The maintenance of complex production systems became increasingly crucial to ensure the competitiveness of companies and service level to their clients. Because of product customization the number of mechanical and electrical components and functional groups of manufacturing lines enhanced with their complexity. To face this concern, the physical and logical design of such systems is typically partitioned among several groups of engineers and designers. Consequently, a holistic awareness of the whole project is lacking and the maintenance of such systems becomes even more challenging. In view of this, new tailored support-decision tools able to manage and control the life cycle of spare parts from their design, throughout the run time, and to their failure and replacement are necessary. This paper illustrates an original maintenance management system (MMS) resulting by the combination of different computerized tools able to integrate the information flow behind the life cycle of a generic component. The proposed system supports coordination among groups of engineers and practitioners through graphic user interfaces (GUIs) and performance i.e. cost, reliability, dashboards, which lead decision-making from the design phase to the planning of maintenance tasks along the life of the manufacturing line. These tools are validated with a real-world instance from the tobacco industry which allows assessing how components belonging to the same functional group may differently behave over their life cycle. The results suggest that the holistic awareness on the whole manufacturing system provided by the proposed MMS can support task design and schedule of maintenance actions providing the reduction of more than 20% of the total cost and time for maintenance actions. The practical example shown contributes to shed light on the potentials of new paradigms for maintenance management in the industry 4.0.

A tailored Maintenance Management System to control spare parts life cycle

Accorsi, R.
Software
;
Gallo, A.
Software
;
Tufano, A.
Membro del Collaboration Group
;
Bortolini, M.
Membro del Collaboration Group
;
Manzini, R.
Project Administration
2019

Abstract

The maintenance of complex production systems became increasingly crucial to ensure the competitiveness of companies and service level to their clients. Because of product customization the number of mechanical and electrical components and functional groups of manufacturing lines enhanced with their complexity. To face this concern, the physical and logical design of such systems is typically partitioned among several groups of engineers and designers. Consequently, a holistic awareness of the whole project is lacking and the maintenance of such systems becomes even more challenging. In view of this, new tailored support-decision tools able to manage and control the life cycle of spare parts from their design, throughout the run time, and to their failure and replacement are necessary. This paper illustrates an original maintenance management system (MMS) resulting by the combination of different computerized tools able to integrate the information flow behind the life cycle of a generic component. The proposed system supports coordination among groups of engineers and practitioners through graphic user interfaces (GUIs) and performance i.e. cost, reliability, dashboards, which lead decision-making from the design phase to the planning of maintenance tasks along the life of the manufacturing line. These tools are validated with a real-world instance from the tobacco industry which allows assessing how components belonging to the same functional group may differently behave over their life cycle. The results suggest that the holistic awareness on the whole manufacturing system provided by the proposed MMS can support task design and schedule of maintenance actions providing the reduction of more than 20% of the total cost and time for maintenance actions. The practical example shown contributes to shed light on the potentials of new paradigms for maintenance management in the industry 4.0.
2019
Accorsi, R.; Gallo, A.; Tufano, A.; Bortolini, M.; Penazzi, S.; Manzini, R.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2351978920300135-main.pdf

accesso aperto

Descrizione: Final Published Version (Open Access)
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 838.25 kB
Formato Adobe PDF
838.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/740448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact