The Mediterranean Analysis and Forecasting System is a numerical ocean prediction system that operationally produces analyses and 10 days forecasts of the main physical parameters for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. The system is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third-generation wave model WW3 (WaveWatchIII) and forced by ECMWF (European Centre for Medium-range Weather Forecasts) atmospheric fields. The forecast initial conditions are produced by a 3D variational data assimilation system which considers a daily assimilation cycle of Sea Level Anomaly, vertical profiles of Temperature and Salinity from ARGO and ship CTDs and heat flux corrections with satellite SST. The system has been recently upgraded in the framework of the Copernicus Marine Environment Monitoring Service (CMEMS) by increasing the grid resolution from 1/16 to 1/24 degree in the horizontal, thus becoming fully mesoscale resolving and from 72 to 141 vertical levels, by increasing the number of fresh water river inputs and by updating the data assimilation scheme. The model has a non-linear explicit free surface and the forecast is forced by surface pressure, interactive heat, momentum and water fluxes at the air-sea interface. The focus of this work is to present the latest modeling system upgrades and the related improvements achieved by showing the model skill assessment including comparison with independent (insitu coastal moorings) and quasi-independent (insitu vertical profiles and satellite) datasets.

The Mediterranean Analysis And Forecasting Physical System For The Copernicus Marine Service: Description And Skill Assessment

Clementi, Emanuela;Pistoia, Jenny;Coppini, Giovanni;Delrosso, Damiano;Pinardi, Nadia
2018

Abstract

The Mediterranean Analysis and Forecasting System is a numerical ocean prediction system that operationally produces analyses and 10 days forecasts of the main physical parameters for the entire Mediterranean Sea and its Atlantic Ocean adjacent areas. The system is composed by the hydrodynamic model NEMO (Nucleus for European Modelling of the Ocean) 2-way coupled with the third-generation wave model WW3 (WaveWatchIII) and forced by ECMWF (European Centre for Medium-range Weather Forecasts) atmospheric fields. The forecast initial conditions are produced by a 3D variational data assimilation system which considers a daily assimilation cycle of Sea Level Anomaly, vertical profiles of Temperature and Salinity from ARGO and ship CTDs and heat flux corrections with satellite SST. The system has been recently upgraded in the framework of the Copernicus Marine Environment Monitoring Service (CMEMS) by increasing the grid resolution from 1/16 to 1/24 degree in the horizontal, thus becoming fully mesoscale resolving and from 72 to 141 vertical levels, by increasing the number of fresh water river inputs and by updating the data assimilation scheme. The model has a non-linear explicit free surface and the forecast is forced by surface pressure, interactive heat, momentum and water fluxes at the air-sea interface. The focus of this work is to present the latest modeling system upgrades and the related improvements achieved by showing the model skill assessment including comparison with independent (insitu coastal moorings) and quasi-independent (insitu vertical profiles and satellite) datasets.
2018
-
Clementi, Emanuela; Pistoia, Jenny; Drudi, Massimiliano; Grandi, Alessandro; Masina, Simona; Ciliberti, Stefania; Coppini, Giovanni; Delrosso, Damiano; Mattia, Gelsomina; Fratianni, Claudia; Pinardi, Nadia
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/740390
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact