Ovarian cancer remains the leading cause of mortality among gynecological tumors. Estrogen receptor beta (ERβ) expression has been suggested to act as a tumor suppressor in epithelial ovarian cancer by reducing both tumor growth and metastasis. ERβ expression abnormalities represent a critical step in the development and progression of ovarian cancer: for these reasons, its re‐expression by genetic engineering, as well as the use of targeted ERβ therapies, still constitute an important therapeutic approach. 3‐{[2‐chloro‐1‐(4‐chlorobenzyl)‐5‐methoxy‐6-methyl‐1H‐indol‐3‐yl]methylene}‐5‐hydroxy‐6‐methyl‐1,3‐dihydro‐2H‐indol‐2‐one, referred to here as compound 3, has been shown to have cytostatic as well cytotoxic effects on various hormone-dependent cancer cell lines. However, the mechanism of its anti‐carcinogenic activity is not well understood. Here, we offer a possible explanation of such an effect in the human ovarian cancer cell line IGROV1. Chromatin binding protein assay and liquid chromatography mass spectrometry were exploited to localize and quantify compound 3 in cells. Molecular docking was used to prove compound 3 binding to ERβ. Mass spectrometry‐based approaches were used to analyze histone post‐translational modifications. Finally, gene expression analyses revealed a set of genes regulated by the ERβ/3 complex, namely CCND1, MYC, CDKN2A, and ESR2, providing possible molecular mechanisms that underline the observed antiproliferative effects.

Indole derivative interacts with estrogen receptor beta and inhibits human ovarian cancer cell growth / Verardi L.; Fiori J.; Andrisano V.; Locatelli A.; Morigi R.; Naldi M.; Bertucci C.; Strocchi E.; Boga C.; Micheletti G.; Calonghi N.. - In: MOLECULES. - ISSN 1420-3049. - ELETTRONICO. - 25:19(2020), pp. 4438.1-4438.15. [10.3390/molecules25194438]

Indole derivative interacts with estrogen receptor beta and inhibits human ovarian cancer cell growth

Fiori J.
Investigation
;
Andrisano V.
Membro del Collaboration Group
;
Locatelli A.
Membro del Collaboration Group
;
Morigi R.
Investigation
;
Naldi M.
Investigation
;
Bertucci C.
Membro del Collaboration Group
;
Boga C.
Writing – Review & Editing
;
Micheletti G.
Membro del Collaboration Group
;
Calonghi N.
Conceptualization
2020

Abstract

Ovarian cancer remains the leading cause of mortality among gynecological tumors. Estrogen receptor beta (ERβ) expression has been suggested to act as a tumor suppressor in epithelial ovarian cancer by reducing both tumor growth and metastasis. ERβ expression abnormalities represent a critical step in the development and progression of ovarian cancer: for these reasons, its re‐expression by genetic engineering, as well as the use of targeted ERβ therapies, still constitute an important therapeutic approach. 3‐{[2‐chloro‐1‐(4‐chlorobenzyl)‐5‐methoxy‐6-methyl‐1H‐indol‐3‐yl]methylene}‐5‐hydroxy‐6‐methyl‐1,3‐dihydro‐2H‐indol‐2‐one, referred to here as compound 3, has been shown to have cytostatic as well cytotoxic effects on various hormone-dependent cancer cell lines. However, the mechanism of its anti‐carcinogenic activity is not well understood. Here, we offer a possible explanation of such an effect in the human ovarian cancer cell line IGROV1. Chromatin binding protein assay and liquid chromatography mass spectrometry were exploited to localize and quantify compound 3 in cells. Molecular docking was used to prove compound 3 binding to ERβ. Mass spectrometry‐based approaches were used to analyze histone post‐translational modifications. Finally, gene expression analyses revealed a set of genes regulated by the ERβ/3 complex, namely CCND1, MYC, CDKN2A, and ESR2, providing possible molecular mechanisms that underline the observed antiproliferative effects.
2020
Indole derivative interacts with estrogen receptor beta and inhibits human ovarian cancer cell growth / Verardi L.; Fiori J.; Andrisano V.; Locatelli A.; Morigi R.; Naldi M.; Bertucci C.; Strocchi E.; Boga C.; Micheletti G.; Calonghi N.. - In: MOLECULES. - ISSN 1420-3049. - ELETTRONICO. - 25:19(2020), pp. 4438.1-4438.15. [10.3390/molecules25194438]
Verardi L.; Fiori J.; Andrisano V.; Locatelli A.; Morigi R.; Naldi M.; Bertucci C.; Strocchi E.; Boga C.; Micheletti G.; Calonghi N.
File in questo prodotto:
File Dimensione Formato  
molecules-25-04438-v2.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.44 MB
Formato Adobe PDF
3.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/774423
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact