The aim of this work is to produce a surface composite by incorporating B 4 C particles on the surface of AA7075 alloy through friction stir processing (FSP) using both a pinless and a cone pin tool. The influence of friction stir processing parameters on the microstructure, hardness, and wear properties of the processed surface composites was investigated. The studied parameters include rotational tool speed (400 and 600 rpm) and number of passes (1, 2, 3, and 4 passes). Microstructural analysis and microhardness profiles were performed on cross sections of FSPed samples at different depths. Wear behavior of the processed samples was evaluated by means of dry sliding tests. The results indicate that (i) increasing the number of passes results in improving the distribution of B 4 C reinforcing particles, (ii) samples processed with the pinless tool displayed a more homogeneous distribution of the reinforcement in the outer layer of the material with respect to the samples processed with the cone pin, (iii) the addition of B 4 C particles improved the wear resistance of the AA7075 alloy even if it led to a raise in the coefficient of friction.

Effect of FSP parameters and tool geometry on microstructure, hardness, and wear properties of AA7075 with and without reinforcing B4C ceramic particles

Tonelli, Lavinia
;
Morri, A.;Toschi, S.;Ceschini, L.
2019

Abstract

The aim of this work is to produce a surface composite by incorporating B 4 C particles on the surface of AA7075 alloy through friction stir processing (FSP) using both a pinless and a cone pin tool. The influence of friction stir processing parameters on the microstructure, hardness, and wear properties of the processed surface composites was investigated. The studied parameters include rotational tool speed (400 and 600 rpm) and number of passes (1, 2, 3, and 4 passes). Microstructural analysis and microhardness profiles were performed on cross sections of FSPed samples at different depths. Wear behavior of the processed samples was evaluated by means of dry sliding tests. The results indicate that (i) increasing the number of passes results in improving the distribution of B 4 C reinforcing particles, (ii) samples processed with the pinless tool displayed a more homogeneous distribution of the reinforcement in the outer layer of the material with respect to the samples processed with the cone pin, (iii) the addition of B 4 C particles improved the wear resistance of the AA7075 alloy even if it led to a raise in the coefficient of friction.
2019
Tonelli, Lavinia*; Morri, A.; Toschi, S.; Shaaban, M.; Ammar, H.R.; Ahmed, M.M.Z.; Ramadan, R.M.; El-Mahallawi, I.; Ceschini, L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/711963
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 40
social impact