This work is focused on the mechanical characterization and fracture surfaces analysis of thermosetting polymers reinforced with short, randomly oriented, recycled carbon fibres (rCFs). This work aims at evaluating fibre/matrix adhesion between recycled CFs-reclaimed via pyrolysis followed by controlled oxidation of the pyrolytic char-and different polymer matrices, namely epoxy and vinyl ester resins. The latter is the main focus in this work, being amongst the most widely used thermosetting resins in SMC processes, which are the typical target for short rCFs. The evaluation of the properties of this new recycled carbon fibre reinforced polymer (rCFRP) has been via thermogravimetric analysis, dynamic mechanical analysis, stress/strain tests in tensile mode, and a subsequent analysis of the fracture surfaces by means of images analysis obtained by macrophotography, Optical Microscopy and Scanning Electron Microscopy. The comparison amongst the results allowed to evaluate the influence of the polymer nature and of the adhesion quality between fibres and polymeric matrix, mainly on the mechanical properties of the rCFRPs.

Mechanical properties and fracture surface analysis of vinyl ester resins reinforced with recycled carbon fibres

Zattini G.;Mazzocchetti L.;Benelli T.;Maccaferri E.;Brancolini G.;Giorgini L.
2020

Abstract

This work is focused on the mechanical characterization and fracture surfaces analysis of thermosetting polymers reinforced with short, randomly oriented, recycled carbon fibres (rCFs). This work aims at evaluating fibre/matrix adhesion between recycled CFs-reclaimed via pyrolysis followed by controlled oxidation of the pyrolytic char-and different polymer matrices, namely epoxy and vinyl ester resins. The latter is the main focus in this work, being amongst the most widely used thermosetting resins in SMC processes, which are the typical target for short rCFs. The evaluation of the properties of this new recycled carbon fibre reinforced polymer (rCFRP) has been via thermogravimetric analysis, dynamic mechanical analysis, stress/strain tests in tensile mode, and a subsequent analysis of the fracture surfaces by means of images analysis obtained by macrophotography, Optical Microscopy and Scanning Electron Microscopy. The comparison amongst the results allowed to evaluate the influence of the polymer nature and of the adhesion quality between fibres and polymeric matrix, mainly on the mechanical properties of the rCFRPs.
18th International Conference on Fracture and Damage Mechanics, FDM 2019; Rhodes; Greece; 16 September 2019 through 18 September 2019; Code 237019
110
115
Zattini G.; Mazzocchetti L.; Benelli T.; Maccaferri E.; Brancolini G.; Giorgini L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/803163
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact