In the present study, novel processes for the offshore production of methanol via alternative routes than reforming of synthesis gas are investigated. Two process schemes are defined differing in the carbon source in input, i.e. the catalytic hydrogenation of carbon dioxide and the direct oxidation of methane via radical gas reaction. Both the schemes are considered to be installed at the main facility of the Canadian Sable Offshore Project in the Atlantic Ocean, the gas production Thebaud platform. Both offshore wind farm and solar parabolic trough systems are integrated to supply electricity and heat power to each process. The Aspen HYSYS is used to simulate the chemical processes, while Homer Pro and System Advisor Model are adopted for the design of feasible renewable energy plants. A thermodynamic modelling through energy analysis is conducted to evaluate and compare the energy efficiencies of sub-systems and overall schemes. Moreover, a preliminary design analysis is performed to estimate the footprint required for the components of the two schemes located on the offshore facility. The present results reveal that the methane-to-methanol process makes more efficient use of the integrated renewable sources but requires relatively higher space at the installation than the other scheme.

Design and energy analyses of alternative methanol production processes driven by hybrid renewable power at the offshore Thebaud platform / Crivellari A.; Cozzani V.; Dincer I.. - In: ENERGY CONVERSION AND MANAGEMENT. - ISSN 0196-8904. - ELETTRONICO. - 187:(2019), pp. 148-166. [10.1016/j.enconman.2019.03.017]

Design and energy analyses of alternative methanol production processes driven by hybrid renewable power at the offshore Thebaud platform

Crivellari A.
Investigation
;
Cozzani V.
Supervision
;
2019

Abstract

In the present study, novel processes for the offshore production of methanol via alternative routes than reforming of synthesis gas are investigated. Two process schemes are defined differing in the carbon source in input, i.e. the catalytic hydrogenation of carbon dioxide and the direct oxidation of methane via radical gas reaction. Both the schemes are considered to be installed at the main facility of the Canadian Sable Offshore Project in the Atlantic Ocean, the gas production Thebaud platform. Both offshore wind farm and solar parabolic trough systems are integrated to supply electricity and heat power to each process. The Aspen HYSYS is used to simulate the chemical processes, while Homer Pro and System Advisor Model are adopted for the design of feasible renewable energy plants. A thermodynamic modelling through energy analysis is conducted to evaluate and compare the energy efficiencies of sub-systems and overall schemes. Moreover, a preliminary design analysis is performed to estimate the footprint required for the components of the two schemes located on the offshore facility. The present results reveal that the methane-to-methanol process makes more efficient use of the integrated renewable sources but requires relatively higher space at the installation than the other scheme.
2019
Design and energy analyses of alternative methanol production processes driven by hybrid renewable power at the offshore Thebaud platform / Crivellari A.; Cozzani V.; Dincer I.. - In: ENERGY CONVERSION AND MANAGEMENT. - ISSN 0196-8904. - ELETTRONICO. - 187:(2019), pp. 148-166. [10.1016/j.enconman.2019.03.017]
Crivellari A.; Cozzani V.; Dincer I.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/740652
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact