of
an underlying property Z based on stacked data, {x̄, ȳ}, and the
distribution of one individually measured proxy, p(x).

We first fit the stacked data to recover the conditional p(Y|X). This
is done as described in Section 3. As a result of the regression, we
constrain the parameters of the scaling relation, αY|X and βY|X, and
the scatter σ Y|X.

As a second step, we generate a fictitious population of y based on
the observed x and on the conditional p(Y|X) derived in the first step.
Given each observed x, we draw a fictitious Yf, thanks to P(Y|X).
Since we are using x instead of X, we associate an uncertainty δyf =
|βY|X|δx. The correlation between δx and δyf is βY|X/|βY|X|. If the
results of the first step are in the form of a Monte Carlo chain, each yf

can be extracted by adopting a set of parameters of the Y–X relation
randomly drawn from the chain.

As a third and final step, we fit the observed x and the fictitious
yf to recover the relations of the proxies with the latent Z, i.e. the
parameters that characterize p(X, Y|Z).

To test the procedure, we run 102 simulations, each one with Ncl =
103 data points, with the same set-up described in Section 3. For
comparison, we also consider the case when the proxy Y can be
measured with good precision for single objects. In this case, the
observed y are randomly distributed around Y assuming a constant

Figure 3. Probability density functions of the parameters of the conditional
scaling relation Y|X recovered from a sample of 10 simulated stacked data
{X̄i , Ȳi}. Results are averaged over 102 mocks. The full blue line, the short-
dashed green line, and the long-dashed red line refer to a binning scheme
that is uniform for number of clusters per bin, interval length, or bin SNR,
respectively. The vertical grey lines mark the input parameters. From the
top to the bottom panel, we plot the a posteriori marginalized probability of
normalization αY|X, slope βY|X, and scatter σ Y|X.

statistical uncertainty of δy = 0.1/ln(10). Since data samples of WL
cluster masses consist usually of a few dozens, we consider the
fitting of a random subset of 102 fictitious data points or a sample of
measured y of the same size.

Results are summarized in Table 1 and Fig. 4, where we compare
results when the values of y are either directly observed for individual
clusters (‘y observed’) or recovered from the stacked data (‘y

MNRAS 497, 894–905 (2020)
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Table 1. Parameters of the scaling relations Y–Z and X–Z as recovered from
simulated stacked data. Column 1: parameter name. Column 2: input value.
Column 3: results of fitting when the y values are measured for individual
objects. Column 4: scaling parameters as derived from stacked data by fitting
a population of fictitious y produced with the method of Section 4.

Parameter Input y observed y recovered

αY|Z [0] 0.00 ± 0.02 0.00 ± 0.04
βY|Z [1] 1.00 ± 0.16 1.04 ± 0.33
σ Y|Z [0.1] 0.09 ± 0.05 0.13 ± 0.11
σX|Z [0.1] 0.09 ± 0.05 0.11 ± 0.07

μZ [0] 0.00 ± 0.04 0.00 ± 0.04
σ Z [0.25] 0.25 ± 0.03 0.24 ± 0.05

recovered’). The reconstruction method can recover the intrinsic
parameters but with larger statistical uncertainties than the ideal
fitting to observed data, even though this estimated precision is driven
by our arbitrary choice for the statistical uncertainties δy and δȳ. The
smaller the statistical uncertainties, the better the precision that the
scatter can be recovered to.

5 A TEST CASE: THE AMICO-KIDS CLUSTERS

We apply our procedure to the catalogue of galaxy clusters detected
with the optimal filtering algorithm AMICO (Bellagamba et al. 2018;
Maturi et al. 2019) in the sky area covered by the KiDS DR3 (de
Jong et al. 2013; Kuijken et al. 2015; de Jong et al. 2017). KiDS-DR3
covers ∼440 deg2 in four optical bands u, g, r, and i, down to the
limiting magnitudes (calculated as 5σ in a 2 arcsec aperture) of 24.3,
25.1, 24.9, and 23.8, respectively (de Jong et al. 2017) .

The catalogue comprises 8092 candidate clusters at redshifts
z < 0.8 (Radovich et al. 2017; Maturi et al. 2019). The 6961
objects in the redshift range 0.1 < z < 0.6 were mass calibrated in
Bellagamba et al. (2019), who performed a WL stacked analysis by
binning clusters according to redshift and two different mass proxies,
namely the amplitude A (the returned signal amplitude of the optimal
filtering procedure) and the richness λ∗ (the sum of membership
probabilities). The mass range of the detected clusters extends over
more than one order of magnitude, down to M200 � 1013 M�. In the
following, we exploit the WL mass estimates of Bellagamba et al.
(2019), MWL, but we extend the analysis of the mass–observable
relation to estimate the intrinsic scatter.

Following the notation of the previous sections, we define the
scattered proxies X and Y as

X = log(λ∗/30), (14)

Y = log(MWL/M�/1014), (15)

Z = log(Zλ∗/30), (16)

where Z is the unscattered latent variable, which X and Y are scattered
proxies of. The property Zλ∗ can be thought of as the richness we
would measure if there was no intrinsic scatter in the true mass–
richness relation. We consider X as unbiased; i.e. we fix the scaling
parameters to αX|Z = 0 and βX|Z = 1. The variables X and Y differ
from their measured values x and y for statistical uncertainties or
systematic errors (see Appendix B). We first fit the stacked relation
in order to infer the estimated WL mass of a cluster given its richness.
Clusters are grouped in bins of approximately equal SNR, with the
number of clusters per bin ranging from more than 1000 for the low-
richness bins to a few dozens for the large richness bins (see table 3
of Bellagamba et al. 2019). In addition to the statistical uncertainty

on the estimation of the stacked WL mass, we consider a systematic
error of 7.6 per cent due to impure selection of background galax-
ies, photometric redshift estimates, shear measurements, projection
effects, and halo modelling (Bellagamba et al. 2019).

Projection effects or orientation bias can play a major role in both
WL mass estimates and cluster detection. The processes of optical
cluster selection and richness estimation can be biased, leading to
stacking of structures that are preferentially elongated along the line
of sight. WL masses can then be overestimated (Dietrich et al. 2014).
These effects can make the intrinsic scatters of WL mass and richness
at a given true mass correlated. Unfortunately, degeneracy effects (see
Section 2) prevent a full recovery of the scatter correlation, whose
analysis would need the joint comparison of multiple proxies (Farahi
et al. 2019; Sereno et al. 2020). In the following, we neglect the
correlation between the intrinsic scatters of WL mass and richness.

The expected value of Y given X is expressed as (CoMaLit-IV),

〈Y |X〉 = αY |X + βY |XX + γY |X log Fz, (17)

where α denotes the normalization, the slope β accounts for the
dependence on Z, and the slope γ accounts for the redshift evolution.
Fz is the renormalized Hubble parameter, Fz = Ez/Ez(zref). For the
AMICO-KiDS-DR3 sample, we fix zref = 0.35, close to the mean
redshift of the full sample. At a given X, Y is distributed around X
with a scatter σ Y|X, which we assume to be constant.

Results are summarized in Table 2 and Fig. 5. The scaling
parameters are in agreement with Bellagamba et al. (2019). The
large number of clusters per bin makes the effective scatter small,
so that concurring scaling parameters α and β can be recovered
notwithstanding the fitting method. In particular, Bellagamba et al.
(2019) did not have to consider the scatter as a model parameter.
However, thanks to the regression procedure described here, we
can fit the intrinsic scatter too. We find that the richness is an
excellent mass proxy. The intrinsic scatter of the WL mass of a
single cluster at a given richness is σmWL|λ∗ = 18 ± 22 per cent, with
a marginalized probability distribution in linear space p(σmWL|λ∗ )
peaked at very low values and with an extended tail at large values.
The probability that the scatter is lower than 10 (or 5) per cent is
∼35 (or 17) per cent. Since the posterior probability distribution is
skewed with an extend tail, the logarithm (in base 10) of the biweight
estimator of the conditional scatter, log(CBI[σmWL|λ∗ ]) ∼ −0.7, is
significantly larger than the biweight estimator of the logarithms,
CBI[log(σmWL|λ∗ )] ∼ −1.1; see Table 2.

We then reconstruct the scattered distribution of the WL masses
based on the richness distribution. Results are summarized in Table 3
and Fig. 6. We find a low value for the intrinsic scatter of the
richness, log(σλ∗|Zλ∗ ) ∼ −1.6, which makes the slope βY|Z similar
to βY|X. Statistical uncertainties on the measured richness reported
in the catalogue are of the order of ∼20 per cent. They are estimated
with the analysis of mock galaxy catalogues derived directly from
the data to fully reproduce their statistical properties including
photo-z uncertainties, unknown absorption across the survey, missing
data, and spatial correlation of galaxies and galaxy clusters (Maturi
et al. 2019). As a result, the formal statistical uncertainty accounts
for projection effects too, which are one of the main sources of
dispersion. If this major contribution is treated as a source of
statistical uncertainty, it does not contribute to the intrinsic scatter of
the richness, which we find to be small.

6 MASS PROXIES

Based on the AMICO richness, the mass of the clusters in the KiDS
DR3 can be determined to a ∼20 per cent precision. This result cannot
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Figure 4. Probability density functions of the parameters of the scaling relations Y–Z and X–Z recovered from a simulated sample of 10 stacked data {X̄i , Ȳi}.
Results are averaged over 102 mocks. The full blue line and the dashed red line refer to the fitting of y values that are either observed for individual clusters
(y observed) or reconstructed from the stacked data (y recovered), respectively. The vertical grey lines mark the input parameters. We plot the a posteriori
marginalized probability of the normalization αY|Z (top left), of the slope βY|Z (top right), of the intrinsic scatter σ Y|Z (middle left), of the intrinsic scatter σX|Z
(middle right), and of the mean μZ (bottom left) and standard deviation (bottom right) of the distribution p(Z).

Table 2. Parameters of the conditional scaling relation (WL mass given
optical richness) for the AMICO-KiDS-DR3 clusters.

Parameter Observed

αmWL|λ∗ 0.00 ± 0.04
βmWL|λ∗ 1.69 ± 0.08
γmWL|λ∗ − 0.94 ± 0.60
log(σmWL|λ∗ ) − 1.13 ± 0.53

be compared to performances of other richness-based proxies. The
richness somehow counts the number of galaxies in a cluster, but
its definition depends on the measurement process. We can count
galaxies in different magnitude ranges and aperture radii; we can
look for red-sequence galaxies or galaxies with similar photometric
redshifts. Furthermore, the performance of a proxy optimized on
a calibration sample of well-selected clusters with high-quality data
can be better than that for the very numerous candidate clusters found
in a very large and shallow survey.
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Figure 5. Probability distributions of the parameters of the scaling relation of the WL mass for a given richness of the clusters in the KiDS-DR3 AMICO
catalogue. The intercept, slope, redshift evolution, and intrinsic scatter are denoted as α, β, γ , and σ , respectively. The thick and thin black contours include the
1σ and 2σ confidence regions in two dimensions, here defined as the regions within which the probability is larger than exp(−2.3/2) and exp(−6.17/2) of the
maximum, respectively. The bottom row shows the marginalized 1D distributions, renormalized to the maximum probability. The thick and thin black horizontal
lines denote the confidence limits in one dimension, i.e. exp(−1/2) or exp(−4/2) and of the maximum. The blue symbols mark the biweight estimator.

Table 3. Parameters of the scaling relations for the AMICO-KiDS-DR3
clusters when both the WL mass and the optical richness are considered as
scattered proxies of a latent Z variable.

Parameter Observed

αmWL|Zλ∗ 0.00 ± 0.01
βmWL|Zλ∗ 1.70 ± 0.05
γmWL|Zλ∗ − 0.97 ± 0.22
log(σmWL|Zλ∗ ) − 0.63 ± 0.01
log(σλ∗|Zλ∗ ) − 1.63 ± 0.24

Even if a fair comparison cannot be performed, it can be still
useful to review the performances of some richness estimators as
mass proxy. Wen, Han & Liu (2012) identified overdensities of
galaxies around the brightest cluster galaxies (BCGs) through their
photometric redshifts. The optical richness is defined as the ratio
of the total r-band luminosity within an empirically determined
radius and the evolved characteristic galaxy luminosity. Based on
a collection of 1191 clusters with masses estimated with either X-ray
or SZ proxies, they found that the mass of the 132 684 candidate
galaxy clusters detected in the SDSS (Sloan Digital Sky Survey)
DR12 can be estimated with a scatter of ∼40 per cent (Wen &
Han 2015).
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Figure 6. Probability distributions of the parameters of the scaling relation of the WL mass and richness for a given unscattered richness of the clusters in the
KiDS-DR3 AMICO catalogue. The intercept, slope, redshift evolution, and intrinsic scatters are denoted as α, β, γ , and σ , respectively. The thick and thin black
contours include the 1σ and 2σ confidence regions in two dimensions, here defined as the regions within which the probability is larger than exp(−2.3/2) and
exp(−6.17/2) of the maximum, respectively. The bottom row shows the marginalized 1D distributions, renormalized to the maximum probability. The thick and
thin black horizontal lines denote the confidence limits in one dimension, i.e. exp(−1/2) or exp(−4/2) of the maximum. The blue points and the blue vertical
lines mark the biweight estimator.

Rykoff et al. (2012) considered a red-sequence-matched filter
richness estimator implemented on the maxBCG cluster catalogue.
Using the X-ray luminosity from the ROSAT All-Sky Catalogue as
mass proxy, they found a scatter in mass at a fixed richness of ∼20–
30 per cent depending on the richness, and comparable to that for
total X-ray luminosity.

The red-sequence Matched-filter Probabilistic Percolation
(redMaPPer) algorithm is a photometric cluster finding algorithm
that identifies galaxy clusters as overdensities of red-sequence
galaxies (Rykoff et al. 2014). Rozo & Rykoff (2014) evaluated
the performance of the SDSS DR8 redMaPPer photometric cluster
catalogue by comparison to overlapping X-ray and SZ-selected
catalogues from the literature. Based on the X-ray temperature–

richness and gas mass–richness relations, they estimated a mass
scatter of ∼25 per cent.

The CAMIRA (Cluster finding Algorithm based on Multiband
Identification of Red-sequence gAlaxies) algorithm is a red-sequence
cluster finder based on a stellar population synthesis model (Oguri
2014). Murata et al. (2019) adopted a forward modelling approach
to fit the abundance and stacked lensing profiles of the CAMIRA
clusters detected in the Hyper Suprime-Cam survey first-year data.
They found that the scatter values of the mass at a given richness
for the Planck model (∼30 per cent) are systematically larger than
those for the WMAP (Wilkinson Microwave Anisotropy Probe)
model. They also found that the scatter values for the Planck
model increase towards lower richness values, whereas those for the
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WMAP model are consistent with constant values as a function of
richness.

7 C O N C L U S I O N S

The potential of galaxy cluster number counts as cosmological probe
can be fully exploited if the statistical properties of the sample are
well characterized and if the mass calibration is accurate. In present
and planned surveys, investigators have shown confidence that the
completeness and purity of selected clusters can be well measured
(Euclid Collaboration 2019). Uncertain mass calibration has been the
designated scapegoat for inconclusive results (Planck Collaboration
XXIV 2016b; DES Collaboration 2020). A proper treatment of scal-
ing relation and mass calibration is then crucial to settle the question.
WL masses are regarded as the most reliable mass estimates. Stacking
enable us to calibrate the observable–mass relation down to the very
low mass haloes discovered by large and deep surveys. This technique
helps in studying the scaling parameters without extrapolation but
can make some parameter estimations problematic. The intrinsic
scatter should be derived from the data as well but it is usually
constrained through strong priors, which could bias the cosmological
inference if misplaced. In this paper, we have proposed a Bayesian
method to infer the intrinsic scatter from stacked observable–mass
relations.

Bayesian inference is a solid tool to infer unbiased physical quan-
tities in problems with a large number of manifest or latent variables
and parameter degeneracy. In the simplest case of uncorrelated data,
the intrinsic scatter of the stacked signal from Nstack clusters scales
as N

−1/2
stack of the scatter of individual objects. However, some sources

of scatters can be correlated and the variance of a cluster stack does
not scale simply as 1/Nstack. For example, the positions of galaxy
clusters are correlated and the variance in the stacked WL signal
due to uncorrelated structure decreases somewhat less steeply than
1/Nstack (McClintock et al. 2019). In this case, the scaling of the
stacked scatter has to be properly weighted.

Whereas targeted observations are very expensive and feasible
only for relatively small data samples (Postman et al. 2012; von
der Linden et al. 2014; Steinhardt et al. 2020), mass proxies based
on optical richness are cheap by design in large surveys and can
provide accurate and precise masses even for small groups. As a test
case, we applied our approach to the AMICO clusters in the KiDS
survey. The method showed that the optical richness determined by
the AMICO algorithm itself is a reliable mass proxy, with a scatter
of ∼20 per cent. This is comparable to the precision attainable with
direct WL or X-ray mass measurements for very deep observations
(CoMaLit-I).

The knowledge of the observable–cluster mass scaling relation
is crucial to fulfil the potential of galaxy clusters as cosmological
probes. Thanks to strong constraints on scatter and mass bias,
constraints on dark energy from analyses of number counts and
clustering can be significantly improved. Sartoris et al. (2016)
showed that for a Euclid-like survey the figure of merit for the
parameters of the dark energy equation of state increases by a
factor of ∼4 if the parameters of the scaling relation are accurately
known. Precision cosmology requires that the scaling parameters and
the scatter of the scaling relation are determined together with the
cosmological parameters (Murata et al. 2019).
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APPENDIX A : BIVARIATE NORMAL
DISTR IBU TION

Let X and Y be two scattered proxies of Z. The marginalized bivariate
normal distribution of X and Y can be written as

p(X, Y ) = N (2)({X, Y } | {μX, μY } , �XY ), (A1)

where N (2) is the bivariate Gaussian distribution, the mean values of
X and Y are

μX = αX|Z + βX|ZμZ, (A2)

μY = αY |Z + βY |ZμZ, (A3)

respectively, and the covariance matrix �XY can be expressed as

�XY =
⎛
⎝ σ 2

X ρXY σXσY

ρXY σXσY σ 2
Y

⎞
⎠, (A4)

with

σ 2
X = σ 2

X|Z + β2
X|Zσ 2

Z, (A5)

σ 2
Y = σ 2

Y |Z + β2
Y |Zσ 2

Z, (A6)

ρXY = 1(
1 + σ 2

X|Z
β2

X|Zσ 2
Z

)1/2 (
1 + σ 2

Y |Z
β2

Y |Zσ 2
Z

)1/2 . (A7)

The probability of X and Y can also be written in terms of the
conditional probability of Y given X, thanks to the chain rule,

p(X, Y ) = N (Y |αY |X + βY |XX, σY |X)N (X|μX, σX), (A8)

where

αY |X = μY − βY |Z
βX|Z

μX

1 + σ 2
X|Z

β2
X|Zσ 2

Z

, (A9)

βY |X = βY |Z
βX|Z

1

1 + σ 2
X|Z

β2
X|Zσ 2

Z

, (A10)

σ 2
Y |X = σ 2

Y |Z + β2
Y |Z

β2
X|Z

σ 2
X|Z

1 + σ 2
X|Z

β2
X|Zσ 2

Z

. (A11)

The normalization and the scatter can be rewritten in a more
compact form in terms of the slope βY|X as

αY |X = μY − βY |XμX, (A12)

σ 2
Y |X = σ 2

Y |Z + βY |X
βY |Z
βX|Z

σ 2
X|Z. (A13)

The probability of X given Y can be obtained from the above
expression by inverting X and Y.

APPENDI X B: SYSTEMATI C ERRORS

The measured x and y and the latent values X and Y are related as

P (xi, yi |Xi, Yi) ∝ N 2
({Xi − δxsyst, Yi − δysyst}, Vδ,i

)
×H(yth,in), (B1)

where H is the Heaviside function, Vδ,n is the covariance matrix of
the ith cluster accounting for statistical uncertainties, and δxsyst and
δysyst are systematic uncertainties that affect all clusters in the same
way.

The probability distribution is truncated for yin < yth,in to correct for
the Malmquist bias if only clusters above the observational thresholds
(in the response variables) are included in the sample (CoMaLit-II).

APPENDI X C: REPRODUCI BI LI TY OF THE
RESULTS

To allow the reproducibility of our results, we provide the lira
commands used in Section 5. Let x and y, delta.x and delta.y,
covariance.xy, and z be the vectors storing the values of the
observed x and y, their uncertainties δx and δ y, the uncertainty
covariances δx y, and the redshifts z, respectively. If not stated
otherwise, priors and parameter values are set to default.

(i) For regressions of stacked data, without scatter on the X
variable, the analysis is performed with the command
> mcmc <- lira (x, y, delta.x
= delta.x, delta.y = delta.y,
delta.y.syst=’dnorm(0.0,(0.076/log(10.))∧-
2)’, z = z, z.ref = 0.35, gamma.mu.Z.Fz=0.0,
gamma.sigma.Z.D = ’dt

′
, n.chains = 4,

n.adapt = 5∗10∧3, n.iter = 5∗10∧4),
where the covariate distribution is modelled as a Gaussian
function with redshift evolving mean and standard deviation
(gamma.sigma.Z.D = ′

dt
′
). Each of the n.chains = 4

chain was n.iter = 5 × 104 long, and the number of
iterations for initialization was set to n.adapt = 5∗103. The
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prior on the systematic error on y is modelled as a zero-centred
Gaussian with standard deviation of 0.076/log (10.).

(ii) For regressions with scatter on both the Y and the X variables,
the analysis is performed with the command
> mcmc <- lira (x, y, delta.x = delta.x,
delta.y = delta.y, covariance.xy = covari-
ance.xy, z = z, z.ref = 0.35, sigma.XIZ.0
= ′

prec.dgamma
′
, gamma.mu.Z.Fz=0.0,

gamma.sigma.Z.D = ’dt
′
, n.chains = 4,

n.adapt = 5∗10∧3, n.iter = 5∗10∧4),
where the argument sigma.XIZ.0 = ′

prec.dgamma
′

makes the scatter in X a parameter to be fitted with a prior on the
precision described by a Gamma distribution.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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