In this paper we consider the analogue of Kohn's operator but with a point singularity, % $$ P=BB^* + B^*(t^{2ell}+x^{2k})B, qquad B= D_{x} + i x^{q-1} D_{t}. $$ % We show that this operator is hypoelliptic and Gevrey hypoelliptic in a certain range, namely $k
Titolo: | Gevrey Hypoellipticity for an interesting variant of Kohn's operator | |
Autore/i: | BOVE, ANTONIO; MUGHETTI, MARCO; D. S. Tartakoff | |
Autore/i Unibo: | ||
Anno: | 2010 | |
Titolo del libro: | Complex Analysis - Several complex variables and connections with PDE theory and geometry | |
Pagina iniziale: | 51 | |
Pagina finale: | 74 | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/978-3-0346-0009-5_3 | |
Abstract: | In this paper we consider the analogue of Kohn's operator but with a point singularity, % $$ P=BB^* + B^*(t^{2ell}+x^{2k})B, qquad B= D_{x} + i x^{q-1} D_{t}. $$ % We show that this operator is hypoelliptic and Gevrey hypoelliptic in a certain range, namely $k | |
Data prodotto definitivo in UGOV: | 1-dic-2010 | |
Data stato definitivo: | 24-dic-2019 | |
Appare nelle tipologie: |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.