Modern Massively Multiplayer Online Games (MMOGs) allow hundreds of thousands of players to interact with a large, dynamic virtual world. Implementing a scalable MMOG service is challenging because the system is subject to high variabilities in the workload, and nevertheless must always operate under very strict QoS requirements. Traditionally, MMOG services are implemented as large dedicated IT infrastructures with aggressive over-provisioning of resources in order to cope with the worst-case workload scenario. In this paper we address the problem of building a large-scale, multi-tier MMOG service using resources provided by a Clo-ud computing infrastructure. The Cloud paradigm allows the service providers to allocate as many resources as they need using a pay as you go model. We harness this paradigm by describing a dynamic provisioning algorithm which can resize the resource pool to adapt to workload variabilities, still maintaining a response time below a user-defined threshold. Our algorithm uses a Queueing Network performance model to quickly evaluate different configurations. Numerical experiments are used to validate the effectiveness of the proposed approach.

Dynamic Scalability for Next Generation Gaming Infrastructures

MARZOLLA, MORENO;FERRETTI, STEFANO;D'ANGELO, GABRIELE
2011

Abstract

Modern Massively Multiplayer Online Games (MMOGs) allow hundreds of thousands of players to interact with a large, dynamic virtual world. Implementing a scalable MMOG service is challenging because the system is subject to high variabilities in the workload, and nevertheless must always operate under very strict QoS requirements. Traditionally, MMOG services are implemented as large dedicated IT infrastructures with aggressive over-provisioning of resources in order to cope with the worst-case workload scenario. In this paper we address the problem of building a large-scale, multi-tier MMOG service using resources provided by a Clo-ud computing infrastructure. The Cloud paradigm allows the service providers to allocate as many resources as they need using a pay as you go model. We harness this paradigm by describing a dynamic provisioning algorithm which can resize the resource pool to adapt to workload variabilities, still maintaining a response time below a user-defined threshold. Our algorithm uses a Queueing Network performance model to quickly evaluate different configurations. Numerical experiments are used to validate the effectiveness of the proposed approach.
2011
Proceedings of the 4th ACM/ICST International Conference on Simulation Tools and Techniques (SIMUTools 2011)
1
8
M. Marzolla; S. Ferretti; G. D'Angelo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/96693
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact