As a result of climate change, causing high temperature, erratic precipitation, and extreme meteorological events, in recent times in Italy productivity of Maize is becoming less reliable. Climate change effects are accompanied by the increase in the presence of mycotoxins and various pathogens, which contribute to the reduction of the possibility of successfully producing Maize. In this framework, Proso Millet (Panicum miliaceum L.) may be an interesting alternative, as it is a relatively low-demanding crop, highly drought-resistant, and can be employed, similarly to Sorghum, in rotation, maintaining a certain amount of biodiversity and contributing to the revenue for the farmers. Moreover, Proso Millet has a very short cycle, and may be used as a catch crop, when other crops have failed or after their harvest. Millet used to be cultivated in ancient times in Italy, but then it was abandoned in favor of Maize, so now it is necessary to re-define proper agricultural practices and managements, as well as to remedy to the lack of an exact description of its phenological development. In the frame of a Life-CCA EU project, called Growing REsilience AgriculTure—Life (GREAT LIFE), aim of this work is to encode phenology of Proso Millet using BBCH scale. The lack of an exact definition of Proso Millet phenology is a major drawback in progressing in research on this crop, which could be a very valuable tool for improving the resilience of agro-ecosystems to climate change in the Mediterranean basin. For this purpose, Proso Millet was cultivated in two experimental sites in the Emilia-Romagna region (North of Italy). The crop was closely monitored throughout the life cycle, in order to document, even photographically, the achievement of the subsequent phenological phases (including the time necessary to reach each phenological stage, expressed as Days After Sowing—DAS). Thanks to weather data collection from agrometeorological stations close to the experimental fields, it was possible to correlate the phenological development to temperature-driven heat-unit accumulation (Cumulated Growing Degree Days—CGDD), using the single triangle method (useful tool for forecasting purposes). Ancillary agronomic data have also been collected, for completeness. This study well describes primary and secondary phenological stages of Proso Millet, managing at encoding them in the BBCH scale and contextually providing DAS and CGDD values necessary to achieve the different phenophases. The difference observed between the two experimental sites in reaching each BBCH stage according to both CGDD and DAS is mostly restrained, suggesting that this work may represent a valid first tool in defining the phenological development of Proso Millet in the areas of Northern Italy. The effort made to encode Proso Millet phenology in BBCH scale may be useful to give to researchers comprehensive indications for future agronomic surveys on the crop. The agronomic data collected show that the crop had a good agronomic performance despite the adverse weather pattern during the season, enlightening for farmers the opportunity offered by Millet in Italy as a resilient crop.

Phenological stages of Proso millet (Panicum miliaceum L.) encoded in BBCH scale / Ventura, Francesca; Vignudelli, Marco; Poggi, Giovanni Maria; Negri, Lorenzo; Dinelli, Giovanni. - In: INTERNATIONAL JOURNAL OF BIOMETEOROLOGY. - ISSN 0020-7128. - ELETTRONICO. - 64:7(2020), pp. 1167-1181. [10.1007/s00484-020-01891-3]

Phenological stages of Proso millet (Panicum miliaceum L.) encoded in BBCH scale

Ventura, Francesca
Primo
Conceptualization
;
Vignudelli, Marco
Secondo
Data Curation
;
Poggi, Giovanni Maria
Writing – Original Draft Preparation
;
Negri, Lorenzo
Penultimo
Data Curation
;
Dinelli, Giovanni
Ultimo
Writing – Review & Editing
2020

Abstract

As a result of climate change, causing high temperature, erratic precipitation, and extreme meteorological events, in recent times in Italy productivity of Maize is becoming less reliable. Climate change effects are accompanied by the increase in the presence of mycotoxins and various pathogens, which contribute to the reduction of the possibility of successfully producing Maize. In this framework, Proso Millet (Panicum miliaceum L.) may be an interesting alternative, as it is a relatively low-demanding crop, highly drought-resistant, and can be employed, similarly to Sorghum, in rotation, maintaining a certain amount of biodiversity and contributing to the revenue for the farmers. Moreover, Proso Millet has a very short cycle, and may be used as a catch crop, when other crops have failed or after their harvest. Millet used to be cultivated in ancient times in Italy, but then it was abandoned in favor of Maize, so now it is necessary to re-define proper agricultural practices and managements, as well as to remedy to the lack of an exact description of its phenological development. In the frame of a Life-CCA EU project, called Growing REsilience AgriculTure—Life (GREAT LIFE), aim of this work is to encode phenology of Proso Millet using BBCH scale. The lack of an exact definition of Proso Millet phenology is a major drawback in progressing in research on this crop, which could be a very valuable tool for improving the resilience of agro-ecosystems to climate change in the Mediterranean basin. For this purpose, Proso Millet was cultivated in two experimental sites in the Emilia-Romagna region (North of Italy). The crop was closely monitored throughout the life cycle, in order to document, even photographically, the achievement of the subsequent phenological phases (including the time necessary to reach each phenological stage, expressed as Days After Sowing—DAS). Thanks to weather data collection from agrometeorological stations close to the experimental fields, it was possible to correlate the phenological development to temperature-driven heat-unit accumulation (Cumulated Growing Degree Days—CGDD), using the single triangle method (useful tool for forecasting purposes). Ancillary agronomic data have also been collected, for completeness. This study well describes primary and secondary phenological stages of Proso Millet, managing at encoding them in the BBCH scale and contextually providing DAS and CGDD values necessary to achieve the different phenophases. The difference observed between the two experimental sites in reaching each BBCH stage according to both CGDD and DAS is mostly restrained, suggesting that this work may represent a valid first tool in defining the phenological development of Proso Millet in the areas of Northern Italy. The effort made to encode Proso Millet phenology in BBCH scale may be useful to give to researchers comprehensive indications for future agronomic surveys on the crop. The agronomic data collected show that the crop had a good agronomic performance despite the adverse weather pattern during the season, enlightening for farmers the opportunity offered by Millet in Italy as a resilient crop.
2020
Phenological stages of Proso millet (Panicum miliaceum L.) encoded in BBCH scale / Ventura, Francesca; Vignudelli, Marco; Poggi, Giovanni Maria; Negri, Lorenzo; Dinelli, Giovanni. - In: INTERNATIONAL JOURNAL OF BIOMETEOROLOGY. - ISSN 0020-7128. - ELETTRONICO. - 64:7(2020), pp. 1167-1181. [10.1007/s00484-020-01891-3]
Ventura, Francesca; Vignudelli, Marco; Poggi, Giovanni Maria; Negri, Lorenzo; Dinelli, Giovanni
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/766228
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact