An integrated DC/DC converter with online monitoring of the degradation induced by hot-carrier stress (HCD) in new generation power LDMOS transistors is proposed. In particular, when a relatively high drain voltage is applied during on-state regime (switching phase), degradation mechanisms lead to an increase of the transistor on-resistance (RON). To this purpose, the converter is able to dynamically estimate the RON of the power LDMOS and to provide its value to the user during normal operation. The presented solution, developed in STMicroelectronics 90nm BCD technology, features a non-invasive current sensing and voltage sampling architecture, which is applied to a common DC/DC boost converter to evaluate the resistance of the power LDMOS. Without lack of generality, this specific sensing structure can be applied to any kind of converter, e.g. buck or buck-boost, as it does not require any change in the main conversion circuit.

An integrated DC/DC converter with online monitoring of hot-carrier degradation

Pizzotti M.
;
Crescentini M.;Tallarico A. N.;Romani A.
2019

Abstract

An integrated DC/DC converter with online monitoring of the degradation induced by hot-carrier stress (HCD) in new generation power LDMOS transistors is proposed. In particular, when a relatively high drain voltage is applied during on-state regime (switching phase), degradation mechanisms lead to an increase of the transistor on-resistance (RON). To this purpose, the converter is able to dynamically estimate the RON of the power LDMOS and to provide its value to the user during normal operation. The presented solution, developed in STMicroelectronics 90nm BCD technology, features a non-invasive current sensing and voltage sampling architecture, which is applied to a common DC/DC boost converter to evaluate the resistance of the power LDMOS. Without lack of generality, this specific sensing structure can be applied to any kind of converter, e.g. buck or buck-boost, as it does not require any change in the main conversion circuit.
2019
Proceedings of the 26th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2019
562
565
Pizzotti M.; Crescentini M.; Tallarico A.N.; Romani A.
File in questo prodotto:
File Dimensione Formato  
R2Power300_icecs2019_maybefinal shortref.pdf

Open Access dal 23/07/2020

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 827.64 kB
Formato Adobe PDF
827.64 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/735527
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact