Fusarium head blight (FHB) is a global cereal disease caused by a complex of Fusarium species. In Europe, the main species responsible for FHB are F. graminearum, F. culmorum and F. poae. However, members of the F. tricinctum species complex (FTSC) have become increasingly important. FTSC fusaria can synthesize mycotoxins such as moniliformin (MON), enniatins (ENNs) and several other biologically active secondary metabolites that could compromise food quality. In this study, FTSC isolates primarily from Italian durum wheat and barley, together with individual strains from four non-graminaceous hosts, were collected to assess their genetic diversity and determine their potential to produce mycotoxins in vitro on rice cultures. A multilocus DNA sequence dataset (TEF1, RPB1 and RPB2) was constructed for 117 isolates from Italy and 6 from Iran to evaluate FTSC species diversity and their evolutionary relationships. Phylogenetic analyses revealed wide genetic diversity among Italian FTSC isolates. Among previously described FTSC species, F. avenaceum (FTSC 4) was the most common species in Italy (56/117 = 47.9%) while F. tricinctum (FTSC 3), and F. acuminatum (FTSC 2) accounted for 11.1% (13/117) and the 8.5% (10/117), respectively. The second most detected species was a new and unnamed Fusarium sp. (FTSC 12; 32/117 = 19%) resolved as the sister group of F. tricinctum. Collectively, these four phylospecies accounted for 111/117 = 94.9% of the Italian FTSC collection. However, we identified five other FTSC species at low frequencies, including F. iranicum (FTSC 6) and three newly discovered species (Fusarium spp. FTSC 13, 14, 15). Of the 59 FTSC isolates tested for mycotoxin production on rice cultures, 54 and 55 strains, respectively, were able to produce detectable levels of ENNs and MON. In addition, we confirmed that the ability to produce bioactive secondary metabolites such as chlamydosporol, acuminatopyrone, longiborneol, fungerin and butanolide is widespread across the FTSC.

Species diversity and mycotoxin production by members of the Fusarium tricinctum species complex associated with Fusarium head blight of wheat and barley in Italy

Senatore M. T.;Cappelletti E.;McCormick S. P.;Prodi A.
2021

Abstract

Fusarium head blight (FHB) is a global cereal disease caused by a complex of Fusarium species. In Europe, the main species responsible for FHB are F. graminearum, F. culmorum and F. poae. However, members of the F. tricinctum species complex (FTSC) have become increasingly important. FTSC fusaria can synthesize mycotoxins such as moniliformin (MON), enniatins (ENNs) and several other biologically active secondary metabolites that could compromise food quality. In this study, FTSC isolates primarily from Italian durum wheat and barley, together with individual strains from four non-graminaceous hosts, were collected to assess their genetic diversity and determine their potential to produce mycotoxins in vitro on rice cultures. A multilocus DNA sequence dataset (TEF1, RPB1 and RPB2) was constructed for 117 isolates from Italy and 6 from Iran to evaluate FTSC species diversity and their evolutionary relationships. Phylogenetic analyses revealed wide genetic diversity among Italian FTSC isolates. Among previously described FTSC species, F. avenaceum (FTSC 4) was the most common species in Italy (56/117 = 47.9%) while F. tricinctum (FTSC 3), and F. acuminatum (FTSC 2) accounted for 11.1% (13/117) and the 8.5% (10/117), respectively. The second most detected species was a new and unnamed Fusarium sp. (FTSC 12; 32/117 = 19%) resolved as the sister group of F. tricinctum. Collectively, these four phylospecies accounted for 111/117 = 94.9% of the Italian FTSC collection. However, we identified five other FTSC species at low frequencies, including F. iranicum (FTSC 6) and three newly discovered species (Fusarium spp. FTSC 13, 14, 15). Of the 59 FTSC isolates tested for mycotoxin production on rice cultures, 54 and 55 strains, respectively, were able to produce detectable levels of ENNs and MON. In addition, we confirmed that the ability to produce bioactive secondary metabolites such as chlamydosporol, acuminatopyrone, longiborneol, fungerin and butanolide is widespread across the FTSC.
Senatore M.T.; Ward T.J.; Cappelletti E.; Beccari G.; McCormick S.P.; Busman M.; Laraba I.; O'Donnell K.; Prodi A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/849598
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 8
social impact