Advanced nanofabrication can produce now nano-structures similar in size with single biomolecules or their self-assembled architectures. Capitalising on this strategic opportunity, BISNES focuses on the design, fabrication and implementation of biomimetic nanostructures which complement biomolecular surfaces and modulate the biomolecular activity. The BISNES project will: (i) develop software products for the representation and quantification of bimolecular surfaces, especially those that self-assemble in long-range nano-aggregates, interacting with artificial nanostructures; (ii) design and fabricate nanostructured surfaces and objects that complementary replicate biomolecular surfaces; and (iii) design, fabricate and implement novel hybrid bio-devices which exhibit quantum-leap increase in capabilities (e.g., sensitivity, response time, cost) or entirely new ones. The project will deliver demonstrated technical solutions with impact on a wide range of applications and products: ultra-sensitive bio-diagnostics and drug discovery devices; inherently bactericidal surfaces, medical devices for the in vitro study of amyloid and cytoskeleton proteins central to critical disease (e.g., neurodegenerative diseases, cancer); and hybrid nanodevices that exhibit new electromagnetic properties useful for future IT devices. The research consortium has the critical mass of knowledge and experimental capabilities, as well as the right combination of activities (academia and industry, both SMEs and industry end-user), which allows us to follow the complete innovation path from fundamental science to its implementation in demonstration devices.

FP7 reasearch project ‘BISNES: Bio-Inspired Self-assembled Nano-Enabled Surfaces' in the call NMP-2007-1.1-1 “Nano-scale mechanisms of bio/non-bio interactions” NMP-2007-1.1-2 “Self-assembling and self-organisation”. grant agreement number: 214538 / Andrisano V.. - (2009).

FP7 reasearch project ‘BISNES: Bio-Inspired Self-assembled Nano-Enabled Surfaces' in the call NMP-2007-1.1-1 “Nano-scale mechanisms of bio/non-bio interactions” NMP-2007-1.1-2 “Self-assembling and self-organisation”. grant agreement number: 214538.

ANDRISANO, VINCENZA
2009

Abstract

Advanced nanofabrication can produce now nano-structures similar in size with single biomolecules or their self-assembled architectures. Capitalising on this strategic opportunity, BISNES focuses on the design, fabrication and implementation of biomimetic nanostructures which complement biomolecular surfaces and modulate the biomolecular activity. The BISNES project will: (i) develop software products for the representation and quantification of bimolecular surfaces, especially those that self-assemble in long-range nano-aggregates, interacting with artificial nanostructures; (ii) design and fabricate nanostructured surfaces and objects that complementary replicate biomolecular surfaces; and (iii) design, fabricate and implement novel hybrid bio-devices which exhibit quantum-leap increase in capabilities (e.g., sensitivity, response time, cost) or entirely new ones. The project will deliver demonstrated technical solutions with impact on a wide range of applications and products: ultra-sensitive bio-diagnostics and drug discovery devices; inherently bactericidal surfaces, medical devices for the in vitro study of amyloid and cytoskeleton proteins central to critical disease (e.g., neurodegenerative diseases, cancer); and hybrid nanodevices that exhibit new electromagnetic properties useful for future IT devices. The research consortium has the critical mass of knowledge and experimental capabilities, as well as the right combination of activities (academia and industry, both SMEs and industry end-user), which allows us to follow the complete innovation path from fundamental science to its implementation in demonstration devices.
2009
FP7 reasearch project ‘BISNES: Bio-Inspired Self-assembled Nano-Enabled Surfaces' in the call NMP-2007-1.1-1 “Nano-scale mechanisms of bio/non-bio interactions” NMP-2007-1.1-2 “Self-assembling and self-organisation”. grant agreement number: 214538 / Andrisano V.. - (2009).
Andrisano V.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/79855
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact