A detailed study of the order and dynamics of the commercially available BL038 liquid crystal (LC) inside nanosized (50-300 nm) droplets of a reflection-mode holographic-polymer dispersed liquid crystal (H-PDLC) device where LC nanodroplet layers and polymer layers are alternately arranged,forming a diffraction grating has been performed. We have determined the configuration of the LC local director and derived a model of the nanodroplet organization inside the layers. To achieve this, we have taken advantage of the high sensitivity of the ESR spin probe technique to study a series of temperatures ranging from the nematic to the isotropic phase of the LC. Using also additional information on the nanodroplet size and shape distribution provided by SEM images of the H-PDLC cross section, the observed director configuration has been modeled as a bidimensional distribution of elongated nanodroplets whose long axis is, on the average, parallel to the layers and whose internal director onfiguration is a uniaxial quasi-monodomain aligned along the nanodroplet long axis. Interestingly, at room temperature the molecules tend to keep their average orientation even when the layers are perpendicular to the magnetic field, suggesting that the molecular organization is dictated mainly by the confinement. This result might explain, at least in part, (i) the need for switching voltages significantly higher and (ii) the observed faster turn-off times in H-PDLCs compared to standard PDLC devices.

Order and dynamics inside H-PDLC nanodroplets: an ESR spin probe study

MIGLIOLI, ISABELLA;ARCIONI, ALBERTO;ZANNONI, CLAUDIO
2009

Abstract

A detailed study of the order and dynamics of the commercially available BL038 liquid crystal (LC) inside nanosized (50-300 nm) droplets of a reflection-mode holographic-polymer dispersed liquid crystal (H-PDLC) device where LC nanodroplet layers and polymer layers are alternately arranged,forming a diffraction grating has been performed. We have determined the configuration of the LC local director and derived a model of the nanodroplet organization inside the layers. To achieve this, we have taken advantage of the high sensitivity of the ESR spin probe technique to study a series of temperatures ranging from the nematic to the isotropic phase of the LC. Using also additional information on the nanodroplet size and shape distribution provided by SEM images of the H-PDLC cross section, the observed director configuration has been modeled as a bidimensional distribution of elongated nanodroplets whose long axis is, on the average, parallel to the layers and whose internal director onfiguration is a uniaxial quasi-monodomain aligned along the nanodroplet long axis. Interestingly, at room temperature the molecules tend to keep their average orientation even when the layers are perpendicular to the magnetic field, suggesting that the molecular organization is dictated mainly by the confinement. This result might explain, at least in part, (i) the need for switching voltages significantly higher and (ii) the observed faster turn-off times in H-PDLCs compared to standard PDLC devices.
2009
C. Bacchiocchi; I. Miglioli; A. Arcioni; I. Vecchi; K. Rai; A. Fontecchio; C. Zannoni
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/80014
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 19
social impact