Vinylalkylidene transition metal complexes have been extensively used as ‘multitalent tools’ in organic synthesis, covering a broad field of applications. The vinylalkylidene ligands can be monodentate; alternatively they can adopt a bridging coordination mode in complexes with two adjacent metal atoms. As for other unsaturated organic ligands which can bond in both mono- and di-nuclear modes, the bridging coordination can give rise to new and different chemical properties from those found when the ligand is bound to a single metal centre. Likewise, the synthetic routes to bridging vinylalkylidene complexes offer a broader range of possibilities compared to those used to make mononuclear vinylalkylidenes. In spite of the fact that bridging vinylalkylidene complexes have been known for about 40 years, their synthetic potential as C3 activated fragments has so far been under-exploited. Comparison with other C3 bridged ligands (allenyls and allyls) indicates that vinylalkylidene ligands are reactive and versatile species. This reviewarticle gives an overviewof the chemistry of bridging vinylalkylidene complexes to focus attention on their potential as synthetic tools.

Bridging vinylalkylidene transition metal complexes.

BUSETTO, LUIGI;ZANOTTI, VALERIO;
2010

Abstract

Vinylalkylidene transition metal complexes have been extensively used as ‘multitalent tools’ in organic synthesis, covering a broad field of applications. The vinylalkylidene ligands can be monodentate; alternatively they can adopt a bridging coordination mode in complexes with two adjacent metal atoms. As for other unsaturated organic ligands which can bond in both mono- and di-nuclear modes, the bridging coordination can give rise to new and different chemical properties from those found when the ligand is bound to a single metal centre. Likewise, the synthetic routes to bridging vinylalkylidene complexes offer a broader range of possibilities compared to those used to make mononuclear vinylalkylidenes. In spite of the fact that bridging vinylalkylidene complexes have been known for about 40 years, their synthetic potential as C3 activated fragments has so far been under-exploited. Comparison with other C3 bridged ligands (allenyls and allyls) indicates that vinylalkylidene ligands are reactive and versatile species. This reviewarticle gives an overviewof the chemistry of bridging vinylalkylidene complexes to focus attention on their potential as synthetic tools.
2010
L. Busetto; V. Zanotti; P.M. Maitlis
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/86818
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 34
social impact