The latest diffusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease (COVID-19), has involved the whole world population. Even if huge efforts to control the pandemic have been done, the viral spread is still continuing. COVID-19 is reported as a zoonosis jumped from bats and pangolins to humans. After infection in humans, SARS-CoV-2 is found in the nasopharyngeal and salivary secretions. The virus has also been detected in the blood plasma of infected patients. The viral spread occurs through droplets exhaled from the nose and mouth of the infected people when they breath or talk, or through droplets propelled as a dense cloud by chough or sneeze. The virus can also be delivered as an aerosol from blood plasma, through surgical procedures. Following these ways, the virus can disperse in the air, then reaching and settling on the exposed surfaces. How long the virus will survive on a surface depends on the material the surface is made from. Infection via high-touch surfaces should be prevented. Copper alloy coatings, combined with efficient hygienic/disinfectant procedures and careful surgical practice, could be helpful to health protection in dental practice and can also be adopted in orthopedic traumatology.

Copper-Alloy Surfaces and Cleaning Regimens against the Spread of SARS-CoV-2 in Dentistry and Orthopedics. From Fomites to Anti-Infective Nanocoatings / Poggio, Claudio; Colombo, Marco; Arciola, Carla Renata; Greggi, Tiziana; Scribante, Andrea; Dagna, Alberto. - In: MATERIALS. - ISSN 1996-1944. - ELETTRONICO. - 13:15(2020), pp. 3244.1-3244.12. [10.3390/ma13153244]

Copper-Alloy Surfaces and Cleaning Regimens against the Spread of SARS-CoV-2 in Dentistry and Orthopedics. From Fomites to Anti-Infective Nanocoatings

Arciola, Carla Renata
Membro del Collaboration Group
;
2020

Abstract

The latest diffusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease (COVID-19), has involved the whole world population. Even if huge efforts to control the pandemic have been done, the viral spread is still continuing. COVID-19 is reported as a zoonosis jumped from bats and pangolins to humans. After infection in humans, SARS-CoV-2 is found in the nasopharyngeal and salivary secretions. The virus has also been detected in the blood plasma of infected patients. The viral spread occurs through droplets exhaled from the nose and mouth of the infected people when they breath or talk, or through droplets propelled as a dense cloud by chough or sneeze. The virus can also be delivered as an aerosol from blood plasma, through surgical procedures. Following these ways, the virus can disperse in the air, then reaching and settling on the exposed surfaces. How long the virus will survive on a surface depends on the material the surface is made from. Infection via high-touch surfaces should be prevented. Copper alloy coatings, combined with efficient hygienic/disinfectant procedures and careful surgical practice, could be helpful to health protection in dental practice and can also be adopted in orthopedic traumatology.
2020
Copper-Alloy Surfaces and Cleaning Regimens against the Spread of SARS-CoV-2 in Dentistry and Orthopedics. From Fomites to Anti-Infective Nanocoatings / Poggio, Claudio; Colombo, Marco; Arciola, Carla Renata; Greggi, Tiziana; Scribante, Andrea; Dagna, Alberto. - In: MATERIALS. - ISSN 1996-1944. - ELETTRONICO. - 13:15(2020), pp. 3244.1-3244.12. [10.3390/ma13153244]
Poggio, Claudio; Colombo, Marco; Arciola, Carla Renata; Greggi, Tiziana; Scribante, Andrea; Dagna, Alberto
File in questo prodotto:
File Dimensione Formato  
Copper-Alloy Surfaces and Cleaning Regimens.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/768133
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 46
social impact