The hydrophobic dl-amino acids alanine, valine, leucine, and isoleucine have been cocrystallized with LiCl via solid-state and solution methods, and the effect of preparation conditions and solvent choice on the racemic versus conglomerate formation has been investigated. For the sake of comparison, enantiopure l-amino acids have also been reacted with LiCl in the same experimental conditions. With dl-alanine only, a racemic ionic cocrystal of formula dl-alanine·LiCl·H2O is obtained, irrespective of the preparation conditions, while the amino acids dl-valine and dl-leucine undergo spontaneous chiral resolution when MeOH is used in ball milling conditions, yielding monohydrated conglomerates, which at ambient conditions convert over time into the racemic ionic cocrystals dl-Val·LiCl·H2O and dl-Leu·LiCl·1.5H2O; these racemic ionic cocrystals (ICCs) are otherwise obtained in a single step if water is employed instead of MeOH, both in ball milling and solution conditions. dl-Isoleucine behaves differently, and product characterization is complicated by the presence of dl-alloisoleucine (dl-aIle) in the commercial starting material; solution crystallization in the presence of excess LiCl, however, unexpectedly results in the formation of the alloisoleucine conglomerate d-aIle·LiCl·H2O and l-aIle·LiCl·H2O, together with unreacted dl-isoleucine. Solid-state syntheses of the ionic cocrystals proceed in most cases via formation of intermediate metastable polymorphs; phase identification and structural characterization for all ICCs have been conducted via single crystal and/or powder X-ray diffraction.

Solvent Effect on the Preparation of Ionic Cocrystals of dl -Amino Acids with Lithium Chloride: Conglomerate versus Racemate Formation / Shemchuk O.; Spoletti E.; Braga D.; Grepioni F.. - In: CRYSTAL GROWTH & DESIGN. - ISSN 1528-7483. - ELETTRONICO. - 21:6(2021), pp. 3438-3448. [10.1021/acs.cgd.1c00216]

Solvent Effect on the Preparation of Ionic Cocrystals of dl -Amino Acids with Lithium Chloride: Conglomerate versus Racemate Formation

Shemchuk O.;Braga D.;Grepioni F.
2021

Abstract

The hydrophobic dl-amino acids alanine, valine, leucine, and isoleucine have been cocrystallized with LiCl via solid-state and solution methods, and the effect of preparation conditions and solvent choice on the racemic versus conglomerate formation has been investigated. For the sake of comparison, enantiopure l-amino acids have also been reacted with LiCl in the same experimental conditions. With dl-alanine only, a racemic ionic cocrystal of formula dl-alanine·LiCl·H2O is obtained, irrespective of the preparation conditions, while the amino acids dl-valine and dl-leucine undergo spontaneous chiral resolution when MeOH is used in ball milling conditions, yielding monohydrated conglomerates, which at ambient conditions convert over time into the racemic ionic cocrystals dl-Val·LiCl·H2O and dl-Leu·LiCl·1.5H2O; these racemic ionic cocrystals (ICCs) are otherwise obtained in a single step if water is employed instead of MeOH, both in ball milling and solution conditions. dl-Isoleucine behaves differently, and product characterization is complicated by the presence of dl-alloisoleucine (dl-aIle) in the commercial starting material; solution crystallization in the presence of excess LiCl, however, unexpectedly results in the formation of the alloisoleucine conglomerate d-aIle·LiCl·H2O and l-aIle·LiCl·H2O, together with unreacted dl-isoleucine. Solid-state syntheses of the ionic cocrystals proceed in most cases via formation of intermediate metastable polymorphs; phase identification and structural characterization for all ICCs have been conducted via single crystal and/or powder X-ray diffraction.
2021
Solvent Effect on the Preparation of Ionic Cocrystals of dl -Amino Acids with Lithium Chloride: Conglomerate versus Racemate Formation / Shemchuk O.; Spoletti E.; Braga D.; Grepioni F.. - In: CRYSTAL GROWTH & DESIGN. - ISSN 1528-7483. - ELETTRONICO. - 21:6(2021), pp. 3438-3448. [10.1021/acs.cgd.1c00216]
Shemchuk O.; Spoletti E.; Braga D.; Grepioni F.
File in questo prodotto:
File Dimensione Formato  
acs.cgd aminoacid LiCl-2021.pdf

accesso aperto

Descrizione: pdf
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 6.43 MB
Formato Adobe PDF
6.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/855299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact