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ABSTRACT

Context. As modern-day precision cosmology aims for statistical uncertainties of the percent level or lower, it becomes increasingly
important to reconsider estimator assumptions at each step of the process, along with their consequences on the statistical variability
of the scientific results.
Aims. We compare L1 regression statistics to the weighted mean, the canonical L2 method based on Gaussian assumptions, to infer
the weak gravitational shear signal from a catalog of background ellipticity measurements around a sample of clusters, which has
been a standard step in the processes of many recent analyses.
Methods. We use the shape measurements of background sources around 6925 AMICO clusters detected in the KiDS third data
release. We investigate the robustness of our results and the dependence of uncertainties on the signal-to-noise ratios of the background
source detections. Using a halo model approach, we derive lensing masses from the estimated excess surface density profiles.
Results. The highly significant shear signal allows us to study the scaling relation between the r-band cluster luminosity, L200, and
the derived lensing mass, M200. We show the results of the scaling relations derived in 13 bins in L200, with a tightly constrained
power-law slope of ∼1.24 ± 0.08. We observe a small, but significant, relative bias of a few percent in the recovered excess surface
density profiles between the two regression methods, which translates to a 1σ difference in M200. The efficiency of L1 is at least that
of the weighted mean and increases with higher signal-to-noise shape measurements.
Concluions. Our results indicate the relevance of optimizing the estimator for inferring the gravitational shear from a distribution
of background ellipticities. The interpretation of measured relative biases can be gauged by deeper observations, and the increased
computation times remain feasible.

Key words. gravitational lensing: weak – galaxies: clusters: general – galaxies: groups: general – methods: statistical –
large-scale structure of Universe – methods: data analysis

1. Introduction

Statistics is an essential part of astronomy (Heck et al. 1985;
Feigelson 1988, 2009; Feigelson & Babu 2013). The field relies
on inferring physical properties, which cannot be determined
directly, from observable quantities, which in turn need to be cor-
rected for systematic effects as well as instrumental and observa-
tional biases. The key question that always needs to be answered
when interpreting observations and results – before discussing
how accurately these results can be constrained – is what one is
actually seeing.

Weak gravitational lensing, caused by the deflection of light
rays by density variations along the traveled path, has been a
case in point for the last three decades. Gravitational lensing is a
convex focusing effect that can magnify and shear affected back-
ground sources. The observed shapes and number counts can
conversely yield information about these density variations but

need to be disentangled statistically from the unknown intrin-
sic properties of background sources, such as distance, size (and
luminosity), and shape.

The first detections of coherent alignments of galaxy shapes
were observed in the background of clusters (Tyson et al. 1990),
and subsequently in the emerging fields of galaxy-galaxy lens-
ing (where the lensing “structure” is itself an ensemble of lenses;
Brainerd et al. 1996) and cosmic shear (the weak lensing induced
by large-scale structure; Wittman et al. 2000; Bacon et al. 2000;
Kaiser et al. 2000; Van Waerbeke et al. 2000). Since then, tech-
niques have progressed rapidly, and demands on accuracy have
become increasingly stringent.

This is the second in a set of papers wherein we focus on the
statistical aspects of inferring the lensing signal from the intrin-
sic shapes and the estimated lensing geometry, which depends
on the distances between the observer, the moment of deflec-
tion, and the background sources. Assuming the cosmological
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principle, the intrinsic shapes of a sample1 of background galax-
ies, including their orientation, are random, and the intrinsic
galaxy shapes should average out from a sufficiently large sam-
ple, leaving the weak lensing signal as a net ellipticity. The
common approach has been to take a weighted mean of galaxy
ellipticities, which has computational and analytical advan-
tages and, most importantly, is an unbiased estimator of the
shear in the absence of pixel noise in the galaxy images
(Seitz & Schneider 1997).

In practice, however, there are many sources of noise and
the mean is known to be biased, underestimating the underly-
ing shear signal (Melchior & Viola 2012; Viola et al. 2014;
Sellentin et al. 2018; Mandelbaum 2018). The distribution of
intrinsic galaxy shapes is well known to be non-Gaussian (Lam-
bas et al. 1992; Rodríguez & Padilla 2013) and, in fact, cen-
trally peaked. In Smit & Kuijken (2018, hereafter Paper I),
we explored alternative estimators besides the mean that could
potentially be better suited for such a cuspy distribution. It was
found, using realistic simulated distributions and resampling
of Canada-France-Hawaii Lensing Survey (CFHTLenS) shape
measurements (Heymans et al. 2012b), that L1 norm regression,
also known as least absolute deviations (LAD), reduces bias
from between ∼ − 4% and ∼ − 4.5% to between ∼ + 1% and
∼ − 3%, while at the same time reducing uncertainty by ∼9% to
∼23%.

In this paper we extend this study by applying these statistics
to a weak lensing analysis of 6925 galaxy clusters in the Adap-
tive Matched Identifier of Clustered Objects (AMICO) cluster
catalog (Bellagamba et al. 2011, 2018, 2019; Radovich et al.
2017; Maturi et al. 2019) of the third data release of the Kilo-
Degree Survey (KiDS-450; de Jong et al. 2017). As opposed to
Paper I, in this case the true lensing signal (here in the form of
the excess surface density of the clusters) is unknown. We there-
fore study the relative biases and uncertainties between LAD and
the mean, and we compare results to our findings in Paper I.

An important application is then to study the relation
between the observable properties of clusters and groups and the
physical quantities derived from the lensing signal (i.e., the mat-
ter distribution) to better our understanding of galaxy and cluster
formation and cosmological models (e.g., Kautsch et al. 2008;
Leauthaud et al. 2010; Lesci et al., in prep.). We calculate halo
masses from the obtained lensing signals and derive a scaling
relation between the observed r-band luminosity and the lensing
mass, investigating the impact of estimator choice on the result-
ing constraints.

The order of magnitude of this estimated bias in the weak
lensing results can be dominant compared to other sources of
uncertainty in the process. Developments in the field have led to
current constraints of the multiplicative bias in shape measure-
ments on the order of ∼1% (Bernstein & Jarvis 2002; Hirata &
Seljak 2003; Heymans et al. 2006, 2012a; Massey et al. 2007;
Miller et al. 2007; Kitching et al. 2008; Bridle et al. 2010;
Voigt & Bridle 2010; Bernstein 2010; Kitching et al. 2012;
Kacprzak et al. 2012; Melchior & Viola 2012; Refregier et al.
2012; Mandelbaum et al. 2015; Viola et al. 2015; Fenech Conti
et al. 2017). The uncertainty in the lensing geometry between the
observer, lens, and background sources, introduced by the esti-
mation of the photometric redshift probability distributions, can
be a few percent (Hildebrandt et al. 2017; Bellagamba et al.

1 There are several considerations involved in the proper selection of
such a sample, as explained in Sects. 2 and 3.

2019, and Appendix A.1). The broad category of selection
biases, for example those introduced by intrinsic alignments,
contamination of the background sample by cluster member
galaxies, blending, detection, and subsequent selection effects,
typically accumulate up to a few percent (Miyatake et al. 2015;
van Uitert et al. 2017; Bellagamba et al. 2019) for cluster weak
lensing. For instance, estimations on background selection yield
a foreground contamination on the order of 2%, which can be
partly corrected for, but does increase the uncertainty (Dvornik
et al. 2017; Bellagamba et al. 2019, and Appendix A.2). In this
study we investigate the usability of background sources to radii
smaller than in Bellagamba et al. (2019).

These demands on accuracy and precision become higher
as the data yield, and therefore the statistical power of sur-
veys, increases dramatically (Mandelbaum 2018), as achieved
by COSMOS2 (Leauthaud et al. 2007), CFHTLenS3 (Heymans
et al. 2012b), RCSLenS4 (Hildebrandt et al. 2016), KiDS5 (de
Jong et al. 2013), and DES6 (Dark Energy Survey Collaboration
2016), and foreseen for future surveys such as LSST7 (Ivezić
et al. 2019) and Euclid8 (Laureijs et al. 2011). While these two
future surveys will require constraints on systematic uncertainty
of order ≤2 × 10−3 (Mandelbaum 2018), we show that, even for
weak lensing analyses in the last decade, the bias in shear infer-
ence can dominate other sources, such as the aforementioned
multiplicative shape measurement bias that is commonly cor-
rected for, as in Viola et al. (2015), Dvornik et al. (2017), and
Bellagamba et al. (2019).

Several other approaches have been made to address this,
including analytic modeling of the bias (e.g., Viola et al. 2014),
weight corrections and priors (Bonnet & Mellier 1995; Van
Waerbeke et al. 2000; Bernstein & Jarvis 2002), or nulling tech-
niques (Herbonnet et al. 2017). The calculation of the main
observable, the shapes of lensed background sources, itself relies
on statistical methods. These are based mainly on surface bright-
ness moments (Kaiser et al. 1995; Rhodes et al. 2000) or model
fitting (Kuijken 1999, 2006; Bernstein & Jarvis 2002; Hirata
& Seljak 2003; Refregier & Bacon 2003; Miller et al. 2007;
Kitching et al. 2008). This means the most common approaches
are corrections on a statistic that remains fundamentally skewed
(Sellentin et al. 2018; Mandelbaum 2018).

Promising alternative approaches by Bernstein & Armstrong
(2014) and Schneider et al. (2015) do not reproduce individual
background shapes, but directly determine the underlying shear
field from ensembles of background sources, reconsidering these
steps in the chain of statistical inference. While future lensing
surveys will require innovative improvements, these methods
and their priors need to be gauged by deep observations of high
signal-to-noise, and it is of fundamental importance that these
calibrations are well constrained and do not suffer from even
subtle systematic biases. In other words, the comparison of sev-
eral perspectives is paramount in determining what we actually
see.

The remainder of this paper is organized as follows. We
introduce the definitions of galaxy shapes and the weak lensing
formalism in Sect. 2 and relate these to our statistical approach.

2 http://cosmos.astro.caltech.edu/
3 http://www.cfhtlens.org
4 http://www.rcslens.org/
5 http://kids.strw.leidenuniv.nl/
6 http://www.darkenergysurvey.org/
7 https://www.lsst.org/
8 http://www.euclid-ec.org/
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M. Smit et al.: AMICO galaxy clusters in KiDS-DR3: Luminosity-mass scaling relation

Fig. 1. Representation of a gravitational lens system, showing the dis-
placement of a source at position S (x, y) to an image at position I(x′, y′),
where we take the origin of the source plane to be collinear with the
position of the lens, L, and the observer, O.

Data, analysis methods, and selection criteria are described in
Sect. 3, while Sect. 4 states our results and analysis. Section 5
gives a summary of our conclusions.

Throughout this paper we assume a Planck (Planck
Collaboration XVI 2014) cosmology with ΩM = 0.315,
ΩΛ = 0.685, and H0 = 100.0 h km s−1 Mpc−1. All measurements
are in comoving units, unless specifically noted otherwise, such
as in Sect. 2.

2. Weak gravitational lensing statistics

We briefly review the principles of weak gravitational lens-
ing and relate the central concepts to our statistical approach,
introducing the terminology and notation conventions used in
this paper. We refer the reader to excellent reviews, such as
Bartelmann & Schneider (2001), Schneider (2006), Hoekstra &
Jain (2008), and Bartelmann & Maturi (2017), for more in-depth
approaches.

2.1. Principles of weak lensing

Rays of light are deflected by the curvature or space-time due to
mass inhomogeneities along their path. A mass overdensity acts
as a convex lens on the light rays from distant sources behind that
lens to an observer. In this section, we use Dl to denote angular-
diameter distances from the observer to the lens, Dls from the
lens to the background source, and Ds from the observer to the
background source (see Fig. 1), and in the remainder of this
paper we translate quantities to comoving units where necessary.

For the purposes of this work, the extent of the lensing
mass along the line of sight, compared to the distances from the
observer to the lens and from the lens to the background source,
can be considered negligible. In this so-called thin-lens approxi-
mation, the deflection of light rays by a deflection angle, α̂, leads
to an effective angular displacement (again, see Fig. 1),

α = −
Dls

Ds
α̂ , (1)

also called the reduced deflection angle, which relates the
observed position, θ, of a distant point source to its unlensed
position, β, by the lens equation

β = θ − α. (2)

It can be shown through the relation between α̂ and the three-
dimensional gravitational potential, Φ, that this displacement is
then described by α = ∇θ ψ, where

ψ =
2
c2

Dls

DlDs

∫
Φ dz (3)

is called the (two-dimensional) lensing potential.
The differential effect of the deflection of light on the images,

I(x, y), of extended background sources can to first order be
described as a coordinate transformation by taking the deriva-
tives in the lens equation (Eq. (2)) of the original angular posi-
tion, β, with respect to the observed position, θ. Substituting∇θ ψ
for α, we obtain the Jacobian matrix,(

x′
y′

)
=

(
1 − ψ11 −ψ12
−ψ21 1 − ψ22

) (
x
y

)
, (4)

with

ψi j =
∂2ψ

∂θi∂θ j
, (5)

resulting in the lensed image I(x′, y′), which is the key observ-
able in our weak lensing study.

2.1.1. Critical surface mass density

To interpret the effect on the source image, we note that such
a transformation can be decomposed into three parts, namely
the identity (I), an isotropic part that describes a multiplication,
and an anisotropic traceless part that describes a shearing of the
image:

I −
1
2

(ψ11 + ψ22)I +

(
− 1

2 (ψ11 − ψ22) −ψ12

−ψ21
1
2 (ψ11 − ψ22)

)
. (6)

To relate ψi j with the density of the lensing mass, we start with
the isotropic term, which is half the Laplacian of the lensing
potential: 1

2 (ψ11 + ψ22) = 1
2∇

2
θ ψ. From Eq. (3), we obtain

1
2
∇2
θ ψ =

1
c2

DlDls

Ds

∫
4πGρ dz , (7)

which is a dimensionless quantity. Defining the surface mass
density as

Σ ≡

∫
ρ dz (8)

and gathering the rest of the right-hand side into

4πG
c2

DlDls

Ds
≡ Σ−1

cr , (9)

with Σcr being the critical surface mass density, we find that the
isotropic term can be written as

κ ≡
1
2
∇2
θ ψ =

Σ

Σcr
, (10)

with κ a normalized dimensionless surface mass density. Recog-
nizing that ∇2

θ ψ = ∇ · α is the divergence of the deflection of
the light rays (i.e., the manner in which those light rays converge
due to the lensing effect), κ is simply the convergence.
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2.1.2. Shear and intrinsic ellipticity

The shear matrix in Eq. (6) has two independent components,
simply called the shear γ = γ1 + iγ2, with γ1 = 1

2 (ψ11 − ψ22) and
γ2 = ψ12 = ψ21. Equation (4) then becomes(

x′
y′

)
=

(
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

) (
x
y

)
. (11)

This transformation leads to the magnification and distortion of
the light distribution of background sources. In this work, we
focus on the most commonly used net distortion or reduced shear
g = g1 + ig2 ≡ (γ1 + iγ2)/(1 − κ),(

x′
y′

)
= (1 − κ)

(
1 − g1 −g2
−g2 1 + g1

) (
x
y

)
, (12)

where the transformation is written as a multiplication of (1 −
κ) and a distortion matrix describing the alignment of lensed
sources in the foreground potential.

The effect on a circular source is a shearing into an ellipse
with axis ratio q = b

a as

q =
1 − |g|
1 + |g|

⇔ |g| =
1 − q
1 + q

=
a − b
a + b

(13)

and position angle ϕ via

g = |g| (cos 2ϕ + i sin 2ϕ) . (14)

As mentioned before, we do not measure this gravitational
distortion directly. Background sources have an intrinsic shape
distribution, and we effectively measure the combined effect of
their intrinsic shape and a weak lensing distortion. It is adequate
to describe images by their quadrupole brightness moments or
their ellipticities as well as the respective response to weak shear
distortions. It is straightforward to use the common definition9

of ellipticity, defined as the reduced shear needed to create the
intrinsic shape ε = ε1 + iε2 of a source from an image with cir-
cular isophotes (Bernstein & Jarvis 2002; Kuijken 2006). The
resulting ellipticity, ε, after transforming an image with intrin-
sic10 ellipticity ε I by a distortion, g, is then given by (Seitz &
Schneider 1997)

ε =
ε I + g

1 + g∗ε I for |g| ≤ 1 , (15)

with g∗ the complex conjugate of g.
The intrinsic shape distribution is called the shape noise and,

assuming no preferred direction on the sky, should average to
zero: 〈ε I〉 = 0. This way, each background shape measurement,
ε, is then an independent estimate of the underlying reduced
shear, g.

In this paper we make use of the fact that the lensing signal
is weak (i.e., κ � 1) and assume g ≈ γ.

9 An alternative definition of ellipticity is often denoted as |χ| = 1−q2

1+q2 ,
related to the geometrical eccentricity, and called polarization (e.g.,
Seitz & Schneider 1995; Viola et al. 2014).
10 We note that our notation differs from Paper I. Here, the measured
ellipticity is denoted as ε, instead of ẽ (Paper I), and the intrinsic ellip-
ticity is denoted as ε I , instead of e.

2.2. Estimation of the surface density profile

The shear induced by gravitational lensing is sensitive to the den-
sity contrast. For an axisymmetric lens, we can write |γ|(R) =
κ(≤ R) − κ(R), where κ is the average convergence within radius
R. In fact, this relation holds for other mass distributions if we
average azimuthally around the lens. In this work, we study the
stacked signal of many lenses and assume a net axisymmetry
(see, e.g., Evans & Bridle 2009; Oguri et al. 2010; Clampitt &
Jain 2016; van Uitert et al. 2017, for weak lensing studies on
elliptical lenses).

Since it can be seen from Fig. 1 that the gravitational shear
acts in the radial direction, we define the tangential and cross
components of the shear as(
γ+

γ×

)
=

(
− cos(2φ) − sin(2φ)

sin(2φ) − cos(2φ)

) (
γ1
γ2

)
, (16)

with φ the counterclockwise angle between the positive x axis11

and the vector from lens to source. This gives

Σ(≤ R) − Σ(R) ≡ ∆Σ(R) = γ+(R) Σcr , (17)

with ∆Σ(R) the excess surface density (ESD) at a radius R around
the lensing mass. In axisymmetric lenses, the cross component
of the shear cannot arise from gravitational lensing and should
average to zero, if only produced by intrinsic source orientations,
and can therefore be used as an indication of systematic effects,
such as imperfect corrections for the point-spread function (PSF;
Schneider 2003, and Appendix A.3).

The ESD is then estimated using the observed ellipticities of
an ensemble of sources around the lens

∆Σ(R) = 〈ε+ Σcr,ls〉(R) , (18)

with each ε+Σcr,ls an independent, albeit noisy, estimate of the
ESD. Here, 〈·〉 denotes a weighted average, with weights to be
specified.

The Σcr,ls behaves as a geometric scaling factor, indicating
the lensing efficiency for each lens-source combination. Since
the variance of the noise in ∆Σ is then affected by Σ2

cr,ls, the rel-
ative precision, or inverse variance, carried by each ε+ scales as
Σ−2

cr,ls.
In this paper we study the ESD profile in comoving radial

bins, and we therefore use the comoving critical surface density

Σcr,com = (1 + zl)2 Σcr,prop. (19)

In practice, the distance to each background source is not
known exactly and is estimated by its redshift probability distri-
bution, p (zs). Taking this into account, we estimate the comov-
ing critical surface density via〈
Σ−1

cr,ls

〉
=

4πG
c2 D(zl) (1 + zl)2

∫
D(zl, zs)

D(zs)
p(zs)dzs. (20)

2.3. Statistical framework

In this section we discuss the estimation of
〈
ε+ Σcr,ls

〉
. We refer

to Paper I for a complementary discussion.
Important aspects of a good estimator, ε̂, are: (i) minimal

bias, defined as the difference between the expected value of the
estimator, 〈ε̂〉, and the value of the quantity being estimated, for
instance the shear (γ) or, in this case, ∆Σ; (ii) high efficiency,
proportional to the inverse variance of the estimator, σ−2

ε̂ ; and
(iii) robustness, meaning the estimator retains these properties
for a sufficient range of likely parameter distributions.
11 Of the coordinate system in which γ1 and γ2 are defined.
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Fig. 2. Estimated ellipticity and axis ratio distributions of sources in
the KiDS-450 catalog. Top: two-dimensional histogram of ellipticities.
Middle: histogram of the absolute ellipticity, |ε|. Bottom: histogram of
the ellipse axis ratio, q.

2.3.1. Bias

Even though the measured ellipticity, ε, is not a linear combina-
tion of the intrinsic shape, ε I , and the shear, γ, it can be shown
(Seitz & Schneider 1997) that, in the absence of further uncer-
tainties, the mean µ (ε) is an unbiased estimator for the underly-
ing shear and that this is independent of the intrinsic ellipticity
distribution, P

(
ε I

)
. In the canonical approach, the ESD is there-

fore estimated as a weighted mean of an ensemble of lens-source
combinations,

∆Σ(R) =

∑
ls wlsε+,lsΣcr,ls∑

ls wls
, (21)

where we use

wls = ws

〈
Σ−1

cr,ls

〉2
. (22)

Here, the weight ws is assigned to each measured ellipticity,
scaled by the estimated lensing efficiency, as explained in the
previous section (see, e.g., Viola et al. 2015; Dvornik et al. 2017;
Bellagamba et al. 2019).

In practice, there are various sources of uncertainty at each
step of the process, such as source selection bias, distortion by
the PSF, and biases due to the measurement pipeline. These lead

to convolutions of the ellipticity distribution, before and after the
gravitational lensing effect. The result is a bias in the mean as an
estimate of the ESD (Melchior & Viola 2012; Refregier et al.
2012; Kacprzak et al. 2012; Viola et al. 2014; Kacprzak et al.
2014). In this case, the intrinsic shape distribution will play a
role.

The weighted mean, µ, is a statistic that, for a set of measure-
ments εi with weights wi, finds the estimate of γ that minimizes
the loss function

S µ =
∑

i

wi

[
(εi,1 − γ1)2 + (εi,2 − γ2)2

]
, (23)

that is, it is a least squares (LSQ) or L2 norm regression method
and arises naturally as the optimal estimator for Gaussian distri-
butions.

Figure 2 shows that the measured ellipticity distribution,
P(ε), displays crucial differences with a Gaussian distribution,
showing a sharp peak and a slower decline, including a higher
number of high ellipticities, |ε |. This central peak is an unbiased
tracer of the underlying shear (Paper I). By Eq. (23), the mean is
sensitive to outliers and therefore not robust when inferring the
shear.

In contrast, LAD or L1 norm regression minimizes the loss
function,

S LAD =
∑

i

wi

√
(εi,1 − γ1)2 + (εi,2 − γ2)2 . (24)

The LAD estimate is also known as the median in one dimen-
sion or the spatial median in higher dimensions. This estimator
is more sensitive to the peak and less sensitive to high ellipticity
outliers. Where the mean is expected to be biased low (Melchior
& Viola 2012; Refregier et al. 2012; Kacprzak et al. 2012; Viola
et al. 2014; Kacprzak et al. 2014), we expect this to be less so
for the LAD (Paper I).

2.3.2. Efficiency

The formal definition of efficiency, η̃, relates the inherent
(Fisher) information, I, of a sample to the statistical variabil-
ity around the expected value of the estimator, usually taken to
be the variance, σ2

ε̂ , of the estimator:

η̃ =
1
I · σ2

ε̂

. (25)

Since the variance of an unbiased estimator cannot be less
than the reciprocal of the information, I−1 ≤ σ2

ε̂ , we have 0 ≤
η̃ ≤ 1 (Rao 1945; Cramer 1946).

As we are comparing two estimators with unknown bias, it
is appropriate to use the relative efficiency,

η =
σ2
µ

σ2
LAD

, (26)

with η < 1 indicating a higher efficiency for the mean, and vice
versa.

Paper I showed that the LAD consistently performed bet-
ter than the mean, with both higher efficiency and less bias,
for various cusped intrinsic ellipticity distributions, including
the shear catalog from CFHTLenS. In what follows, we take
the CFHTLenS shear distribution shape to be representative of
KiDS data as well since both surveys were processed with the
THELI pipeline (Erben et al. 2013) and the shape measurement
pipeline lensfit (Miller et al. 2007; Kitching et al. 2008; Miller
et al. 2013).
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2.4. Halo model

Studying the effects of estimator choice on the weak lensing sig-
nal forms the technical core of this paper. The scientific goal,
however, is to assess the relevance on the inference of physical
quantities, such as the derivation of a lensing halo mass from an
ESD profile. Since we calculate the stacked signal for an ensem-
ble of clusters with some common (observable) property (here
a range in r-band luminosity), of interest is the scaling relation
between the observable and derived lensing mass, M200, where
we use the definition with respect to the mean density of the
universe.

To do so, we modeled the lens density profile the same
way as Dvornik et al. (2017), using the halo model (Seljak 2000;
Peacock & Smith 2000; Cooray & Sheth 2002; van den Bosch
et al. 2013; Cacciato et al. 2013; Mead et al. 2015). The ini-
tial lens density profile is described by a Navarro-Frenk-White
profile (Navarro et al. 1995). We used the mass-concentration
relation given by Duffy et al. (2008) and allowed for a re-
normalization factor, fc (Viola et al. 2015).

A dominant source of systematic bias in stacked weak lens-
ing analyses is a miscentering of the lenses, which can be due
to an offset of the cluster halo with the visible distribution of
galaxies (see, e.g., George et al. 2012) or the resolution of the
cluster detection method (less than 0.1 Mpc h−1 for AMICO; see
Bellagamba et al. 2018). Following Johnston et al. (2007) as well
as numerous subsequent works (e.g., Oguri et al. 2010; Viola
et al. 2015; Dvornik et al. 2017; Bellagamba et al. 2019; Giocoli
et al. 2021), we allowed a fraction, poff , of clusters to be offset
from the center of the galaxy distribution, effectively smoothing
the central stacked ∆Σ profile with a characteristic radius, Roff .

At large radii, typically beyond a few megaparsecs, the clus-
tering of dark matter halos starts to dominate the signal. This
“two-halo” term depends on the halo bias, b (Dvornik et al.
2017), and is modeled following Tinker et al. (2010). At small
radii, the baryonic component of central galaxies can contribute
to the signal, which is adequately described by a point mass, M?,
in the model (Viola et al. 2015; Dvornik et al. 2017).

In Table 1 we summarize these six free parameters for our
halo model implementation, analogous to Dvornik et al. (2017).

In the AMICO cluster sample with 6925 lenses in 440 square
degrees, many background sources are lensed by more than one
cluster, contributing to the estimate of the ESD profile in various
radial bins of different clusters. In the model fitting, we took the
covariance between the ESD estimates into account, as described
in Sect. 3.3.2 (Viola et al. 2015; Dvornik et al. 2017; Bellagamba
et al. 2019).

3. Data and analysis

In this paper we use a lensing cluster catalog and a back-
ground source catalog from KiDS-450 (de Jong et al. 2017).
KiDS is an optical wide-field imaging survey with Omega-
CAM (Kuijken 2011) on the VLT Survey Telescope (VST;
Capaccioli & Schipani 2011; de Jong et al. 2013). KiDS-450
consists of two patches, KiDS-N and KiDS-S (see Fig. 3), with
454 tiles of imaging data, for a total of 449.7 deg2, in four optical
filters, ugri. The survey was designed for lensing, ensuring a sta-
ble PSF, low seeing (<0.96′, with an average of 0.66′ in r), and
good photometric redshifts (photo-z; Hildebrandt et al. 2017).

The KiDS data were reduced with Astro-WISE (Valentijn
et al. 2007; Verdoes Kleijn et al. 2012; Begeman et al. 2013;
McFarland et al. 2013), as described in de Jong et al. (2015),
Hildebrandt et al. (2017). Photometric redshifts, also termed

Table 1. Summary of the halo model fitting parameters and priors.

Parameter Prior

fc [0.0, 8.0]
poff [0.0, 1.0]
Roff [ h−1 Mpc ] [0.0, 1.0]
b [0.0, 10.0]
log (M?) log[ h−1M� ] [9.5, 12.5]
log (M200) log[ h−1M� ] [11.0, 17.0]

zB, were determined using a Bayesian photo-z estimation (bpz;
Benítez 2000; Coe et al. 2006) with PSF-matched photometry, as
described in Hildebrandt et al. (2012, 2017), and Kuijken et al.
(2015).

3.1. Lenses

We made use of the galaxy cluster catalog derived with AMICO
(Bellagamba et al. 2011, 2018; Radovich et al. 2017), extracted
from 440 tiles of KiDS-450 data and described in Maturi et al.
(2019) and Bellagamba et al. (2019). For each cluster, the lumi-
nosity L200 is defined12 as the sum of r-band luminosities of
bright candidate member galaxies, weighted by membership
probability (see Maturi et al. 2019). We selected galaxies with
k-corrected r-band magnitudes brighter than m∗(zl) + 1 within
R200(zl), where zl is the estimated cluster redshift and R200 is
derived from the adopted cluster model and is used in the con-
struction of the cluster detection filter, as defined in Maturi et al.
(2019). In this sense, L200 is defined analogously to the appar-
ent richness, λ∗, which is a sum of membership probabilities of
galaxies with m < m∗ + 1.5, within R200.

We selected clusters in the range 0.1 ≤ zl ≤ 0.6. We excluded
clusters below z = 0.1 due to their unfavorable lensing geome-
try and above z = 0.6 due to the low density of background
sources. For some clusters, no lens-source pairs were found, due
to source selection criteria or masking. Our final selection com-
prises 6925 clusters, divided over the KiDS-450 survey area as
shown in Fig. 3 and described in Table 2. The redshift distribu-
tion of these clusters is shown in Fig. 4, with a median redshift
of zl = 0.39.

We divided the clusters into 13 bins of cluster L200. The lim-
its of these bins were chosen so that the signal-to-noise ratios
of the ESD measurements were approximately the same in each
bin. We give an overview of these bins, together with the esti-
mated M200, in Table 3.

3.2. Sources

We selected an initial sample of background sources using the
same photometric redshift criteria as Hildebrandt et al. (2017),
0.1 < zB ≤ 0.9, to reduce the outlier rate. We also applied the
cut zl + ∆z < zB, following Dvornik et al. (2017). Here, ∆z =
0.2 is an offset between the redshift estimation, zl, of the cluster
by AMICO and the photometric redshift, zB, of the source to
sufficiently lessen the contamination of the background sample
by cluster member galaxies (see also Appendix A.2).

Our selection of AMICO clusters is deeper than the
lenses from the Galaxy And Mass Assembly (GAMA,

12 We note that this does not take intracluster light into account.
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Fig. 3. Overview of the KiDS-450 observations, with the KiDS-N (upper) and KiDS-S (lower) patches. The solid gray lines represent the planned
KiDS survey area. Overplotted are the observed 1 square degree tiles, color coded with respect to their correspondence with the GAMA survey
patches (G9 red, G12 yellow, G15 green, G23 blue, and GS purple; see Hildebrandt et al. 2017, for more details). The AMICO clusters analyzed
in this work are represented by black dots.

Table 2. Summary of the survey patches (1), with corresponding num-
bers of KiDS mosaic tiles and analyzed clusters.

KiDS field Subfield Tiles Clusters

North G9 65 1039
G12 113 1778
G15 112 1737

South G23 101 1517
GS 63 854

Notes. (1)As described in Hildebrandt et al. (2017).

Driver et al. 2011; Robotham et al. 2011) catalog used in
Dvornik et al. (2017). As can be seen in Fig. 4, the redshift distri-
butions of lenses and background sources significantly overlap,
and the cut at ∆z = 0.2 reduces the number density severely for
clusters at higher redshift. Following Bellagamba et al. (2019),
we also selected background sources using the color selection
proposed by Oguri et al. (2012):

g − r < 0.3 ∨ r − i > 1.3 ∨ r − i > g − r. (27)

In Fig. 5 we show the photometric redshift distribution of this
cut in the KiDS-450 catalog and compare it to the photomet-
ric and spectroscopic redshift distribution of the same cut in the
spectroscopic redshift (spec-z) catalog used in Hildebrandt et al.
(2017). Based on this analysis, we additionally required zB ≥ 0.6
for this selection to reduce contamination by sources at low red-
shift and find that 98% of the galaxies in this color selection have
zspec > 0.6.

3.2.1. Redshift distribution

To estimate the redshift distribution of background galaxies, we
did not directly use the individual redshift probability distribu-
tion, p (zs) , per source galaxy. Instead, we applied a weighted
direct calibration method (DIR), as motivated by Hildebrandt
et al. (2017).

For each cluster, we used the spec-z catalog described in
Hildebrandt et al. (2017) to select objects using the same selec-
tion criteria as described above. We then used the normalized
spectroscopic redshift distribution, n (zs), of this sample to calcu-

Fig. 4. Redshift distribution of AMICO clusters (gray), with a median
redshift of zl = 0.38 (dashed gray), and KiDS-450 background sources
(purple), with a median redshift of z = 0.68 (dashed purple). In blue
(DIR), we show the initial selection following Hildebrandt et al. (2017)
and Dvornik et al. (2017). In red, we show the estimated redshift dis-
tribution of the gri color selection (COL), corresponding to the bottom
panel of Fig. 5.

late the comoving critical surface density analogous to Eq. (20):

〈Σ−1
cr,l〉 =

4πG
c2 D(zl) (1 + zl)2

∞∫
zl+∆z

D(zl, zs)
D(zs)

n(zs)dzs. (28)

The resulting redshift distribution for selected sources from the
full KiDS-450 catalog is shown in Fig. 4.

3.2.2. Shape measurements

For shape measurements, the r-band data were reduced using the
THELI pipeline, developed to meet the requirements for weak
gravitational lensing analyses (Erben et al. 2005, 2009, 2013;
Schirmer 2013). Galaxy shapes in the KiDS-450 catalog were
then measured by lensfit (Miller et al. 2007, 2013; Kitching et al.
2008; Fenech Conti et al. 2017).

For each source, lensfit produces the ellipticity
(ε1, ε2), an approximately inverse-variance weight ws (see
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Table 3. Properties and lensing results of the individual luminosity bins.

Luminosity bin Median L200 Clusters Median zl M200 Mean χ2
ν M200 LAD χ2

ν[
1010h−2L�

] [
1010h−2L�

] [
1014h−1M�

] [
1014h−1M�

]
[0.4, 17.4[ 12.3+3.5

−4.6 2346 0.29 0.187+0.029
−0.026 1.27 0.191+0.031

−0.026 1.18
[17.4, 24.8[ 20.8+2.7

−2.3 1545 0.41 0.416+0.061
−0.076 2.19 0.445+0.055

−0.061 1.60
[24.8, 31.8[ 28.0+2.5

−2.2 1027 0.41 0.371+0.048
−0.046 0.81 0.385+0.050

−0.046 0.91
[31.8, 40.5[ 35.2+3.2

−2.4 685 0.42 0.519+0.078
−0.078 1.34 0.621+0.076

−0.074 1.29
[40.5, 49.0[ 44.4+2.9

−2.7 457 0.42 1.076+0.182
−0.181 2.18 0.998+0.150

−0.139 2.53
[49.0, 59.9[ 54.1+3.6

−3.9 305 0.40 1.387+0.425
−0.335 1.05 1.462+0.533

−0.353 0.98
[59.9, 72.9[ 65.2+5.2

−3.7 202 0.41 1.318+0.267
−0.234 0.77 1.309+0.233

−0.203 0.74
[72.9, 84.1[ 78.6+3.2

−3.9 135 0.38 1.406+0.344
−0.215 1.22 1.528+0.409

−0.254 1.30
[84.1, 102[ 91.8+5.7

−4.8 90 0.39 2.438+0.486
−0.443 0.75 2.472+0.479

−0.425 0.73
[102, 129[ 112+10

−7.2 60 0.40 2.143+0.618
−0.417 0.77 1.914+0.680

−0.373 0.79
[129, 160[ 138+11

−6.9 40 0.395 3.999+1.957
−0.993 1.35 3.715+1.557

−0.910 1.64
[160, 221[ 175+27

−11 26 0.37 4.207+0.713
−0.610 1.47 4.786+0.824

−0.637 1.18
[221, 400[ 277+106

−24 8 0.375 7.638+2.293
−1.613 1.02 9.141+3.105

−1.913 0.81

Notes. The errors on the median L200 and derived M200 in each luminosity bin are the differences with the 15.9th and 84.1th percentiles.

Miller et al. 2013), and a fitting quality parameter. We excluded
sources with unreliable ellipticities from our source sam-
ple, using the same lensfit selection criteria as described in
Hildebrandt et al. (2017).

In Paper I we compared the performance of estimators for
ellipticity measurements in the CFHTLenS data with a subset
of that catalog, selecting sources on the signal-to-noise ratio
parameter νSN output by lensfit. We repeated that approach for a
qualitative comparison here, using two subsets of the selected
KiDS-450 sources. The first set selects sources with νSN ≥ 20,
similar to Paper I, retaining ∼30% of the full background sample.
The second set is a more stringent cut of the first set, additionally
selecting objects with ws ≥ 14.5, comprising ∼20% of the full
sample.

3.2.3. Effective source density

The KiDS-450 catalog includes a filtering on general object
detection and quality flags, for example, possibly blended
sources or artifacts, as described by Kuijken et al. (2015) and
Hildebrandt et al. (2017), and we discarded objects that lie in a
mask. This removed approximately ∼12% of the sources. Our
final selection comprises 14 124 197 sources, which translates to
an effective number density of neff ≈ 8.23 arcmin−2, as defined
in Heymans et al. (2012b):

neff =
1
A

(∑
i wi

)2∑
i w2

i

, (29)

with A the effective surface area, excluding masked regions.

3.3. Implementation

3.3.1. ESD estimation

Following Bellagamba et al. (2019), we measured the ESD in
14 logarithmic bins between 0.1 Mpc h−1 and 3.16 Mpc h−1. Not
only does this make for an easy comparison of the results, but it
has several other practical advantages.

We avoided radii smaller than the AMICO detection pixel
size, which has a median size of 0.1 Mpc h−1, to lessen the

chance of a mismodeling the halo miscentering (Sect. 2.4). Here,
the line of sight is also most contaminated by cluster members,
which can lead to an overabundance by incorrectly including
ellipticity measurements that carry no lensing signal, or by an
obscuring and blending of background sources, which leads to
an under-abundance of sources. While these effects may partially
cancel out in the number counts, the effects on the ESD measure-
ments do not cancel out, as the first leads to a diluted signal and
the second to a very poor signal-to-noise ratio (see Appendix A.2
for an assessment of cluster member contamination).

At large radii, systematic additive biases can start to play a
role (see, e.g., Dvornik et al. 2017, for this data set), which may
differ for each KiDS survey patch (Fenech Conti et al. 2017;
Hildebrandt et al. 2017). Another concern at larger separations is
that the two-halo term becomes the dominant contribution to the
ESD signal, which means we would need to properly constrain
the halo bias, and we explain below how our approach does not
fully take the clustering of dark matter halos into account.

The combination of background selection criteria from
Dvornik et al. (2017) and Bellagamba et al. (2019) allows us
to retain the three inner radial bins between 0.1 and 0.2 Mpc h−1.
We justify this inclusion in Appendix A.2, where we repeat the
tests of Dvornik et al. (2017).

Each lens-source pair was then assigned a combined weight
of

wls = wsΣ
−2
cr,l , (30)

as motivated in Sect. 2.2. For LAD optimization, that is, the esti-
mator that minimizes the L1 norm (Eq. (24)), there exists no gen-
eral analytic solution. The problem can, however, be formulated
as a linear optimization, which can be solved iteratively (e.g.,
with simplex-based methods; Barrodale & Roberts 1973). In our
weak lensing analyses, we find that convergence is robust.

To derive the covariance matrices for the ESD estimates
using the mean and LAD in the same way, we can therefore
also not employ the analytical prescription of Viola et al. (2015)
used in earlier KiDS analyses (e.g., Sifón et al. 2015; van Uitert
et al. 2016; Brouwer et al. 2016). Instead, we used a bootstrap
approach.
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Fig. 5. Redshift distribution of background sources selected by color.
Upper panel: the distribution of the photometric redshift, zB, of the
sources in the KiDS-450 catalog that satisfy the color cut of Eq. (27),
of which we select the sources with zB ≥ 0.6 (red) and discard those
with zB < 0.6 (blue). Bottom two panels: the same selection applied to
the spec-z catalog (Hildebrandt et al. 2017), plotted in terms of photo-
metric redshift (middle) and spectroscopic redshift (lower). We find the
contamination of sources with zB ≥ 0.6 and zspec < 0.6 is ∼2%.

Since the cluster bins of highest r-band luminosity, L200, con-
tain only a small number of clusters, covering only a small frac-
tion of the KiDS-450 tiles, we cannot use the same bootstrap
approach as Viola et al. (2015) and Dvornik et al. (2017) by boot-
strapping 1 deg2 tiles with replacement. Instead, we bootstrapped
the source catalog, in accordance with Bellagamba et al. (2019).

This means that we are not sensitive to the clustering effect
of dark matter halos, which justifies our choice of radial lens-
source separation mentioned above. To assess the accuracy of
these assumptions, we estimated the covariance matrix of the full
6925 cluster sample by bootstrapping the sources and by boot-
strapping by KiDS-450 tiles in Appendix A.4. We conclude that
our bootstrapping method yields a good estimate of the covari-
ance matrix.

3.3.2. Halo model fitting

Having produced the LSQ and LAD shear profiles for the
stacked clusters, we fit a halo model to the results. We used
the fitting procedure described in Dvornik et al. (2017), pro-

ducing the full posterior probabilities by a Bayesian inference
technique, via a Monte Carlo Markov chain (MCMC) maxi-
mum likelihood approach. We assumed a Gaussian likelihood
and made use of the full covariance between radial bins:

L ∝ exp
[
−

1
2

RTC−1R
]
, (31)

where the R are the residuals and C is the covariance matrix.
We used the emcee Python package (Foreman-Mackey et al.

2013) for the MCMC procedure, setting flat priors for all param-
eters. For the evaluation of the power spectrum and the halo mass
function, we used the median redshift for each cluster luminosity
bin.

4. Results

We present our results, starting with the derived ESD profiles
obtained with the mean and LAD estimators, discussing poten-
tial biases and efficiency. Then, we show the results of the halo
model fitting (i.e., M200 for each luminosity bin) and conclude
with the scaling relation between L200 and M200. We visualize
the results for the case in which all 6925 clusters are stacked
together, giving the numerical results of the 13 luminosity bins
in Table 3.

4.1. ESD profiles

We calculated the ESD profiles using 104 bootstraps with
replacement. We estimated the ESD signal in the 14 radial bins,
using both the mean and the LAD estimators, for each boot-
strapped sample, preserving the bootstrap order of all 28 values
throughout the whole process.

We find the estimator distribution to be almost perfectly nor-
mal, as expected from the central limit theorem. The correlation
between the 14 bins of the full stack of clusters is shown in Fig. 6
and is given by

ρi j ≡
Covi j

σiσ j
, (32)

where i and j denote the radial bin subscripts.
The upper-left part of the matrix shows the correlation

between the LAD estimates of the radial bins, and the lower-
right part the shows the mean results. Although the correlation
between bins is very low, it is clear that the overall trends are the
same for the two estimators.

The signal-to-noise ratio of the recovered ESD profile of the
full stack, which is shown in Fig. 7, is high enough to allow us
to notice the difference between the estimators, which indicates
a small relative bias. The blue points show the LAD estimates,
and the red points represent the mean estimates, with error bars
in both cases defined as the square root of the diagonal elements
of the covariance matrices (i.e., the classical standard deviation).

Tests for systematic effects, such as the cross signal, and a
test for systematic additive noise around random points were
already conducted by Dvornik et al. (2017) and Bellagamba et al.
(2019). In Appendix A we repeat these tests for completeness
since we use the KiDS-S field and an extended source selec-
tion with respect to Dvornik et al. (2017) and use a different
source selection and three smaller radial bins with respect to
Bellagamba et al. (2019). Our results show no residual system-
atic effects, in accordance with these papers.
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Fig. 6. Correlation matrix between the stacked ESD signals in differ-
ent radial bins, using the full AMICO cluster catalog and 104 boot-
straps. The upper-left triangle shows the correlation, ρLAD, between the
LAD estimations. The lower-right triangle shows the correlation, ρmean,
between the ESD estimates using a weighted mean. We note the general
similarities in the two patterns.

Fig. 7. Estimated ESD profile from the full AMICO cluster catalog,
using the LAD estimator (blue) and a weighted mean (red). The error
bars are the square roots of the diagonal values of the respective covari-
ance matrices. The solid lines represent the best fitting halo model
obtained by the MCMC fit. The shaded regions show the 68.3% con-
fidence bands, estimated using the 15.9th and 84.1th percentiles of the
MCMC realizations.

4.2. Bias and efficiency

A possible bias is expected to depend on the strength of the
underlying shear field since a zero lensing signal would imply
no bias. In that case, the expected relevant distributions, tangen-
tial ellipticities or noise, are symmetric around zero ellipticity.

To quantify the difference between the ESD estimates, which
we call the relative bias, ∆ΣMean − ∆ΣLAD, we assumed13 to first
order

∆ΣMean − ∆ΣLAD = m · ∆Σ , (33)

13 This assumption is only made here to quantify the bias and is not
used elsewhere in the paper.

Fig. 8. Difference between the recovered ESD signals in the radial
bins, showing (∆Σmean − ∆ΣLAD) /∆Σ. The solid white line represents
the average difference, with the shaded region showing the formal 1σ
error. As a possible bias in the recovered values is expected to increase
with increasing shear, the differences are plotted versus the full ESD
signal in each bin where we use ∆ΣLAD, but we note that the small vari-
ations in the individual points, when plotting against ∆Σmean instead,
give the same result, within statistical significance.

where we arbitrarily14 use ΣLAD for Σ.
We used the full stack for its high signal-to-noise ratio, using

the 15.9th and 84.1th percentiles of the differences in all boot-
strap results to calculate uncertainties for each bin. We find
m = −0.088±0.020. In Fig. 8 we show this relative bias, plotting
for visualization purposes

∆ΣMean − ∆ΣLAD

∆Σ
(34)

and a horizontal line at m = −0.88 to give a more intuitive
impression of the relative error bars.

We reiterate that it is impossible to determine the absolute
bias of each estimator as we did in Paper I, as we have no knowl-
edge of the true ESD. However, the overall trend between the
mean and LAD is similar in sign and order of magnitude, as we
found for the CFHTLenS data in Paper I.

In Fig. 9 we show the derived relative efficiency (Eq. (26))
η = 1.047 ± 0.006, which is in accordance with the findings for
CFHTLenS data in Paper I. The measured15 ellipticity distribu-
tion is expected to differ for shape measurements with a higher
signal-to-noise ratio. For example, the cuspiness of the distribu-
tion shown in Fig. 2 can be smoothed out by noise convolutions.
As the LAD estimation is more sensitive to the central peak, this
will affect its precision.

In Paper I this was confirmed in the comparison of simu-
lated data with and without noise, as well as in the results of
the CFHTLenS sample with a stringent signal-to-noise selec-
tion compared with the full sample. As in Paper I, we compared
the relative efficiencies for our selections with νSN ≥ 20 and
with wi ≥ 14.5, finding indeed a higher efficiency for less noisy
shapes, namely η = 1.240±0.010 and η = 1.386±0.018, respec-
tively.

14 We find no qualitative difference in our results when we use ∆ΣMean
instead.
15 i.e., the combination of the intrinsic distribution and the various
effects before and after the lensing by AMICO clusters, which affects
the observation and measurement of the source ellipticities.
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Fig. 9. Relative efficiencies, η ≡ σ2
Mean/σ

2
LAD, defined as the ratio of the

diagonal elements of the covariance matrices. The relative efficiencies
using the full KiDS-450 source catalog are shown in red. The purple
and blue represent the higher S/N and higher lensfit weight selections,
respectively. The solid lines represent the average η for each selection,
with the shaded regions showing the 1σ errors.

4.3. Halo masses

We ran MCMC chains of 120 000 samples, using 120 walkers
with 1000 steps each. The resulting chains were fully converged
after the first 200 steps, so we discarded the first 24 000 samples.

We summarize the M200 derived from the ESD estimation
of the 13 luminosity bins in Table 3. Reduced χ2, estimated
between 0.730 and 2.528, are fairly consistent between derived
results for mean and LAD.

For the full stack of clusters, we derived

M200 =
(
0.453+0.030

−0.030

)
× 1014h−1M� , χ2

ν = 1.25 (Mean)
(35a)

M200 =
(
0.487+0.033

−0.036

)
× 1014h−1M� , χ2

ν = 1.37 (LAD).
(35b)

The confidence intervals are derived from the 15.9th and 84.1th
percentiles of the posterior distributions. The best fitting ESD
models are shown in Fig. 7. The 68.3% confidence bands over-
lap at some radii and are in tension at other radii. While the dif-
ference in ESD is significant, the 68.3% confidence intervals for
M200 just touch.

4.4. L200 −M200 scaling relation

We assumed a power-law relation between the derived halo
masses and the median r-band luminosity of each cluster bin.
We fit this relation in the form

log
(

M200

Mpiv

)
= a + b log

(
L200

Lpiv

)
, (36)

with a the intercept and b the slope, where Mpiv ≈ 1014.1h−1 M�
and Lpiv ≈ 1011.8h−2L� are typical pivotal values of the halo mass
and luminosity, derived from the fit itself. The fit was done in log
basis as the derived posterior distributions of the halo mass are
log-normal.

We did not take a redshift dependence into account, as
Bellagamba et al. (2019) showed only a marginal and not very
steep dependence of the halo mass on redshift.

Fig. 10. r-band luminosity-halo mass scaling relations, derived from the
ESD profiles estimated using the weighted mean (red) and LAD (blue).
At the pivot point, recognizable as the narrowest parts of the confidence
bands, the relations just touch at the 68.3% confidence level.

We obtained the scaling relations

M200

1014.1h−1M�
= (0.97 ± 0.06)

(
L200

1011.8h−2L�

)(1.24±0.08)

(Mean)

(37a)

M200

1014.1h−1M�
= (1.03 ± 0.05)

(
L200

1011.8h−2L�

)(1.24±0.08)

(LAD)

(37b)

and plot the results in Fig. 10. As with the derived ESD profiles
and halo masses for the full stack of clusters, the 68.3% confi-
dence bands just touch at the pivot point

(L200,M200) =
(
1011.8h−2L�, 1014.1h−1M�

)
, (38)

recognizable as the narrowest parts of the confidence bands.

5. Summary and conclusions

We conducted a weak shear analysis of 6925 AMICO clusters
in the KiDS-450 data We derived a tightly constrained scaling
relation between r-band luminosity, L200, and average lensing
masses, M200, in concordance with earlier results in the litera-
ture.

We investigated the impact of estimator choice for inferring
the central moment of the cusped and skewed ellipticity dis-
tribution of background galaxies, finding a relative bias on the
order of a few percent, as predicted in Paper I. We find that the
constraints obtained via LAD regression are tighter than those
obtained via LSQ regression, and they significantly improved
as the signal-to-noise ratio of the shape measurements of the
background galaxies increased. Complemented by simulations
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from Paper I, we give an alternative perspective on the prob-
lem of inferring the central shear value from the skewed dis-
tribution of background galaxy shapes, at the minor cost of
increased, but still feasible, computation times for numerical
iterativeregression.

5.1. L200 −M200 relation

Since the relative bias we found in both this research and in
Paper I is approximately proportional to the ESD signal, it is
expected that the LAD estimator will mainly have an effect on
the intercept of the L200 − M200 scaling relation. This was con-
firmed by our results in Eq. (37).

The power-law index of the L200 −M200 scaling relation was
constrained to 1.24 ± 0.08 (Eq. (37)), independent of estima-
tor choice. This is in agreement with earlier work in the liter-
ature, such as Viola et al. (2015, and references therein), who
cite 1.16±0.13. This agreement is noteworthy since the AMICO
clusters are derived from photometric redshifts, as opposed to
the spectroscopically derived groups from GAMA (Driver et al.
2011; Robotham et al. 2011). The difference in confidence is
explained by the increased number of lenses, which is not sur-
prising given the large overlap in mass range: Viola et al. (2015)
analyzed 1413 galaxy groups between z = 0.03 and z = 0.33,
with r-band luminosity bin limits between 2.5×109 and 5.0×1012

h−2L�, deriving halo masses between 1.4 × 1013 and 3.5 × 1014

h−1M�.
The choice of estimator produces a difference in intercept at

just the 1σ level. Using a weighted mean to derive the ESD leads
to an intercept of 0.97 ± 0.06 in the scaling relation, while LAD
gives an intercept of 1.03 ± 0.05. This is to be expected as the
relative bias seems roughly constant, when normalized by the
ESD (see Fig. 8), and in good agreement with the bias of ∼5%
found using simulations in Paper I.

As in Bellagamba et al. (2019), we estimate that systematic
effects mostly affect the intercept. While the derived intercept is
in agreement with the aforementioned papers, we note that the
chosen definition16 of L200, the difference in redshift range and
definitions, and the completeness of group and cluster member-
shipcan account for possible differences on the same order of
magnitude. This would not affect our conclusions on method-
ology, as the results from both estimators would be similarly
affected.

In a further comparison with the scaling relation between
richness and mass, cited in Bellagamba et al. (2019), we find
similar significance in constraints on the slope. We define bins
in luminosity instead of AMICO detection amplitude (Radovich
et al. 2017) or richness, but since the cluster luminosity is tightly
correlated with the richness, λ∗, this confirms our findings.

There are a few differences to consider. We chose not to
account for a possible redshift dependence. This is motivated
by Bellagamba et al. (2019) finding only a shallow dependence,
which they point out may be driven mainly by the highest red-
shift bin. Our lensing analysis employs a slightly different back-
ground selection for an increased source density, combined with
a different derivation of the associated redshift distribution, n(z).
Another difference is the inclusion of radial bins at 0.1 ≤ R <
0.2 Mpc h−1. This is expected to only have a minor effect as the
contribution of the stellar mass is an order of magnitude lower
than the halo term at these radii, while the contribution of mis-
centered halos only starts to become significant at larger radii
16 e.g., Viola et al. (2015), where the group r-band luminosities are cal-
culated by summing over spectroscopically confirmed group members.

(see also Rykoff et al. 2016; Oguri et al. 2018). In this sense,
these findings are a confirmation of the robustness of the results
across these papers.

5.2. Optimal estimators

Our results are in good agreement with Paper I, with a relative
bias between the two estimators that shows the recovered lens-
ing signal is higher with LAD, suggestive of a lower absolute
bias. At the same time, LAD regression gives a small (albeit sig-
nificant) gain in efficiency, giving a reduction in error bars of a
few percent, and potentially up to 11%−18% for shape measure-
ments of a higher signal-to-noise ratio. Least absolute deviation
regression comes at the cost of a higher computation time, but
at a step in the analysis process that does not dominate the total
computational cost.

Both simulations (Paper I) and analyses on real data (this
article) cite quantitative results of significance while at the same
time showing similar trends between estimators on a qualita-
tive level. We have conducted a cautious and thorough investi-
gation but can never exclude the unknown: biases arising due
to assumptions in the simulations of Paper I or uncorrected sys-
tematic effects in this research, or, most likely, both. However,
given the range and realism in simulated distributions and the
similarities in findings among those simulations, this research,
and other work in the literature, we are confident that the
recovered differences in results between the two estimators are
real.

We note some differences between the two analyses. In
Paper I we analyzed the regression of a sample of ellipticities
with a single underlying value of the shear and, for each type
of simulation, a single intrinsic ellipticity distribution. In this
research, the situation is more complex. We studied the stacked
signal around samples of lenses and of samples of background
sources at a range of redshifts. This means also stacking noise
that has been scaled by a range in lensing geometries, quanti-
fied by Σ−2

cr . Furthermore, in each radial bin of each luminosity
bin, we assume: (i) a constant lensing effect, which is in reality
the stacked average of a range in L200, and therefore a range in
M200, confounded by intrinsic scatter between these two quan-
tities, and (ii) radial distance R from the lens, combined with a
miscentering of halos.

All these effects tend to convolve the intrinsic galaxy shape
distribution, which makes the level of agreement and signifi-
cance between the two papers in fact remarkably robust. In con-
clusion:

– The combination of Paper I and this research shows that
LAD regression is more naturally suited to the cusped intrin-
sic ellipticity distribution of background galaxies.

– Our simulations in Paper I showed a lower bias for LAD
regression than for LSQ regression in the presence of noise
in the background source shape measurements, while this
research confirmed the same relative bias between the two
estimators.

– Constraints obtained via LAD regression are comparable
with or tighter than constraints obtained via LSQ regression.
An optimal estimator is, from a principled point of view,

more objective and better suited than corrections to an approach,
which is known to mismatch the sample distribution. More prac-
tically, LAD regression provides a robust consistency check for
shear inference, which has been and still remains a major invest-
ment in the field of weak lensing. Keeping different perspectives,
such as exploring these alternative statistical approaches, is fun-
damental for determining the way forward.

A195, page 12 of 15



M. Smit et al.: AMICO galaxy clusters in KiDS-DR3: Luminosity-mass scaling relation

Acknowledgements. MSm acknowledges support from the Netherlands
Organization for Scientific Research (NWO). AD acknowledges ERC Consol-
idator Grant (No. 770935) LM acknowledges the grants ASI-INAF n. 2018-23-
HH.0 and PRIN-MIUR 2017 WSCC32 “Zooming into dark matter and proto-
galaxies with massive lensing clusters”. MSe acknowledges financial contri-
bution from contract ASI-INAF n.2017-14-H.0 and contract INAF mainstream
project 1.05.01.86.10. Based on data products from observations made with ESO
Telescopes at the La Silla Paranal Observatory under programme IDs 177.A-
3016, 177.A-3017 and 177.A-3018, and on data products produced by Tar-
get/OmegaCEN, INAF-OACN, INAF-OAPD and the KiDS production team,
on behalf of the KiDS consortium. OmegaCEN and the KiDS production team
acknowledge support by NOVA and NWO-M grants. Members of INAF-OAPD
and INAF-OACN also acknowledge the support from the Department of Physics
& Astronomy of the University of Padova, and of the Department of Physics of
Univ. Federico II (Naples).

References
Bacon, D. J., Refregier, A. R., & Ellis, R. S. 2000, MNRAS, 318, 625
Barrodale, I., & Roberts, F. D. K. 1973, SIAM J. Numer. Anal., 10, 839
Bartelmann, M., & Maturi, M. 2017, Scholarpedia, 12, 32440
Bartelmann, M., & Schneider, P. 2001, Phys. Rep., 340, 291
Begeman, K., Belikov, A. N., Boxhoorn, D. R., & Valentijn, E. A. 2013, Exp.

Astron., 35, 1
Bellagamba, F., Maturi, M., Hamana, T., et al. 2011, MNRAS, 413, 1145
Bellagamba, F., Roncarelli, M., Maturi, M., & Moscardini, L. 2018, MNRAS,

473, 5221
Bellagamba, F., Sereno, M., Roncarelli, M., et al. 2019, MNRAS, 484, 1598
Benítez, N. 2000, ApJ, 536, 571
Bernstein, G. M. 2010, MNRAS, 406, 2793
Bernstein, G. M., & Armstrong, R. 2014, MNRAS, 438, 1880
Bernstein, G. M., & Jarvis, M. 2002, AJ, 123, 583
Bonnet, H., & Mellier, Y. 1995, A&A, 303, 331
Brainerd, T. G., Blandford, R. D., & Smail, I. 1996, ApJ, 466, 623
Bridle, S., Balan, S. T., Bethge, M., et al. 2010, MNRAS, 405, 2044
Brouwer, M. M., Cacciato, M., Dvornik, A., et al. 2016, MNRAS, 462, 4451
Cacciato, M., van den Bosch, F. C., More, S., Mo, H., & Yang, X. 2013, MNRAS,

430, 767
Capaccioli, M., & Schipani, P. 2011, The Messenger, 146, 2
Clampitt, J., & Jain, B. 2016, MNRAS, 457, 4135
Coe, D., Benítez, N., Sánchez, S. F., et al. 2006, AJ, 132, 926
Cooray, A., & Sheth, R. 2002, Phys. Rep., 372, 1
Cramer, H. 1946, Mathematical Methods of Statistics, Princeton Mathematical

Series (Princeton University Press)
Dark Energy Survey Collaboration (Abbott, T., et al.) 2016, MNRAS, 460, 1270
de Jong, J. T. A., Verdoes Kleijn, G. A., Kuijken, K. H., & Valentijn, E. A. 2013,

Exp. Astron., 35, 25
de Jong, J. T. A., Verdoes Kleijn, G. A., Boxhoorn, D. R., et al. 2015, A&A, 582,

A62
de Jong, J. T. A., Kleijn, G. A. V., Erben, T., et al. 2017, A&A, 604, A134
Driver, S. P., Hill, D. T., Kelvin, L. S., et al. 2011, MNRAS, 413, 971
Duffy, A. R., Schaye, J., Kay, S. T., & Dalla Vecchia, C. 2008, MNRAS, 390,

L64
Dvornik, A., Cacciato, M., Kuijken, K., et al. 2017, MNRAS, 468, 3251
Erben, T., Schirmer, M., Dietrich, J. P., et al. 2005, Astron. Nachr., 326, 432
Erben, T., Hildebrandt, H., Lerchster, M., et al. 2009, A&A, 493, 1197
Erben, T., Hildebrandt, H., Miller, L., et al. 2013, MNRAS, 433, 2545
Evans, A. K. D., & Bridle, S. 2009, ApJ, 695, 1446
Falk, M. 1997, Ann. Inst. Stat. Math., 49, 615
Feigelson, E. D. 1988, Bull. d’Information Centre Donnees Stellaires, 35, 197
Feigelson, E. D. 2009, ArXiv e-prints [arXiv:0903.0416]
Feigelson, E. D., & Babu, G. J. 2013, in Statistical Methods for Astronomy, eds.

T. D. Oswalt, & H. E. Bond (Dordrecht: Springer), 445
Fenech Conti, I., Herbonnet, R., Hoekstra, H., et al. 2017, MNRAS, 467, 1627
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125,

306
George, M. R., Leauthaud, A., Bundy, K., et al. 2012, ApJ, 757, 2
Giocoli, C., Marulli, F., Moscardini, L., et al. 2021, A&A, 653, A19
Heck, A., Murtagh, F., & Ponz, D. 1985, The Messenger, 41, 22
Herbonnet, R., Buddendiek, A., & Kuijken, K. 2017, A&A, 599, A73
Heymans, C., Van Waerbeke, L., Bacon, D., et al. 2006, MNRAS, 368, 1323
Heymans, C., Rowe, B., Hoekstra, H., et al. 2012a, MNRAS, 421, 381
Heymans, C., van Waerbeke, L., Miller, L., et al. 2012b, MNRAS, 427, 146
Hildebrandt, H., Erben, T., Kuijken, K., et al. 2012, MNRAS, 421, 2355
Hildebrandt, H., Choi, A., Heymans, C., et al. 2016, MNRAS, 463, 635
Hildebrandt, H., Viola, M., Heymans, C., et al. 2017, MNRAS, 465, 1454
Hirata, C., & Seljak, U. 2003, MNRAS, 343, 459
Hoekstra, H., & Jain, B. 2008, Ann. Rev. Nucl. Part. Sci., 58, 99
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Appendix A: Tests for systematics

Fig. A.1. Relative errors in Σcr, estimated using 104 bootstraps of the
spectroscopic catalog of Hildebrandt et al. (2017). The relative error on
the ESD is negligible.

For completeness, we repeated some of the tests for systemat-
ics that were already carried out in Dvornik et al. (2017) and
Bellagamba et al. (2019) because of our difference in sky cov-
erage, background selection, and estimated redshift distribution
compared with those two studies.

A.1. Photometric redshift

We used the same method as Dvornik et al. (2017) to determine
the comoving critical density. There are two important differ-
ences that could affect the uncertainty in Σcr: We selected lenses
at a significantly higher redshift, and we complemented our
background source selection with the color selection described
in Sect. 3.2.

We assessed the relative errors in Σcr by performing 104 boot-
straps of the spectroscopic catalog of Hildebrandt et al. (2017).
We find the median error on Σcr to be ∼0.5%, as shown in Fig.
A.1.

A.2. Contamination of the background sample by cluster
galaxies

Dvornik et al. (2017) showed that an offset of ∆z = 0.2 is enough
to avoid a significant contamination of the background sources
by unidentified GAMA group members. For lenses at a higher
redshift, this contamination increases, while at the same time
the density of available background sources decreases due to the
observed depth of KiDS-450.

We used the same test as Dvornik et al. (2017) to assess
the source density around AMICO clusters in order to deter-
mine the necessary ∆z offset between the lens and the sources.
We find that ∆z = 0.2 is appropriate for our cluster selection
(Fig. A.2).

A.3. Individual bin ESD profiles and cross signals

In Fig. A.3 we show the ESD profiles for the 13 cluster bins,
including the cross signal, which is consistent with zero. We also

Fig. A.2. Relative source densities around AMICO clusters as a function
of radius, R, and the photometric redshift offset, zB ≥ zl + ∆z, between
the lens and the source. We note that some small under-densities around
R = 0.2 h−1 Mpc may be due to the relative normalization.

show the derived halo model fits and their confidence intervals,
comparing the fits using the full AMICO cluster catalog from
Fig. 7.

A.4. Tile bootstrap

As described in Sect. 3.3, we could not use the same bootstrap
approach as Dvornik et al. (2017), due to the sparsity of lenses
in the highest lens luminosity bins. Since our bootstrap approach
described in Sect. 3.3 does not account for cosmic variance and
is not sensitive to the clustering effect of dark matter halos, we
compare the covariances derived by the two bootstrap methods
for the ESD of the whole lens selection in Fig. A.4 and find
no significant differences or pattern beyond what is expected
from statistical noise. Since we expect the contribution from cos-
mic variance to be even lower for subsets of lenses, we con-
clude that our bootstrap approach yields a good estimate of the
covariance.

Appendix B: Analysis of dependence on outer data
points

In Fig. 10 it can be seen that the distribution of clusters in the
two outermost luminosity bins is not symmetric. At the lower
end, this is due to the selection criterion of λ∗ in the AMICO
catalog. At the higher end, we have only a few clusters.

We assessed the effect these two points have on the L200 −

M200 scaling relation by repeating the fit without these bins. We
find no difference within the statistical uncertainties, as given in
Eq. B:

Mean
M200

1014.1h−1M�
= (0.98 ± 0.06)

(
L200

1011.8h−2L�

)(1.25±0.10)

,

(B.1)

LAD
M200

1014.1h−1M�
= (1.02 ± 0.06)

(
L200

1011.8h−2L�

)(1.23±0.09)

.

(B.2)
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Fig. A.3. Estimated ESD profiles and cross signal of the 13 cluster bins, using the LAD estimator (blue) and a weighted mean (red). The error bars
are the square roots of the diagonal values of the respective covariance matrices. The solid lines represent the best fitting halo model obtained by
the MCMC fit. The shaded regions show the 68.3% confidence bands, estimated using the 15.9th and 84.1th percentiles of the MCMC realizations.
Individual bins are indicated by the range in normalized luminosity, L ≡ L200 /(1010h−2L�). The lower-right plot shows the ESD profile estimated
from the full AMICO cluster catalog, also shown in Fig. 7. The average of the two best fitting halo models from Fig. 7 are shown in each panel as
a dotted line for easy comparison.

Fig. A.4. Left: Correlation derived from bootstrapping the signal by individual sources; same as Fig. 6, but with the color stretch adjusted to
the middle plot. Middle: Correlation derived from bootstrapping the signal in 1 deg2 tiles. The upper-left corners show the correlations from
LAD regression. The lower-right corners show the correlations from using the weighted mean. Right: Comparison of the errors obtained from
bootstrapping sources (LAD: solid blue; mean: solid red) and bootstrapping 1 deg2 tiles (LAD: dashed blue; mean: dashed red).
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