Megakaryocytes have been implicated in the micro-environmental abnormalities associated with fibrosis and hematopoietic failure in the bone marrow (BM) of primary myelofibrosis (PMF) patients, the Philadelphia-negative myeloproliferative neoplasm (MPN) associated with the poorest prognosis. To identify possible therapeutic targets for restoring BM functions in PMF, we compared the expression profiling of PMF BM with that of BM from essential thrombocytopenia (ET), a fibrosis-free MPN also associated with BM megakaryocyte hyperplasia. The signature of PMF BM was also compared with published signatures associated with liver and lung fibrosis. Gene set enrichment analysis (GSEA) identified distinctive differences between the expression profiles of PMF and ET. Notch, K-Ras, IL-8, and apoptosis pathways were altered the most in PMF as compared with controls. By contrast, cholesterol homeostasis, unfolded protein response, and hypoxia were the pathways found altered to the greatest degree in ET compared with control specimens. BM from PMF expressed a noncanonical transforming growth factor β (TGF-β) signature, which included activation of ID1, JUN, GADD45b, and genes with binding motifs for the JUN transcriptional complex AP1. By contrast, the expression of ID1 and GADD45b was not altered and there was a modest signal for JUN activation in ET. The similarities among PMF, liver fibrosis, and lung fibrosis were modest and included activation of integrin-α9 and tropomyosin-α1 between PMF and liver fibrosis, and of ectoderm–neural cortex protein 1 and FRAS1-related extracellular matrix protein 1 between PMF and lung fibrosis, but not TGF-β. These data identify TGF-β as a potential target for micro-environmental therapy in PMF.

Shared and Tissue-Specific Expression Signatures between Bone Marrow from Primary Myelofibrosis and Essential Thrombocythemia / Ishikawa G.; Fujiwara N.; Hirschfield H.; Varricchio L.; Hoshida Y.; Barosi G.; Rosti V.; Padilla M.; Mazzarini M.; Friedman S.L.; Hoffman R.; Franco Migliaccio Anna Rita. - In: EXPERIMENTAL HEMATOLOGY. - ISSN 0301-472X. - ELETTRONICO. - 79:(2019), pp. 16-25. [10.1016/j.exphem.2019.10.001]

Shared and Tissue-Specific Expression Signatures between Bone Marrow from Primary Myelofibrosis and Essential Thrombocythemia

Mazzarini M.;Franco Migliaccio Anna Rita
2019

Abstract

Megakaryocytes have been implicated in the micro-environmental abnormalities associated with fibrosis and hematopoietic failure in the bone marrow (BM) of primary myelofibrosis (PMF) patients, the Philadelphia-negative myeloproliferative neoplasm (MPN) associated with the poorest prognosis. To identify possible therapeutic targets for restoring BM functions in PMF, we compared the expression profiling of PMF BM with that of BM from essential thrombocytopenia (ET), a fibrosis-free MPN also associated with BM megakaryocyte hyperplasia. The signature of PMF BM was also compared with published signatures associated with liver and lung fibrosis. Gene set enrichment analysis (GSEA) identified distinctive differences between the expression profiles of PMF and ET. Notch, K-Ras, IL-8, and apoptosis pathways were altered the most in PMF as compared with controls. By contrast, cholesterol homeostasis, unfolded protein response, and hypoxia were the pathways found altered to the greatest degree in ET compared with control specimens. BM from PMF expressed a noncanonical transforming growth factor β (TGF-β) signature, which included activation of ID1, JUN, GADD45b, and genes with binding motifs for the JUN transcriptional complex AP1. By contrast, the expression of ID1 and GADD45b was not altered and there was a modest signal for JUN activation in ET. The similarities among PMF, liver fibrosis, and lung fibrosis were modest and included activation of integrin-α9 and tropomyosin-α1 between PMF and liver fibrosis, and of ectoderm–neural cortex protein 1 and FRAS1-related extracellular matrix protein 1 between PMF and lung fibrosis, but not TGF-β. These data identify TGF-β as a potential target for micro-environmental therapy in PMF.
2019
Shared and Tissue-Specific Expression Signatures between Bone Marrow from Primary Myelofibrosis and Essential Thrombocythemia / Ishikawa G.; Fujiwara N.; Hirschfield H.; Varricchio L.; Hoshida Y.; Barosi G.; Rosti V.; Padilla M.; Mazzarini M.; Friedman S.L.; Hoffman R.; Franco Migliaccio Anna Rita. - In: EXPERIMENTAL HEMATOLOGY. - ISSN 0301-472X. - ELETTRONICO. - 79:(2019), pp. 16-25. [10.1016/j.exphem.2019.10.001]
Ishikawa G.; Fujiwara N.; Hirschfield H.; Varricchio L.; Hoshida Y.; Barosi G.; Rosti V.; Padilla M.; Mazzarini M.; Friedman S.L.; Hoffman R.; Franco Migliaccio Anna Rita
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/739963
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact