BACKGROUND: The development of cell therapy for the rescue of damaged heart muscle is a major area of inquiry. Within this context, the establishment of a cardiogenic cell line may remarkably facilitate the molecular dissection of cardiac fate specification, a low-efficiency and still poorly understood process, paving the way for novel approaches in the use of stem cells for cardiac repair. METHODS & RESULTS: We used GTR1 cells, a derivative of mouse R1 embryonic stem cells bearing the puromycin-resistance gene driven by the cardiomyocyte-specific alpha-myosin heavy chain promoter, affording a gene trapping selection of a virtually pure population of embryonic stem cell-derived cardiomyocytes. Third-generation lentiviral vectors were used to overexpress the prodynorphin gene, previously shown to orchestrate a dynorphinergic system acting as a major conductor of embryonic stem cell cardiogenesis. Lentiviral prodynorphin transduction remarkably enhanced the transcription of GATA-4 and Nkx-2.5, two cardiac lineage-promoting genes, resulting in a dramatic increase in the number of spontaneously beating cardiomyocytes. Transduced cells also exhibited a subcellular redistribution patterning of protein kinase C-beta, -delta and -epsilon, a major requirement in cardiac lineage commitment. This activation resulted from a sustained increase in the transcription of targeted protein kinase C genes. Prodynorphin transduction was selective in nature and failed to activate genes responsible for skeletal myogenesis or neuronal specification. CONCLUSIONS: The cell line developed in this study provides a powerful in vitro model of cardiomyogenesis that may help clarify the cascade of transcriptional activation and signaling networks that push multipotent cells to take on the identity of a cardiac myocyte.

Creating prodynorphin-expressing stem cells alerted for a high-throughput of cardiogenic commitment / Maioli M;Asara Y;Pintus A;Ninniri S;Bettuzzi S;Scaltriti M;Galimi F;Ventura C. - In: REGENERATIVE MEDICINE. - ISSN 1746-0751. - STAMPA. - 2:(2007), pp. 193-202. [10.2217/17460751.2.2.193]

Creating prodynorphin-expressing stem cells alerted for a high-throughput of cardiogenic commitment.

VENTURA, CARLO
2007

Abstract

BACKGROUND: The development of cell therapy for the rescue of damaged heart muscle is a major area of inquiry. Within this context, the establishment of a cardiogenic cell line may remarkably facilitate the molecular dissection of cardiac fate specification, a low-efficiency and still poorly understood process, paving the way for novel approaches in the use of stem cells for cardiac repair. METHODS & RESULTS: We used GTR1 cells, a derivative of mouse R1 embryonic stem cells bearing the puromycin-resistance gene driven by the cardiomyocyte-specific alpha-myosin heavy chain promoter, affording a gene trapping selection of a virtually pure population of embryonic stem cell-derived cardiomyocytes. Third-generation lentiviral vectors were used to overexpress the prodynorphin gene, previously shown to orchestrate a dynorphinergic system acting as a major conductor of embryonic stem cell cardiogenesis. Lentiviral prodynorphin transduction remarkably enhanced the transcription of GATA-4 and Nkx-2.5, two cardiac lineage-promoting genes, resulting in a dramatic increase in the number of spontaneously beating cardiomyocytes. Transduced cells also exhibited a subcellular redistribution patterning of protein kinase C-beta, -delta and -epsilon, a major requirement in cardiac lineage commitment. This activation resulted from a sustained increase in the transcription of targeted protein kinase C genes. Prodynorphin transduction was selective in nature and failed to activate genes responsible for skeletal myogenesis or neuronal specification. CONCLUSIONS: The cell line developed in this study provides a powerful in vitro model of cardiomyogenesis that may help clarify the cascade of transcriptional activation and signaling networks that push multipotent cells to take on the identity of a cardiac myocyte.
2007
Creating prodynorphin-expressing stem cells alerted for a high-throughput of cardiogenic commitment / Maioli M;Asara Y;Pintus A;Ninniri S;Bettuzzi S;Scaltriti M;Galimi F;Ventura C. - In: REGENERATIVE MEDICINE. - ISSN 1746-0751. - STAMPA. - 2:(2007), pp. 193-202. [10.2217/17460751.2.2.193]
Maioli M;Asara Y;Pintus A;Ninniri S;Bettuzzi S;Scaltriti M;Galimi F;Ventura C
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/89026
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact