The construction of mid- and high-rise wooden buildings has attracted more attention in the last decade, particularly due to the utilization of engineered materials and related construction methods. The wood industry offers a wide range of engineered wood products, such as glue-laminated timber (GLT), cross-laminated timber (CLT) or timber concrete composites (TCC), which have improved mechanical qualities and the freedom to select shapes and sizes. As a consequence, attention has shifted to solve structural design issues to meet specific building requirements, such as their seismic, fire and serviceability performance. The objective of this work is to explore some of the technologies currently available for wooden mid-rise buildings using a 5-storeys case study building under gravity and earthquake loads. An innovative construction method, obtained by combining TCC floors, CLT shear-walls and GLT columns to ensure a fast erection on site is presented and the building response analyzed by means of static and dynamic seismic analyses. Specifically, the gravity load resisting system was designed to meet ultimate and serviceability limit state requirements according to Eurocode. Different seismic bracing technologies are compared: CLT cores (i) and hybridized cores with (ii) post-tensioned tendons and (iii) steel link-beams.

Design of a “mass-timber” building with different seismic bracing technologies

Pozza L.
;
2017

Abstract

The construction of mid- and high-rise wooden buildings has attracted more attention in the last decade, particularly due to the utilization of engineered materials and related construction methods. The wood industry offers a wide range of engineered wood products, such as glue-laminated timber (GLT), cross-laminated timber (CLT) or timber concrete composites (TCC), which have improved mechanical qualities and the freedom to select shapes and sizes. As a consequence, attention has shifted to solve structural design issues to meet specific building requirements, such as their seismic, fire and serviceability performance. The objective of this work is to explore some of the technologies currently available for wooden mid-rise buildings using a 5-storeys case study building under gravity and earthquake loads. An innovative construction method, obtained by combining TCC floors, CLT shear-walls and GLT columns to ensure a fast erection on site is presented and the building response analyzed by means of static and dynamic seismic analyses. Specifically, the gravity load resisting system was designed to meet ultimate and serviceability limit state requirements according to Eurocode. Different seismic bracing technologies are compared: CLT cores (i) and hybridized cores with (ii) post-tensioned tendons and (iii) steel link-beams.
2017
XVII Convegno ANIDIS - L'Ingegneria Sismica in Italia
1
10
Fini, G., Pozza, L., Loss, C., Tannert, T.,
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/737303
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact