The R2 retrotransposon is here characterized in bisexual populations of the European crustacean Triops cancriformis. The isolated element matches well with the general aspects of the R2 family and it is highly differentiated from that of the congeneric North American Triops longicaudatus. The analysis of 5' truncations indicates that R2 dynamics in T. cancriformis populations show a high turnover rate as observed in Drosophila simulans. For the first time in the literature, though, individuals harboring truncation variants, but lacking the complete element, are found. Present results suggest that transposition-mediated deletion mechanisms, possibly involving genomic turnover processes acting on rDNAs, can dramatically decrease the copy number or even delete R2 from the ribosomal locus. The presence of R2 does not seem to impact on the nucleotide variation of inserted 28S rDNA with respect to the uninserted genes. On the other hand, a low level of polymorphism characterizes rDNA units because new 28S variants continuously spread across the ribosomal array. Again, the interplay between transposition-mediated deletion and molecular drive may explain this pattern.

R2 dynamics in Triops cancriformis (Bosc, 1801) (Crustacea, Branchiopoda, Notostraca): turnover rate and 28S concerted evolution.

MINGAZZINI, VALENTINA;LUCHETTI, ANDREA;MANTOVANI, BARBARA
2011

Abstract

The R2 retrotransposon is here characterized in bisexual populations of the European crustacean Triops cancriformis. The isolated element matches well with the general aspects of the R2 family and it is highly differentiated from that of the congeneric North American Triops longicaudatus. The analysis of 5' truncations indicates that R2 dynamics in T. cancriformis populations show a high turnover rate as observed in Drosophila simulans. For the first time in the literature, though, individuals harboring truncation variants, but lacking the complete element, are found. Present results suggest that transposition-mediated deletion mechanisms, possibly involving genomic turnover processes acting on rDNAs, can dramatically decrease the copy number or even delete R2 from the ribosomal locus. The presence of R2 does not seem to impact on the nucleotide variation of inserted 28S rDNA with respect to the uninserted genes. On the other hand, a low level of polymorphism characterizes rDNA units because new 28S variants continuously spread across the ribosomal array. Again, the interplay between transposition-mediated deletion and molecular drive may explain this pattern.
2011
MINGAZZINI V.; LUCHETTI A.; MANTOVANI B.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/99459
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact