In this study, manganese-cobalt (MnCo) mixed oxide catalysts were prepared by two different routes: co-precipitation and citrate method. The structures and properties of the mixed oxide catalysts were investigated by several techniques: nitrogen adsorption-desorption isotherms, X-ray diffraction, X-ray photoelectron spectroscopy, SEM, FTIR and UV-Vis spectroscopies, temperature-programmed reduction with H2 (H2-TPR) and temperature-programmed desorption of NH3 (NH3-TPD). Their catalytic performance was investigated in the liquid-phase selective oxidation of naturally occurred p-cymene to terephthalic acid, as an alternative to p-xylene, a fossil derivative fuel component. Within this study, we demonstrate that the materials prepared by the co-precipitation method present strong acid sites that boost the oxidation rate and allow oxidation of p-cymene up to terephthalic acid. The co-existence of a significant number of strong acid and centers in higher oxidation state (Co3+) are required for these materials to be selective.

The Role of Acidity in Terephthalic Acid Synthesis from Renewable Carbon Source / Trandafir M.-M.; Neatu S.; Bocirnea A.; Counsell J.; Cavani F.; Florea M.; Neatu F.. - In: CHEMCATCHEM. - ISSN 1867-3880. - STAMPA. - 12:24(2020), pp. 6248-6258. [10.1002/cctc.202001388]

The Role of Acidity in Terephthalic Acid Synthesis from Renewable Carbon Source

Cavani F.;
2020

Abstract

In this study, manganese-cobalt (MnCo) mixed oxide catalysts were prepared by two different routes: co-precipitation and citrate method. The structures and properties of the mixed oxide catalysts were investigated by several techniques: nitrogen adsorption-desorption isotherms, X-ray diffraction, X-ray photoelectron spectroscopy, SEM, FTIR and UV-Vis spectroscopies, temperature-programmed reduction with H2 (H2-TPR) and temperature-programmed desorption of NH3 (NH3-TPD). Their catalytic performance was investigated in the liquid-phase selective oxidation of naturally occurred p-cymene to terephthalic acid, as an alternative to p-xylene, a fossil derivative fuel component. Within this study, we demonstrate that the materials prepared by the co-precipitation method present strong acid sites that boost the oxidation rate and allow oxidation of p-cymene up to terephthalic acid. The co-existence of a significant number of strong acid and centers in higher oxidation state (Co3+) are required for these materials to be selective.
2020
The Role of Acidity in Terephthalic Acid Synthesis from Renewable Carbon Source / Trandafir M.-M.; Neatu S.; Bocirnea A.; Counsell J.; Cavani F.; Florea M.; Neatu F.. - In: CHEMCATCHEM. - ISSN 1867-3880. - STAMPA. - 12:24(2020), pp. 6248-6258. [10.1002/cctc.202001388]
Trandafir M.-M.; Neatu S.; Bocirnea A.; Counsell J.; Cavani F.; Florea M.; Neatu F.
File in questo prodotto:
File Dimensione Formato  
Florea.pdf

Open Access dal 17/12/2021

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/787546
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact