At 60–150 °C and 15–35 bar H2, two model reactions of levulinic acid (LA), hydrogenation and reductive amination with cyclohexylamine, were explored in a multiphase system composed of an aqueous solution of reactants, a hydrocarbon, and commercial 5 % Ru/C as a heterogeneous catalyst. By tuning the relative volume of the immiscible water/hydrocarbon phases and the concentration of the aqueous solution, a quantitative conversion of LA was achieved with formation of γ-valerolactone or N-(cyclohexylmethyl)pyrrolidone in >95 and 88 % selectivity, respectively. Additionally, the catalyst could be segregated in the hydrocarbon phase and recycled in an effective semi-continuous protocol. Under such conditions, formic acid additive affected the reactivity of LA through a competitive adsorption on the catalyst surface. This effect was crucial to improve selectivity for the reductive amination process. The comparison of 5 % Ru/C with a series of carbon supports demonstrated that the segregation phenomenon in the hydrocarbon phase, never previously reported, was pH-dependent and effective for samples displaying a moderate surface acidity.

A Multiphase Protocol for Selective Hydrogenation and Reductive Amination of Levulinic Acid with Integrated Catalyst Recovery / Belle A.; Tabanelli T.; Fiorani G.; Perosa A.; Cavani F.; Selva M.. - In: CHEMSUSCHEM. - ISSN 1864-5631. - STAMPA. - 12:14(2019), pp. 3343-3354. [10.1002/cssc.201900925]

A Multiphase Protocol for Selective Hydrogenation and Reductive Amination of Levulinic Acid with Integrated Catalyst Recovery

Tabanelli T.;Cavani F.;
2019

Abstract

At 60–150 °C and 15–35 bar H2, two model reactions of levulinic acid (LA), hydrogenation and reductive amination with cyclohexylamine, were explored in a multiphase system composed of an aqueous solution of reactants, a hydrocarbon, and commercial 5 % Ru/C as a heterogeneous catalyst. By tuning the relative volume of the immiscible water/hydrocarbon phases and the concentration of the aqueous solution, a quantitative conversion of LA was achieved with formation of γ-valerolactone or N-(cyclohexylmethyl)pyrrolidone in >95 and 88 % selectivity, respectively. Additionally, the catalyst could be segregated in the hydrocarbon phase and recycled in an effective semi-continuous protocol. Under such conditions, formic acid additive affected the reactivity of LA through a competitive adsorption on the catalyst surface. This effect was crucial to improve selectivity for the reductive amination process. The comparison of 5 % Ru/C with a series of carbon supports demonstrated that the segregation phenomenon in the hydrocarbon phase, never previously reported, was pH-dependent and effective for samples displaying a moderate surface acidity.
2019
A Multiphase Protocol for Selective Hydrogenation and Reductive Amination of Levulinic Acid with Integrated Catalyst Recovery / Belle A.; Tabanelli T.; Fiorani G.; Perosa A.; Cavani F.; Selva M.. - In: CHEMSUSCHEM. - ISSN 1864-5631. - STAMPA. - 12:14(2019), pp. 3343-3354. [10.1002/cssc.201900925]
Belle A.; Tabanelli T.; Fiorani G.; Perosa A.; Cavani F.; Selva M.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/710742
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 33
social impact