In this article, we describe a customized 2.45-GHz radio frequency identification (RFID) reader designed to simultaneously perform 3-D tracking of multiple tagged entities (objects or people), static or dynamic, in harsh electromagnetic indoor environments. This is obtained by a bi-dimensional electronic beam-steering, implementing the monopulse radar concept simultaneously in the elevation and azimuth directions, with tags-reader distance estimation based on received signal strength indicator (RSSI) measurements. Experimental results show that the system is able to perform a tri-dimensional scanning of a monitored room with decimeter-accuracy over the three reference axes. The RF front end is designed to be lightweight, thin, and compact in such a way that it is portable and embeddable in domestic objects. For this purpose, a multi-layer solution is adopted with a 2-D patch antenna array aperture coupled with the RF front end. 3-D localization data are computed onboard by means of a seamless connection of the RF front end with a low-power microcontroller, which is able to store tags 3-D localization data over a multi-hour time frame. A useful method to remotely control the whole system is presented, using a Raspberry Pi 3B, directly connecting the reader with a flexible and extensive digital platform for Smart Homes. The presented architecture is experimentally demonstrated to perform a reliable fall detection of tagged people in indoor environments.

Fall Detection and 3-D Indoor Localization by a Custom RFID Reader Embedded in a Smart e-Health Platform

Paolini G.;Masotti D.;Antoniazzi F.;Salmon Cinotti T.;Costanzo A.
2019

Abstract

In this article, we describe a customized 2.45-GHz radio frequency identification (RFID) reader designed to simultaneously perform 3-D tracking of multiple tagged entities (objects or people), static or dynamic, in harsh electromagnetic indoor environments. This is obtained by a bi-dimensional electronic beam-steering, implementing the monopulse radar concept simultaneously in the elevation and azimuth directions, with tags-reader distance estimation based on received signal strength indicator (RSSI) measurements. Experimental results show that the system is able to perform a tri-dimensional scanning of a monitored room with decimeter-accuracy over the three reference axes. The RF front end is designed to be lightweight, thin, and compact in such a way that it is portable and embeddable in domestic objects. For this purpose, a multi-layer solution is adopted with a 2-D patch antenna array aperture coupled with the RF front end. 3-D localization data are computed onboard by means of a seamless connection of the RF front end with a low-power microcontroller, which is able to store tags 3-D localization data over a multi-hour time frame. A useful method to remotely control the whole system is presented, using a Raspberry Pi 3B, directly connecting the reader with a flexible and extensive digital platform for Smart Homes. The presented architecture is experimentally demonstrated to perform a reliable fall detection of tagged people in indoor environments.
2019
Paolini G.; Masotti D.; Antoniazzi F.; Salmon Cinotti T.; Costanzo A.
File in questo prodotto:
File Dimensione Formato  
TMTT-2019-05-0548_Final_Version.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 2.34 MB
Formato Adobe PDF
2.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/716178
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 27
social impact