Hydrogen sulphide (H2S) is an endogenous gasotransmitter, largely known as a pleiotropic mediator endowed with antioxidant, anti-inflammatory, pro-autophagic, and neuroprotective properties. Moreover, a strong relationship between H2S and aging has been recently identified and consistently, a significant decline of H2S levels has been observed in patients affected by Alzheimer's disease (AD). On this basis, the use of H2S-donors could represent an exciting and intriguing strategy to be pursued for the treatment of neurodegenerative diseases (NDDs). In this work, we designed a small series of multitarget molecules combining the rivastigmine-scaffold, a well-established drug already approved for AD, with sulforaphane (SFN) and erucin (ERN), two natural products deriving from the enzymatic hydrolysis of glucosinolates contained in broccoli and rocket, respectively, endowed both with antioxidant and neuroprotective effects. Notably, all new synthetized hybrids exhibit a H2S-donor profile in vitro and elicit protective effects in a model of LPS-induced microglia inflammation. Moreover, a decrease in NO production has been observed in LPS-stimulated cells pre-treated with the compounds. Finally, the compounds showed neuroprotective and antioxidant activities in human neuronal cells. The most interesting compounds have been further investigated to elucidate the possible mechanism of action.

Design and synthesis of H 2 S-donor hybrids: A new treatment for Alzheimer's disease? / Simona Sestito, Letizia Pruccoli, Massimiliano Runfola, Valentina Citi, Alma Martelli, Giuseppe Saccomanni, Vincenzo Calderone, Andrea Tarozzi, Simona Rapposell. - In: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0223-5234. - ELETTRONICO. - 184:(2019), pp. 1-11. [10.1016/j.ejmech.2019.111745]

Design and synthesis of H 2 S-donor hybrids: A new treatment for Alzheimer's disease?

Letizia Pruccoli;Andrea Tarozzi;
2019

Abstract

Hydrogen sulphide (H2S) is an endogenous gasotransmitter, largely known as a pleiotropic mediator endowed with antioxidant, anti-inflammatory, pro-autophagic, and neuroprotective properties. Moreover, a strong relationship between H2S and aging has been recently identified and consistently, a significant decline of H2S levels has been observed in patients affected by Alzheimer's disease (AD). On this basis, the use of H2S-donors could represent an exciting and intriguing strategy to be pursued for the treatment of neurodegenerative diseases (NDDs). In this work, we designed a small series of multitarget molecules combining the rivastigmine-scaffold, a well-established drug already approved for AD, with sulforaphane (SFN) and erucin (ERN), two natural products deriving from the enzymatic hydrolysis of glucosinolates contained in broccoli and rocket, respectively, endowed both with antioxidant and neuroprotective effects. Notably, all new synthetized hybrids exhibit a H2S-donor profile in vitro and elicit protective effects in a model of LPS-induced microglia inflammation. Moreover, a decrease in NO production has been observed in LPS-stimulated cells pre-treated with the compounds. Finally, the compounds showed neuroprotective and antioxidant activities in human neuronal cells. The most interesting compounds have been further investigated to elucidate the possible mechanism of action.
2019
Design and synthesis of H 2 S-donor hybrids: A new treatment for Alzheimer's disease? / Simona Sestito, Letizia Pruccoli, Massimiliano Runfola, Valentina Citi, Alma Martelli, Giuseppe Saccomanni, Vincenzo Calderone, Andrea Tarozzi, Simona Rapposell. - In: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0223-5234. - ELETTRONICO. - 184:(2019), pp. 1-11. [10.1016/j.ejmech.2019.111745]
Simona Sestito, Letizia Pruccoli, Massimiliano Runfola, Valentina Citi, Alma Martelli, Giuseppe Saccomanni, Vincenzo Calderone, Andrea Tarozzi, Simona Rapposell
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/814946
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 45
social impact