Calcite (CaCO3, space group R3c) is a solid phase whose well-known highly anisotropic physical properties can be exploited to compare and calibrate various theoretical simulation methods. In this work, to benchmark different ab initio Density Functional Theory approaches that include for the first time corrections for dispersive forces, a systematic analysis of structural, electronic, dielectric, optical and vibrational properties of calcite is performed. The simulations considered the generalized-gradient approximation functional PBE and the hybrid B3LYP and PBE0, whereas the DFT-D2 and DFT-D3 schemes were adopted to account for the long-range interactions. This study suggests an overall better agreement between the theoretical results obtained with the DFT functionals corrected for the dispersive forces, with a better performance of hybrid functionals over PBE.

Benchmarking dispersion-corrected DFT methods for the evaluation of materials with anisotropic properties: Structural, electronic, dielectric, optical and vibrational analysis of calcite (CaCO3, space group: R 3 c) / Ulian G.; Moro D.; Valdrè Giovanni. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - STAMPA. - 23:34(2021), pp. 18899-18907. [10.1039/d1cp02673a]

Benchmarking dispersion-corrected DFT methods for the evaluation of materials with anisotropic properties: Structural, electronic, dielectric, optical and vibrational analysis of calcite (CaCO3, space group: R 3 c)

Ulian G.
Primo
;
Moro D.;Valdrè Giovanni
2021

Abstract

Calcite (CaCO3, space group R3c) is a solid phase whose well-known highly anisotropic physical properties can be exploited to compare and calibrate various theoretical simulation methods. In this work, to benchmark different ab initio Density Functional Theory approaches that include for the first time corrections for dispersive forces, a systematic analysis of structural, electronic, dielectric, optical and vibrational properties of calcite is performed. The simulations considered the generalized-gradient approximation functional PBE and the hybrid B3LYP and PBE0, whereas the DFT-D2 and DFT-D3 schemes were adopted to account for the long-range interactions. This study suggests an overall better agreement between the theoretical results obtained with the DFT functionals corrected for the dispersive forces, with a better performance of hybrid functionals over PBE.
2021
Benchmarking dispersion-corrected DFT methods for the evaluation of materials with anisotropic properties: Structural, electronic, dielectric, optical and vibrational analysis of calcite (CaCO3, space group: R 3 c) / Ulian G.; Moro D.; Valdrè Giovanni. - In: PHYSICAL CHEMISTRY CHEMICAL PHYSICS. - ISSN 1463-9076. - STAMPA. - 23:34(2021), pp. 18899-18907. [10.1039/d1cp02673a]
Ulian G.; Moro D.; Valdrè Giovanni
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/844561
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact