Shading is a crucial issue for the placement of PV installations, as it heavily impacts power production and the corresponding return of investment. Nonetheless, residential rooftop installations still rely on rule-of-thumb criteria and on gross estimates of the shading patterns, while more optimized approaches focus solely on the identification of suitable surfaces (e.g., roofs) in a larger geographic area (e.g., city or district). This work addresses the challenge of identifying an optimal (with respect to the overall energy production) placement of PV panels on a roof. The novel aspect of the proposed solution lies in the possibility of having a sparse, irregular placement of individual modules so as to better exploit the variance of solar data. The latter are represented in terms of the distribution of irradiance and temperature values over the roof, as elaborated from historical traces and Geographical Information System (GIS) data. Experimental results will prove the effectiveness of the algorithm through three real world case studies, and that the generated optimal solutions allow to increase power production by up to 28% with respect to rule-of-thumb solutions.

GIS-Based Optimal Photovoltaic Panel Floorplanning for Residential Installations / Sara Vinco; Lorenzo Bottaccioli; Edoardo Patti; Andrea Acquaviva; Enrico Macii; Massimo Poncino. - STAMPA. - (2018), pp. 437-442. (Intervento presentato al convegno Design, Automation & Test in Europe (DATE) tenutosi a Dresden, Germany nel 19-23 March 2018) [10.23919/DATE.2018.8342049].

GIS-Based Optimal Photovoltaic Panel Floorplanning for Residential Installations

Andrea Acquaviva;
2018

Abstract

Shading is a crucial issue for the placement of PV installations, as it heavily impacts power production and the corresponding return of investment. Nonetheless, residential rooftop installations still rely on rule-of-thumb criteria and on gross estimates of the shading patterns, while more optimized approaches focus solely on the identification of suitable surfaces (e.g., roofs) in a larger geographic area (e.g., city or district). This work addresses the challenge of identifying an optimal (with respect to the overall energy production) placement of PV panels on a roof. The novel aspect of the proposed solution lies in the possibility of having a sparse, irregular placement of individual modules so as to better exploit the variance of solar data. The latter are represented in terms of the distribution of irradiance and temperature values over the roof, as elaborated from historical traces and Geographical Information System (GIS) data. Experimental results will prove the effectiveness of the algorithm through three real world case studies, and that the generated optimal solutions allow to increase power production by up to 28% with respect to rule-of-thumb solutions.
2018
Proceedings of the 2018 Conference on Design, Automation & Test in Europe (DATE)
437
442
GIS-Based Optimal Photovoltaic Panel Floorplanning for Residential Installations / Sara Vinco; Lorenzo Bottaccioli; Edoardo Patti; Andrea Acquaviva; Enrico Macii; Massimo Poncino. - STAMPA. - (2018), pp. 437-442. (Intervento presentato al convegno Design, Automation & Test in Europe (DATE) tenutosi a Dresden, Germany nel 19-23 March 2018) [10.23919/DATE.2018.8342049].
Sara Vinco; Lorenzo Bottaccioli; Edoardo Patti; Andrea Acquaviva; Enrico Macii; Massimo Poncino
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/746098
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 7
social impact