We consider the mixed problem, {Δ u = 0 in Ω ∂u = f N on N u = fD on D in a class of Lipschitz graph domains in two dimensions with Lipschitz constant at most 1. We suppose the Dirichlet data, f D , has one derivative in L p (D) of the boundary and the Neumann data, f N , is in L p (N). We find a p 0 > 1 so that for p in an interval (1, p 0), we may find a unique solution to the mixed problem and the gradient of the solution lies in L p . © 2008 Springer-Verlag.

Lanzani, L., Capogna, L., Brown, R.M. (2008). The mixed problem in L p for some two-dimensional Lipschitz domains. MATHEMATISCHE ANNALEN, 342(1), 91-124 [10.1007/s00208-008-0223-6].

The mixed problem in L p for some two-dimensional Lipschitz domains

Lanzani L.;
2008

Abstract

We consider the mixed problem, {Δ u = 0 in Ω ∂u = f N on N u = fD on D in a class of Lipschitz graph domains in two dimensions with Lipschitz constant at most 1. We suppose the Dirichlet data, f D , has one derivative in L p (D) of the boundary and the Neumann data, f N , is in L p (N). We find a p 0 > 1 so that for p in an interval (1, p 0), we may find a unique solution to the mixed problem and the gradient of the solution lies in L p . © 2008 Springer-Verlag.
2008
Lanzani, L., Capogna, L., Brown, R.M. (2008). The mixed problem in L p for some two-dimensional Lipschitz domains. MATHEMATISCHE ANNALEN, 342(1), 91-124 [10.1007/s00208-008-0223-6].
Lanzani, L.; Capogna, L.; Brown, R. M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/873187
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact