Delamination is the most frequent failure mode in thermoset-based composite laminates which can be easily occurred under an impact loading. Applying nanofibers between composite layers is one of the attractive methods to decrease the influence of this phenomenon (delamination) on the operation of an engineering structure. In this study, various nanofibers were utilized to consider their effects on impact response of glass/epoxy laminates. The nanofibers were made of PA66, PCL, and their mixture (PA66/PCL) which their toughening mechanisms are different. The results showed that PA66 and PA66/PCL had the best effectiveness on damaged area caused by the impactor (reduction of 60%). According to these results and some other evidences, it is concluded that bridging between composite layers which was established by PA66 nanofibers is the best mechanism for toughening laminates. On the other hand, depending on the curing cycle, PCL can toughen the composite laminates with two various mechanisms: 1- bridging between the layers 2- phase separation. The evidences show that the first mechanism is much more effective than the second one.

Comparing various toughening mechanisms occurred in nanomodified laminates under impact loading / Saghafi H.; Minak G.; Zucchelli A.; Brugo T.M.; Heidary H.. - In: COMPOSITES. PART B, ENGINEERING. - ISSN 1359-8368. - ELETTRONICO. - 174:(2019), pp. 106964.1-106964.9. [10.1016/j.compositesb.2019.106964]

Comparing various toughening mechanisms occurred in nanomodified laminates under impact loading

Saghafi H.;Minak G.;Zucchelli A.;Brugo T. M.;
2019

Abstract

Delamination is the most frequent failure mode in thermoset-based composite laminates which can be easily occurred under an impact loading. Applying nanofibers between composite layers is one of the attractive methods to decrease the influence of this phenomenon (delamination) on the operation of an engineering structure. In this study, various nanofibers were utilized to consider their effects on impact response of glass/epoxy laminates. The nanofibers were made of PA66, PCL, and their mixture (PA66/PCL) which their toughening mechanisms are different. The results showed that PA66 and PA66/PCL had the best effectiveness on damaged area caused by the impactor (reduction of 60%). According to these results and some other evidences, it is concluded that bridging between composite layers which was established by PA66 nanofibers is the best mechanism for toughening laminates. On the other hand, depending on the curing cycle, PCL can toughen the composite laminates with two various mechanisms: 1- bridging between the layers 2- phase separation. The evidences show that the first mechanism is much more effective than the second one.
2019
Comparing various toughening mechanisms occurred in nanomodified laminates under impact loading / Saghafi H.; Minak G.; Zucchelli A.; Brugo T.M.; Heidary H.. - In: COMPOSITES. PART B, ENGINEERING. - ISSN 1359-8368. - ELETTRONICO. - 174:(2019), pp. 106964.1-106964.9. [10.1016/j.compositesb.2019.106964]
Saghafi H.; Minak G.; Zucchelli A.; Brugo T.M.; Heidary H.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/714753
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact