One of the most widely used strategies to improve drug diffusion through the skin is the use of permeation enhancers. The aim of this work was to investigate the effect of two biosurfactants (BS), produced by Lactobacillus crispatus BC1 and Lactobacillus gasseri BC9, on the skin permeation profile of hydrocortisone (HC, model drug). HC aqueous solubility and in vitro diffusion studies through porcine skin were performed in the presence of BC1-BS and BC9-BS at concentrations below and above critical micellar concentrations (CMC). Moreover, skin hydration tests and differential scanning calorimetry (DSC) analysis were performed to further investigate BS interaction with the outermost layer of the skin. Both BS increased HC solubility, especially at concentrations above their CMC. At concentrations below the CMC, drug permeation through the skin was improved, as the result of a dual effect: A) the formation of a superficial lipophilic environment, as confirmed by the reduction in skin hydration and b) the interaction between BS and the stratum corneum (SC), as demonstrated by the DSC curves. From the obtained data, it appears that BC1-BS and BC9-BS could represent new promising green excipients for drug permeation enhancement through the skin.

Influence of lactobacillus biosurfactants on skin permeation of hydrocortisone

Abruzzo A.
;
Parolin C.;Corazza E.;Giordani B.;Cerchiara T.;Bigucci F.;Vitali B.;Luppi B.
2021

Abstract

One of the most widely used strategies to improve drug diffusion through the skin is the use of permeation enhancers. The aim of this work was to investigate the effect of two biosurfactants (BS), produced by Lactobacillus crispatus BC1 and Lactobacillus gasseri BC9, on the skin permeation profile of hydrocortisone (HC, model drug). HC aqueous solubility and in vitro diffusion studies through porcine skin were performed in the presence of BC1-BS and BC9-BS at concentrations below and above critical micellar concentrations (CMC). Moreover, skin hydration tests and differential scanning calorimetry (DSC) analysis were performed to further investigate BS interaction with the outermost layer of the skin. Both BS increased HC solubility, especially at concentrations above their CMC. At concentrations below the CMC, drug permeation through the skin was improved, as the result of a dual effect: A) the formation of a superficial lipophilic environment, as confirmed by the reduction in skin hydration and b) the interaction between BS and the stratum corneum (SC), as demonstrated by the DSC curves. From the obtained data, it appears that BC1-BS and BC9-BS could represent new promising green excipients for drug permeation enhancement through the skin.
2021
Abruzzo A.; Parolin C.; Corazza E.; Giordani B.; Di Cagno M.P.; Cerchiara T.; Bigucci F.; Vitali B.; Luppi B.
File in questo prodotto:
File Dimensione Formato  
Abruzzo 2021_Pharmaceutics permeazioni.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 6.81 MB
Formato Adobe PDF
6.81 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/846543
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact