Two novel protocols for the chemical valorization of polyhydroxybutyrate (PHB) were developed, aiming at the production of two bio-based molecules: methyl 3-hydroxybutyrate (MHB) and methyl 3-methoxybutyrate (MMB). Optimized reaction conditions were applied to pure PHB and PHB inclusions inside bacterial cells as starting materials. MHB was synthesized through a single-step catalytic methanolysis, while MMB was synthesized through a three-step process: thermolytic distillation to give crotonic acid (CA), esterification to give methyl crotonate (MC), and oxa-Michael addition of MeOH. The obtained MHB and MMB were tested as solvents for the recovery of PHB itself both from freeze-dried single strain cultures (SSC) and mixed microbial cultures (MMC) with low to medium contents of PHB (22-57 wt %). High PHB recovery was achieved: up to 96 ± 1% through MHB and up to 98 ± 1% through MMB. Extraction from MMC slurry (with a PHB content of 39% on dry weight) was also performed, recovering 77 ± 2% using MHB and 92 ± 2% using MMB. High purities and excellent molecular weights and polydispersity indexes of extracted PHB were obtained with both MHB and MMB. Solubility in water, octanol/water partition coefficients (log Kow), and aerobic ready biodegradability of both solvents were also evaluated.

Chemical Recycling of Polyhydroxybutyrate (PHB) into Bio-Based Solvents and Their Use in a Circular PHB Extraction

Parodi A.;D'Ambrosio M.;Mazzocchetti L.;Martinez G. A.;Samori' C.;Torri C.;Galletti P.
2021

Abstract

Two novel protocols for the chemical valorization of polyhydroxybutyrate (PHB) were developed, aiming at the production of two bio-based molecules: methyl 3-hydroxybutyrate (MHB) and methyl 3-methoxybutyrate (MMB). Optimized reaction conditions were applied to pure PHB and PHB inclusions inside bacterial cells as starting materials. MHB was synthesized through a single-step catalytic methanolysis, while MMB was synthesized through a three-step process: thermolytic distillation to give crotonic acid (CA), esterification to give methyl crotonate (MC), and oxa-Michael addition of MeOH. The obtained MHB and MMB were tested as solvents for the recovery of PHB itself both from freeze-dried single strain cultures (SSC) and mixed microbial cultures (MMC) with low to medium contents of PHB (22-57 wt %). High PHB recovery was achieved: up to 96 ± 1% through MHB and up to 98 ± 1% through MMB. Extraction from MMC slurry (with a PHB content of 39% on dry weight) was also performed, recovering 77 ± 2% using MHB and 92 ± 2% using MMB. High purities and excellent molecular weights and polydispersity indexes of extracted PHB were obtained with both MHB and MMB. Solubility in water, octanol/water partition coefficients (log Kow), and aerobic ready biodegradability of both solvents were also evaluated.
ACS SUSTAINABLE CHEMISTRY & ENGINEERING
Parodi A.; D'Ambrosio M.; Mazzocchetti L.; Martinez G.A.; Samori' C.; Torri C.; Galletti P.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/839563
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact