The primary common goal of any resource processing intervention is environmental sustainability. It seeks practical collaboration in construction technology and innovation, whether intentionally used to increase eco-friendly energy savings or implicitly used to reduce the impact of construction projects on the global environment. Biopolymers are a promising field for growth because they combine high technological potential with environmental sustainability. A viable alternative to conventional, costly, and complicated construction systems is the employment of technologies that exploit environmental sustainability concepts to create temporary modular structures that maximize manufacturing times and costs. The paper presents an innovative process for designing temporary structures for social, cultural, and exhibition use. The present paper aims at the following objectives: (i) to illustrate a parametric approach to the design of spaces for such proposes; (ii) to study a prefabricated construction system consisting of interlocking elements to be dry assembled; (iii) to propose the use of new bio-based material. The building system originated based on these research instances targets the requirements of: adaptability, flexibility, and reversibility of spaces; prefabrication, lightness, and speed of installation and assembly; environmental sustainability and recyclability of components employed. In particular, the modules that make up the final product, characterized by vaults, are conceived as small shelters for reading and social activities.

An eco-sustainable parametric design process of bio-based polymers temporary structures / Cecilia Mazzoli, Davide Prati, Marta Bonci. - In: TEMA. - ISSN 2421-4574. - ELETTRONICO. - 7:2(2021), pp. 145-158. [10.30682/tema0702o]

An eco-sustainable parametric design process of bio-based polymers temporary structures

Cecilia Mazzoli
;
Davide Prati;
2021

Abstract

The primary common goal of any resource processing intervention is environmental sustainability. It seeks practical collaboration in construction technology and innovation, whether intentionally used to increase eco-friendly energy savings or implicitly used to reduce the impact of construction projects on the global environment. Biopolymers are a promising field for growth because they combine high technological potential with environmental sustainability. A viable alternative to conventional, costly, and complicated construction systems is the employment of technologies that exploit environmental sustainability concepts to create temporary modular structures that maximize manufacturing times and costs. The paper presents an innovative process for designing temporary structures for social, cultural, and exhibition use. The present paper aims at the following objectives: (i) to illustrate a parametric approach to the design of spaces for such proposes; (ii) to study a prefabricated construction system consisting of interlocking elements to be dry assembled; (iii) to propose the use of new bio-based material. The building system originated based on these research instances targets the requirements of: adaptability, flexibility, and reversibility of spaces; prefabrication, lightness, and speed of installation and assembly; environmental sustainability and recyclability of components employed. In particular, the modules that make up the final product, characterized by vaults, are conceived as small shelters for reading and social activities.
2021
An eco-sustainable parametric design process of bio-based polymers temporary structures / Cecilia Mazzoli, Davide Prati, Marta Bonci. - In: TEMA. - ISSN 2421-4574. - ELETTRONICO. - 7:2(2021), pp. 145-158. [10.30682/tema0702o]
Cecilia Mazzoli, Davide Prati, Marta Bonci
File in questo prodotto:
File Dimensione Formato  
Mazzoli et al.pdf

accesso aperto

Descrizione: Contributo pubblicato
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/844511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact