The Asperity Likelihood Model (ALM) hypothesizes that small-scale spatial variations in the b-value of the Gutenberg-Richter relationship have a central role in forecasting future seismicity. The physical basis of the ALM is the concept that the local b-value is inversely dependent on the applied shear stress. Thus low b-values (b < 0.7) characterize locked patches of faults, or asperities, from which future mainshocks are more likely to be generated, whereas high b-values (b > 1.1), which can be found, for example, in creeping sections of faults, suggest a lower probability of large events. To turn this hypothesis into a forecast model for Italy, we first determined the regional bvalue (b = 0.93 ±0.01) and compared it with the locally determined b-values at each node of the forecast grid, based on sampling radii ranging from 6 km to 20 km. We used the local b-values if their Akaike Information Criterion scores were lower than those of the regional b-values. We then explored two modifications to this model: in the ALM.IT, we declustered the input catalog for M ≥ 2 and smoothed the node-wise rates of the declustered catalog with a Gaussian filter. Completeness values for each node were determined using the probability-based magnitude of completeness method. In the second model, the hybrid ALM (HALM), as a «hybrid» between a grid-based and a zoning model, the Italian territory was divided into eight distinct regions that depended on the main tectonic regimes, and the local b-value variability was thus mapped using the regional b-values for each tectonic zone. © 2010 by the Istituto Nazionale di Geofisica e Vulcanologia.

Asperity-based earthquake likelihood models for Italy / Gulia L.; Wiemer S.; Schorlemmer D.. - In: ANNALS OF GEOPHYSICS. - ISSN 1593-5213. - ELETTRONICO. - 53:3(2010), pp. 63-75. [10.4401/ag-4843]

Asperity-based earthquake likelihood models for Italy

Gulia L.
;
2010

Abstract

The Asperity Likelihood Model (ALM) hypothesizes that small-scale spatial variations in the b-value of the Gutenberg-Richter relationship have a central role in forecasting future seismicity. The physical basis of the ALM is the concept that the local b-value is inversely dependent on the applied shear stress. Thus low b-values (b < 0.7) characterize locked patches of faults, or asperities, from which future mainshocks are more likely to be generated, whereas high b-values (b > 1.1), which can be found, for example, in creeping sections of faults, suggest a lower probability of large events. To turn this hypothesis into a forecast model for Italy, we first determined the regional bvalue (b = 0.93 ±0.01) and compared it with the locally determined b-values at each node of the forecast grid, based on sampling radii ranging from 6 km to 20 km. We used the local b-values if their Akaike Information Criterion scores were lower than those of the regional b-values. We then explored two modifications to this model: in the ALM.IT, we declustered the input catalog for M ≥ 2 and smoothed the node-wise rates of the declustered catalog with a Gaussian filter. Completeness values for each node were determined using the probability-based magnitude of completeness method. In the second model, the hybrid ALM (HALM), as a «hybrid» between a grid-based and a zoning model, the Italian territory was divided into eight distinct regions that depended on the main tectonic regimes, and the local b-value variability was thus mapped using the regional b-values for each tectonic zone. © 2010 by the Istituto Nazionale di Geofisica e Vulcanologia.
2010
Asperity-based earthquake likelihood models for Italy / Gulia L.; Wiemer S.; Schorlemmer D.. - In: ANNALS OF GEOPHYSICS. - ISSN 1593-5213. - ELETTRONICO. - 53:3(2010), pp. 63-75. [10.4401/ag-4843]
Gulia L.; Wiemer S.; Schorlemmer D.
File in questo prodotto:
File Dimensione Formato  
Gulia_Wiemer_Schorlemmer_2010.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 10.09 MB
Formato Adobe PDF
10.09 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/737112
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 12
social impact